


Quantum Phases of Matter

This modern text describes the remarkable developments in quantum condensed matter physics
following the experimental discoveries of quantum Hall effects and high-temperature supercon-
ductivity in the 1980s. After a review of the phases ofmatter amenable to an independent-particle
description, entangled phases of matter are described in an accessible and unified manner.
The concepts of fractionalization and emergent gauge fields are introduced using the simplest
resonating-valence-bond insulator with an energy gap, the Z2 spin liquid. Concepts in band
topology and the parton method are then combined to obtain a large variety of experimentally
relevant gapped states. Correlated metallic states are described, beginning with a discussion of
the Kondo effect on magnetic impurities in metals. Metals without quasiparticle excitations are
introduced using the Sachdev–Ye–Kitaev model, followed by a discussion of critical Fermi sur-
faces and strange metals. Numerous end-of-chapter problems expand readers’ comprehension
and reinforce key concepts.

Subir Sachdev is the Herchel Smith Professor of Physics at Harvard University. He has also
held professional positions at Bell Labs and Yale University. He has been elected to national
academies of science in India and the United States and is a recipient of several prestigious
awards, including the Dirac Medal from the International Centre for Theoretical Physics, and
the Lars Onsager Prize from the American Physical Society.

Published online by Cambridge University Press



Published online by Cambridge University Press



Quantum Phases of Matter

SUBIR SACHDEV
Harvard University, Massachusetts

Published online by Cambridge University Press



Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment,
a department of the University of Cambridge.

We share the University’s mission to contribute to society through the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781009212694

DOI: 10.1017/9781009212717

© Cambridge University Press & Assessment 2023

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press & Assessment.

First published 2023

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data
Names: Sachdev, Subir, 1961- author.

Title: Quantum phases of matter / Subir Sachdev, Harvard University, Massachusetts.
Description: Cambridge, United Kingdom ; New York, NY : Cambridge

University Press, 2023.
Identifiers: LCCN 2022043286 | ISBN 9781009212694 (hardback) |

ISBN 9781009212717 (ebook)
Subjects: LCSH: Condensed matter–Textbooks.

Classification: LCC QC173.454 .S224 2023 | DDC 530.4/1–dc23/eng20221121
LC record available at https://lccn.loc.gov/2022043286

ISBN 978-1-009-21269-4 Hardback

Additional resources for this publication at www.cambridge.org/9781009212694.

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of
URLs for external or third-party internet websites referred to in this publication

and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

Published online by Cambridge University Press



To
Usha

for making it possible

Published online by Cambridge University Press



Contents

Preface page xiii

1 Survey of Experiments 1
1.1 Metals and Band Insulators 1
1.2 Mott Insulators 4
1.3 Ultracold Atoms 8
1.4 The Heavy-Fermion Intermetallic Compounds 13
1.5 The Cuprates 14

Part I Background

2 Fermi Liquid Theory 21
2.1 Free-Electron Gas 21
2.2 Interacting-Electron Gas 22
2.3 Specific Heat 25
2.4 Compressibility 26
2.5 Dynamic Response Functions 27
2.6 Green’s Functions and Quasiparticle Lifetime 28
Problem 32

3 Dilute Bose Gas 33
3.1 Bogoliubov Theory 33
3.2 Off-Diagonal Long-Range Order 37
3.3 Path Integral Theory 38
Problem 40

4 Bardeen−Cooper−Schrieffer Theory of Superconductivity 43
4.1 The BCS Wavefunction 43
4.2 Off-Diagonal Long-Range Order 45
4.3 Bogoliubov Theory 47
4.4 The Energy Gap 49
Problems 52

5 Broken Symmetry and Superfluidity 53
5.1 Ising Model and Surface Tension 54
5.2 XY Model and Helicity Modulus 55

vi

Published online by Cambridge University Press



vii Contents

5.3 Superconductors and Gauge Invariance 56
5.4 The London Equation 57
Problems 58

6 Landau--Ginzburg Theory 59
6.1 Hubbard–Stratonovich Transformation 59
6.2 Expansion near Tc 61
6.3 Effective Classical Theory 63
6.4 Classical Dynamics 64
6.5 Magnetic Field 64
Problems 65

7 Vortices in Superfluids and Superconductors 66
7.1 Neutral Superfluids 66
7.2 Charged Superfluids 69
7.3 Flux Quantization 71
7.4 Vortex Lattices 72
Problems 73

8 Boson Hubbard Model 74
8.1 Lattice Hamiltonian 75
8.2 Mean-Field Theory 76
8.3 Continuum Quantum Field Theories 79
8.4 Insulators at Non-Integer Filling 83
Problems 84

9 Electron Hubbard Model 87
9.1 The Superexchange Interaction 89
9.2 Insulating Antiferromagnets and Hard-Core Bosons 91
9.3 The t–J Model and d-Wave Pairing 96
9.4 Paramagnon Theory of Antiferromagnetic Metals 100
Problems 110

10 Relativistic Scalar Field: Diagrams 114
10.1 Gaussian Integrals 115
10.2 Expansion for Susceptibility 118
Problems 121

11 Relativistic Scalar Field: Correlation Functions 122
11.1 Spectral Representation 122
11.2 Correlations across the Quantum Critical Point 127
Problem 132

12 Fermions and Bosons in One Spatial Dimension 133
12.1 Non-interacting Fermions 134

Published online by Cambridge University Press



viii Contents

12.2 Interacting Fermions 143
12.3 Bosons in One Dimension 146
Problems 149

Part II Fractionalization and emergent gauge fields I

13 Introduction to Gapped Spin Liquids 153
13.1 The RVB State 155
13.2 Topological Properties 155
13.3 Emergent Gauge Fields 156
13.4 Excitations of the Z2 Spin Liquid 159

14 Fractionalization in theXY Model in 2+1 Dimensions 163
14.1 The Conventional XY Model 164
14.2 The Extended XY Model 165
Problems 175

15 Theory of GappedZ2 Spin Liquids 176
15.1 Parton Formulation 177
15.2 Mean-Field Theory 180
15.3 Excitation Spectrum 183
15.4 Dynamics of Excitations 188
Problem 194

16 Z2 Gauge Theory 196
16.1 From the Large-N Path Integral to a Z2 Gauge Theory 196
16.2 Hamiltonian of the Z2 Gauge Theory 199
16.3 Topological Order at Small g 203
16.4 Large-g Limit 206
16.5 Visons and Anyon Condensation 209
16.6 Models of Rydberg Atoms 214
Problems 219

17 Chern−Simons Gauge Theories 221
17.1 Chern–Simons Theory on a Torus 222
17.2 Quasiparticles and Their Statistics 225
17.3 Coupling to an External Gauge Field 226
17.4 Physics at the Edge 227
Problems 231

Part III Band topology

18 Berry Phases and Chern Numbers 235
18.1 Berry Phases 235
18.2 Berry Phase of a Spin 237

Published online by Cambridge University Press



ix Contents

18.3 Berry Curvature of Bloch Bands 239
18.4 Chern Insulators 243
Problem 244

19 Integer Quantum Hall States 246
19.1 Non-relativistic Particles 246
19.2 Relativistic Particles (Graphene) 249
19.3 Edge states 250
19.4 Anomaly Inflow Arguments 254
Problem 255

20 Topological Insulators and Superconductors 256
20.1 Su–Schrieffer–Heeger Model 257
20.2 Kane–Mele Insulators 261
20.3 Odd-Parity Superconductors 262

Part IV Fractionalization and emergent gauge fields II

21 Parton Theories 269
21.1 Spin Fractionalization into Bosonic Partons 269
21.2 Spin Fractionalization into Fermionic Partons 270
21.3 Quantum Hall States 272
21.4 Correlated Metals 272

22 The Chiral Spin Liquid 274
22.1 Mean-Field theory 275
22.2 Gauge Fluctuations 276
22.3 Edge States 277
22.4 SU(2) Gauge Theory 278

23 Non-Abelian Ising Anyons 280
23.1 Visons and Majorana Zero Modes 281
23.2 Non-Abelian Statistics 284
23.3 Connections to Odd-Parity Superconductors 286

24 Fractional Quantum Hall States 287
24.1 Partons 287
24.2 Edge Theory of the Fractional Quantum Hall States 290
24.3 Bulk Gauge Theory of the Fractional Quantum Hall States 292
24.4 Moore–Read State 294

25 Dualities ofXY Models andU(1) Gauge Theories 295
25.1 XY model in D = 1 295
25.2 Vortices in the XY Model in D = 2 297
25.3 U(1) Gauge Theory with Monopoles in D = 3 304

Published online by Cambridge University Press



x Contents

25.4 Particle–Vortex Duality of the XY model in D = 3 306
Problems 311

26 Applications of Dualities to Spin Liquids 312
26.1 U(1) Spin Liquids 312
26.2 Gapped Z2 Spin Liquids 319

27 Boson--Fermion and Fermion--Fermion Dualities 328
27.1 Fermion–Boson Duality I 328
27.2 Fermion–Boson Duality II 333
27.3 Fermion–Fermion Duality 334
27.4 Fractional Quantum Hall Effect: Dirac Composite Fermions 337

28 Gapless Spin Liquids 340
28.1 U(1) Spin Liquids on the Square Lattice: Bosonic Spinons 341
28.2 U(1) Spin Liquids on the Square Lattice: Fermionic Spinons 344
28.3 Gapless SU(2) Spin Liquids 344
28.4 Gapless Z2 Spin Liquid on the Square Lattice 346

Part V Correlated Metals

29 Kondo Impurity Model 351
29.1 Resonant-Level Model 351
29.2 Adding Interactions 354
29.3 Renormalization Theory 355
29.4 Large-M Theory 359
29.5 Bose Kondo Model 362
Problems 366

30 The Heavy Fermi Liquid 368
30.1 The Kondo Lattice Heavy Fermi Liquid 369
30.2 The Luttinger Relation 373

31 The Fractionalized Fermi Liquid 381
31.1 The FL* State in the Kondo Lattice 383
31.2 Emergent Gauge Fields and Generalized Luttinger Relations 386
31.3 Torus Flux Insertion and Generalized Luttinger Relations 388
31.4 The FL* State in the Single-Band Hubbard Model 395

32 Sachdev--Ye--Kitaev Models 406
32.1 Random Matrix Model: Free Fermions 407
32.2 Large-N Theory of the SYK Model 412
32.3 G–Σ Effective Action 425
Problem 431

Published online by Cambridge University Press



xi Contents

33 Random Quantum Spin Liquids and Spin Glasses 432
33.1 Classical Ising Spin Glass 433
33.2 Quantum Rotor Spin Glass 435
33.3 Random Heisenberg Magnet 441

34 Fermi Surfaces without Quasiparticles 451
34.1 Onset of Ising Ferromagnetism 452
34.2 Luttinger Relation 461
34.3 Fermi Surface Coupled to a Gauge Field 462
34.4 Pairing Correlations 463
34.5 Transport 466

Appendix A Coherent-State Path Integral 469

Appendix B Grassman Path Integral 476

Appendix C From Spin Berry Phases to Background Gauge Charges 481

Appendix D EmergentZ2 Gauge Theories 485

References 488
Index 507

Published online by Cambridge University Press



Published online by Cambridge University Press



Preface

This book aims to give an overview of the remarkable developments in the theory of
quantum condensed matter physics that were initiated by three experimental discover-
ies: the integer quantum Hall effect in 1980 [143], the fractional quantum Hall effect
in 1982 [280], and high-temperature superconductivity in the cuprates in 1986 [24]. I
was fortunate to be present as a young postdoc at the famous “Woodstock” meeting
of the American Physical Society in March 1987 in New York, where the excitement
was palpable. The dominant view appeared to be that the problem of high-temperature
superconductivity would be quickly solved, in the same manner that Laughlin’s wave-
function had already clarified some aspects of the fractional quantum Hall effect in
1983 [150]. Instead, these experimental discoveries launched a paradigm shift that
would take several decades to evolve, and which continues to this day. My aim here is
to give a pedagogical overview of the many theoretical developments that followed. Of
course, it is impossible to present a comprehensive treatment in a book of this length,
and I have chosen topics that I view to be most relevant to the many experimental
developments that have also followed.

The basic principle underlying early developments in statistical mechanics and solid-
state physics was that of “mean-field” theory, in which the motion of each particle
could be described in an average potential created by the other particles. In the the-
ory of metals, these ideas found a refined form in Landau’s Fermi liquid theory,
which is presented in Part I in Chapter 2. New ideas based on emergent collective
degrees of freedom, and theories of “order parameters” were developed in the theory
of phases and phase transitions, and these found a pinnacle in 1972 in the Wilson–
Fisher theory [308] of the critical point of the classical three-dimensional Ising model.
The implications of the Wilson–Fisher theory for quantum systems, especially at non-
zero temperature, have been described in my earlier book, Quantum Phase Transitions
[232], which I will refer to hereafter simply as the QPT book. Some of the material cov-
ered in the QPT book is needed background for the present book, and so is included,
and expanded on, here in Part I in Chapters 3, 10, 11, and 12. Part I also describes
other important developments in traditional solid-state physics needed for the modern
theory; these topics can also be found in many other textbooks, but my presentation
attempts to relate them to observations in modern quantum materials.

In the context of quantum condensed matter physics, ideas moving beyond the
independent-particle paradigm require theories of many-particle quantum entangle-
ment. In its interpretation as the critical theory of the quantum Ising model in two
spatial dimensions, the Wilson–Fisher theory provides an example of a system without

xiii
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xiv Preface

any particle-like excitations, and with long-range many-particle quantum entangle-
ment. Theories of many-particle quantum entanglement directed at the fractional
quantum Hall effect built upon the physical picture provided by the Laughlin wave-
function. However, there are two distinct ingredients in the theory of the fractional
quantum Hall state: the first is the fractionalization of the electron and the associated
appearance of emergent gauge fields, and the second can now be referred to as band
topology. The distinction between these ingredients was not clear in these earlier stud-
ies, and their effects were often conflated in a manner that was confusing to many
(including the author). In the present book, I will make the distinction quite explicit,
and cover the central ideas of fractionalization without band topology in Part II, while
band topology is covered in Part III. Armed with these theories, we are able to apply
both sets of ideas to a wide variety of quantum phases of matter in Part IV, including
the fractional quantum Hall states.

Part II presents the theory of fractionalization “on its own” in two spatial dimen-
sions. The theoretical developments start from Pauling’s resonating-valence-bond
(RVB) wavefunction, proposed in 1949 in his paper entitled “A resonating-valence-
bond theory of metals and intermetallic compounds” [199]. However, Pauling’s
approach to simple metals was superseded by mean-field “density functional” theo-
ries building upon electrons in Bloch waves. In 1973, Anderson pointed out [8] that
the quantum correlations in Mott insulators could be described by the RVB wavefunc-
tion, and applied similar ideas to cuprate high-temperature superconductivity in 1987
[9]. Soon after, Kivelson et al. [138] pointed out in 1987 that the RVB wavefunction
also features fractionalization of the electron. The stability of the RVB state, and of its
fractionalized excitations, to quantum corrections beyond an ansatz for a wavefunc-
tion, was first established in the theory of the odd Z2 spin liquid [118, 217, 301], which
is presented in Chapters 15 and 16.

Part III presents a relatively brief exposition of what has now become a vast subject:
the different varieties of “topological” band structures that can be realized by non-
interacting fermions. The different realizations of band topology are distinguished by
the presence of protected gapless excitations on the boundaries of the sample. It is now
standard terminology to refer to materials with non-trivial band topology as topolog-
ical insulators, metals, or superconductors; I refer the reader to the books by Bernevig
and Hughes [28] and Vanderbilt [282] for a more complete treatment of the theory of
band topology of non-interacting fermions. Unfortunately, this now widely accepted
terminology of “topological insulators” etc. is apt to be confused with the characteri-
zation of quantum states with fractionalized excitations as possessing topological order,
and I have therefore de-emphasized the latter terminology.

Part IV combines fractionalization and band topology, beginning with an overview
in Chapter 21 on “parton theories.” The electron (or a spin or a boson) is presumed to
fractionalize into “partons,” and the partons can then move in a possibly topological
band structure. Combining the rich sets of possibilities of parton fractionalization and
band topology, we obtain a powerful toolbox to describe a wide variety of quantum
phases.
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xv Preface

Almost all of the discussion of novel quantum phases with fractionalization in
Parts II and IV is in the context of insulators. But in experimental realizations, novel
phases are far more common in metals, which feature a Fermi surface of gapless excita-
tions.We turn to a discussion of correlatedmetals in Part V. I will beginwith a review in
Chapter 29 of the Kondo impurity model, in which a localized spin degree of freedom
is coupled to a Fermi surface. I then turn in Chapter 30 to the Kondo lattice model,
in which a lattice of spins is coupled to a Fermi surface of conduction electrons. The
most common fate of the Kondo lattice model is the “heavy Fermi liquid,” in which
the spins “become part of” the Fermi surface, and we obtain a large Fermi surface of
electron-like quasiparticles, albeit with a large effective mass. However, another possi-
ble fate of the Kondo lattice model is the “fractionalized Fermi liquid” which features
coexistence of a (small) Fermi surface of electron-like quasiparticles with fractionalized
parton excitations; I describe this state and its applications to intermetallic compounds
in Chapter 31. A more subtle point is that the fractionalized Fermi liquid state can also
appear in single-band models, such as those are appropriate for the cuprate supercon-
ductors; this is discussed in Section 31.4, along with applications to the “pseudogap
metal” phase of the cuprates

Part V also discusses metals that do not have any quasiparticle excitations, neither
electron-like nor in any parton form. Much insight on such states of matter has been
gained from the Sachdev–Ye–Kitaev (SYK) model, which I describe in Chapter 32.
Remarkably, the SYK model also provides a description of the universal low-energy
physics of quantum gravity for a wide class of black holes. I do not describe these holo-
graphic connections here: I refer the reader to my book,Holographic QuantumMatter,
writtenwith SeanHartnoll andAndrewLucas [102], and the review article withDeban-
jan Chowdhury, Antoine Georges, and Olivier Parcollet [46]. Insights from the SYK
model are employed in the discussion of quantum-critical metals without quasiparti-
cles in Chapter 34. This last chapter also explores connections of such theories to the
ubiquitous “strangemetal” or “Planckianmetal” phase of numerousmodern quantum
materials.

A significant unifying theme in this book is the crucial role played by the spin Berry
phase in (18.23) and (A.38) (sometimes, also referred to as the Wess–Zumino–Witten
term in 0+1 spacetime dimensions). In recent developments, the consequences of such
Berry phases are phrased in terms of “anomalies” associated with symmetry-protected
topological states in higher dimensions, but these connections will not be explored in
this book. The spin Berry phase is absent in the relativistic field theories that were
the focus of the QPT book; such field theores are continuum representations of basic
models of statistical mechanics, such as the XY model in (14.1). With the Berry phases
present, gapless and fractionalized phases or critical points become much more likely,
as will become clear from many examples in this book. In an imaginary time represen-
tation of quantum spin models with spin S on each site, the spin Berry phase is shown
in Appendix C to lead to a staggered background gauge charge for collinear antifer-
romagnets. It leads to the Berry phase factor shown in (14.36) for the XY model, and
shown in (15.49) for the relativistic O(4)model describing non-collinear antiferromag-
nets. In theZ2 gauge theory of spin liquids, this Berry phase is realized by theGauss law
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constraint Gi = (−1)2S in (16.13), and was first obtained in a dual form in Ref. [118].
As the analysis of Z2 gauge theory in Chapter 16 makes clear, this Berry phase can
prevent confinement even at very strong coupling on certain lattices, expanding the
stability of fractionalized phases. In U(1) gauge theories, the Berry phases suppress
monopoles, leading to large confinement length scales or deconfined critical points,
as will be described in Chapters 26 and 28. The Chern–Simon term of the chiral spin
liquid discussed in Chapter 22 can also be viewed as a consequence of this spin Berry
phase. In random spin systems, it is the Berry phase which distinguishes quantum rotor
models from quantum spin models, and leads to the appearance of the gapless spin liq-
uid with SYK correlations, as described in Chapter 33. The spin Berry phase is also an
ingredient in the Kondo model, and important in the derivation of the renormalization
group equations in Section 29.3. Finally, I note the connection of the spin Berry phase
to the Luttinger relation of Kondo lattice models described in Section 31.3.1.

This book was initially developed from lectures notes for my courses at Harvard in
2016, 2018, 2020, and 2021. It took nearly its final form in a course I taught in the fall
of 2021, jointly at the Institute for Advanced Study (IAS) in Princeton and the Tata
Institute of Fundamental Research (TIFR) campuses in Bengaluru, Hyderabad, and
Mumbai. This novel arrangement was an unexpected benefit of pandemic technology:
I lectured using a blackboard either at the IAS or the International Centre for Theo-
retical Sciences, TIFR campus in Bengaluru. Video recordings of all lectures are freely
available online on the IAS channel on YouTube at tinyurl.com/rwey5fyt, or following
links at my website, sachdev.physics.harvard.edu. Readers are encouraged to use the
videos for more informal and intuitive discussions of the topics covered in this book.

I have designed the book to be used in graduate courses on quantum condensed
matter theory. Prior graduate courses in quantum mechanics and statistical mechanics
are prerequisites. The book does not cover the technology of second quantization and
finite temperature Green’s functions; this is covered in numerous excellent textbooks,
and on some occasions I have lectured on this material before turning to the topics
covered here. Most of Parts I, II, and III can be covered in a one-semester graduate
course, followed by a selection of material from the remaining chapters. Please see my
IAS/TIFR lectures for the set of choices I made most recently.

Some parts of this book have been adapted from previous publications. Apart from
the chapters from the QPT book noted earlier, portions of Chapters 15 and 16 are
drawn from the review in Ref. [225], Chapter 32 and parts of Chapter 34 from the
review in Ref. [46]. I thank my co-authors of Ref. [46], Debanjan Chowdhury, Antoine
Georges, and Olivier Parcollet for permission to include the material here.

I owe a significant debt of gratitude to all the students and participants inmy lectures
for their interest, engagement, and stimulating and clarifying discussions. I sincerely
thank the teaching assistants of my Harvard courses, Debanjan Chowdhury, Wenbo
Fu, Haoyu Guo, Aavishkar Patel, and Rhine Samajdar for many helpful contribu-
tions and corrections; Appendix B was written by Rhine Samajdar. I thank Subhro
Bhattacharjee, Kedar Damle, Rajesh Gopakumar, Kabir Ramola, Sandip Trivedi,
and Spenta Wadia at TIFR, and Nathan Seiberg at IAS, for their valuable help and
encouragement in the intercontinental course, which was made possible by support
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from IAS, Harvard, and ICTS. The structure of the book owes much to the feed-
back I received during this course. I had useful discussions on the content of the book
withMaissamBarkeshli,Michael Levin, LeoRadzihovsky, Nathan Seiberg, T. Senthil,
and Ruben Verresen. I thank Darshan Joshi, Henry Shackleton, Yanting Teng, Maria
Tikhanovskaya, Ruben Verresen, and especially Leo Radzihovsky for their careful
reading of many chapters.

I am grateful to the US National Science Foundation for extended support of my
research over many years, most recently under Grant No. DMR-2002850. I also thank
the US Department of Energy for support of my research on “Quantum simulation of
correlated quantum matter” under grant No. DE-SC0019030.

I thank the staff at Cambridge University Press, Sarah Armstrong, Simon Capelin
(who also helped with my QPT book), Jane Chan, Nicholas Gibbons, Subathra
Manogaran, and Zoë Lewin.

Finally, I thank my late mother Usha Sachdev, my father Dharmendra Kumar
Sachdev, my wife Usha Pasi, and my daughters Monisha Sachdev and Menaka
Sachdev for their constant support.

Subir Sachdev
Cambridge MA, Princeton NJ, Bengaluru
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1 Survey of Experiments

A survey of key experiments exhibiting the quantum phases of matter studied in
this book. Experiments on metals, band insulators, magnetic order and spin liquids
in Mott insulators, ultracold atoms, the heavy fermion compounds, and the cuprate
superconductors are described.

The theory of electronic quantum matter began in 1928, soon after the formulation of
quantum mechanics, when Sommerfeld [265] proposed a theory of metals, using inde-
pendent electrons obeying Fermi–Dirac statistics. Many experimental and theoretical
developments followed, leading to a very successful theory of metals, semiconductors,
superconductors, and insulators. This theory accounted for the Coulomb interactions
between the electrons, but nevertheless the independent-electron paradigm survived in
the form of a theory of nearly-independent electronic quasiparticles with the same spin
and charge as an electron.

Beginning in the early 1980s, observations on new “quantum materials” could not
be easily fit into such an independent-electron paradigm, and this stimulated the devel-
opment of new theories of quantum matter in which the many-particle wavefunction
is fundamentally different from a product of single-particle states, that is, the particles
are “entangled.” Many of these theoretical developments are described in this book,
beginning in Part II. In this chapter, I present a selective survey of some experimental
observations that motivated these studies. There is no attempt at completeness here,
this is just a selection of experiments that highlight the main phenomena.

1.1 Metals and Band Insulators

In the independent-electron theory, the electrons occupy states in Bloch bands specified
by a crystal momentum k and a band index n (which we will often drop because of our
focus on single-band models). The values of k extend over the first Brillouin zone of
the lattice. By considering a finite lattice, most conveniently with periodic boundary
conditions, we can discretize the values of k and count the number of k states: the total
number of k states in the first Brillouin zone equals the total number of unit cells in
the finite lattice. Consequently, the density of electrons in a fully filled band is one per
unit cell and per spin. A crystal with an odd number of electrons per unit cell, and

1
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2 1 Survey of Experiments

tFigure 1.1 Electrons occupying states in a Bloch band. Each filled circle represents two electrons, after accounting for the spin
degeneracy. A metal has a partially filled band, and this allows for excitations with vanishing energy near the Fermi
surface separating the occupied and empty states. The Fermi energy isEF.

tFigure 1.2 The Fermi surface and the Luttinger relation of Fermi liquid theory. The modulo 2 (mod 2) accounts for the electrons in
fully filled bands, and assumes that electron spins are unpolarized.

with spin unpolarized, cannot fully fill a Bloch band, and so must be a metal in the
independent-electron theory – this is illustrated in Fig. 1.1.

When there are an even number of electrons per unit cell, then a band insulator
is a possible outcome, as also shown in Fig. 1.1. All bands in a band insulator are
either completely empty or fully occupied. There is an energy gap towards creating
excitations, which require moving an electron from a filled band to an empty band.
However, when there is overlap in the energy eigenvalues of different bands with dif-
ferent k values, we can have multiple bands partially filled, and so a metal is another
possible outcome with an even number of electrons per unit cell.

Going beyond the independent-electron theory, interactions in a metal can be
accounted for in the context of Fermi liquid theory, as discussed in Chapter 2. The
independent-electron theory of a metal implies the existence of a Fermi surface in k
space, which separates the occupied and empty states of a partially filled band, as
shown in Fig 1.2. The concept of a Fermi surface withstands the presence of inter-
actions, and its position remains precisely defined in a Fermi liquid. A crucial result of
Fermi liquid theory is that the volume enclosed by the Fermi surface does not change
as the interactions are turned on – we prove this Luttinger relation in Section 30.2.
Indeed, the concept of a Fermi surface is remarkably robust, and even holds in metallic
states without quasiparticle excitations, as discussed in Chapter 34.
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3 1.1 Metals and Band Insulators

tFigure 1.3 (a) Oscillations in the magnetization (dHvA oscillations) of Sr2RuO4 in a magnetic field. Such data are used to
construct the multiple sheets of the Fermi surface shown in (b) is a quasi-two-dimensional material and the
ripples in the vertical direction have been exaggerated by a factor of 15. From Ref. [26]. Reprinted with permission
from APS.

The presence of a Fermi surface in a metal and the associated low-energy excitations
across the Fermi surface dominate the observable properties of a metal. Among the
consequences of a Fermi surface are

• The entropy S and the specific heat C of a metal vanish as temperature T → 0 as

S =C = NγT , (1.1)

where N is the total number of electrons. The Sommerfeld coefficient γ is propor-
tional to the density of quasiparticle states at the Fermi level.

• The response to an applied magnetic field with a Zeeman coupling to the electrons
is given by the Pauli spin susceptibility χ(T → 0) = χ0, where χ0 is also proportional
to the quasiparticle density of states at the Fermi level.

• In the presence of impurities, the resistivity ρ of a metal has the T dependence,

ρ(T ) = ρ0 +AT 2 , (1.2)

where the A coefficient is controlled by the quasiparticle interactions.

The presence of a Fermi surface also induces oscillations in various observables
in the presence of an applied magnetic field, as shown in Fig. 1.3. Such oscillations
can be used to deduce remarkably precise information on the shape of the Fermi
surface.
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Cu

O

tFigure 1.4 The Mott insulator La2CuO4. The active band resides on CuO2 planes. At lowT , there is broken lattice and spin
rotation symmetry, with the electrons forming the Néel state, with a non-zero staggered magnetic moment centered
on each Cu site.

1.2 Mott Insulators

The precise definition of a Mott insulator is a bit ambiguous in the literature. But,
generally speaking, a Mott insulator is a crystal which is an insulator even though
band theory requires the crystal to be a metal. Specifically, band theory requires a
spin-unpolarized system with an odd number of electrons per unit cell to be a metal,
as we noted above. Nevertheless, electron–electron interactions can drive such a sys-
tem to be an insulator. The ambiguity arises when electron–electron interactions also
induce some form of lattice symmetry breaking at low temperatures, and the size of
the unit cell is at least doubled, so that there are now an even number of electrons in
the new unit cell. Then, strictly speaking, band theory would allow the formation of
a band insulator. Nevertheless, we will follow common practice, and continue to label
such an insulator a Mott insulator. The influence of electron–electron interactions is
paramount in such an insulator, as the energy gap to charged excitations is usually
much larger than the energy gap that is deduced from a band-theory analysis.

The best-studied Mott insulator is the compound La2CuO4, shown in Fig. 1.4. The
great interest is largely due to the appearance of high-temperature superconductivity
when this compound is doped, as discussed below. We can describe the low-energy
properties of this material by a single-band model with the orbitals centered on the Cu
atoms on the vertices of a square lattice. In the insulator, this band has one electron per
unit cell of the square lattice, and so band theory predicts this material must be ametal.
However, electron–electron interactions, dominated by an on-site repulsion U between
two opposite-spin electrons,make this system an insulator. The single-bandmodel with
interaction U is the Hubbard model, which is discussed further in Chapter 9.

At low T , the unit cell in La2CuO4 is doubled by the onset of Néel order shown in
Fig. 1.4. Now there are two electrons per unit cell, and so the Néel state are allowed to
be an insulator by band theory. In other words, we can adiabatically connect the Néel
state to an insulator in the small U limit, provided we maintain the broken symmetry
of the Néel state. However, the energy scales of excitations in the large U Néel state are
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tFigure 1.5 TlCuCl3 under ambient pressure is an insulator with a spin gap, with electrons on Cu sites paired into spin singlets
(left). Applying pressure induces a quantum phase transition to a Néel state with broken spin rotation symmetry.

very different from the small U band insulator with Néel order, which is why we prefer
to label the large U state a Mott insulator. Specifically, the charge gap in the large U
case is of order U , and is independent of the strength of the Néel order; in contrast, the
charge gap in the band insulator is determined by the strength of the magnetic Néel
order.

Another interesting insulator is TlCuCl3, shown in Fig. 1.5. This insulator has one
unpaired electron on each Cu atom, and an even number of Cu atoms per unit cell.
Consequently, it can be adiabatically connected to a band insulator. However, it is
better to think of it as a Mott insulator, in which the electrons on the Cu sites remain
immobile, and pair up into spin singlets between neighboring Cu atoms, as shown in
the left panel of Fig. 1.5. Note that the pairing pattern preserves all the symmetries of
the crystal structure. Upon applying pressure, a quantum phase transition is observed
at a critical pressure, above which the ground state becomes a Néel state, similar to
that found in La2CuO4. The spins are now polarized in a staggered pattern, as shown
in the right panel of Fig. 1.5.

The theory for the quantum phase transition in TlCuCl3 is reviewed in Section 11.2.
It is a relativistic field theory for the Néel order parameter in 3+1 dimensions (the con-
figuration of Cu atoms is three-dimensional in TlCuCl3, unlike the two-dimensionality
of La2CuO4). Section 11.2 also describes the evolution of the excitation spectrum
across the quantum phase transition, and such a spectrum has been measured by
neutron scattering, as shown in Fig. 1.6.

Another example of a pressure-induced transition from a gapped quantum param-
agnet to a Néel state appears in the compound SrCu2(BO3)2 [323], and is shown in
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tFigure 1.6 Neutron scattering observations [225] across the pressure-induced quantum phase transition in TlCuCl3. The triplon
particle is a spin-triplet excitation on a pair of Cu sites, which hops on the pairs shown on the left in Fig. 1.5; a
field-theoretic description of this excitation is in Section 11.2.1. The spin-wave and amplitude-mode excitations of the
Néel state are described in Section 11.2.3. Reprinted with permission from APS.

tFigure 1.7 Phase diagram of SrCu2(BO3)2 under pressure [323]. The dimer phase breaks no symmetries of the lattice, while the
Néel phase breaks spin rotation symmetry. The intermediate plaquette phase is a VBS, and it breaks lattice symmetries
while preserving spin rotation symmetry. Reprinted with permission from Springer Nature.

Fig. 1.7. At ambient pressure, this compound is a gapped quantum paramagnet in
which the spins on the Cu sites form singlet pairs in a manner that does not break any
lattice symmetries, just as in TlCuCl3. At large pressure there is a collinear Néel state,
which breaks spin rotation symmetry, also as in TlCuCl3. The new phenomenon here is
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tFigure 1.8 Schematic of possible phases of systems with S = 1/2 spins on the sites of a triangular lattice, and coupled with
antiferromagnetic exchange interactions. The transition between theZ2 spin liquid and the non-collinear Néel state
is discussed in Section 15.4.1, near Fig. 15.5. The transition between theZ2 spin liquid and VBS is discussed in
Sections 16.5.2 and 26.2.3, and Chapter 28. The transition from the VBS to the non-collinear Néel state is discussed in
Refs. [120, 268, 270].

the intermediate plaquette valence-bond solid (VBS) phase, inwhich four spins in a pla-
quette forma spin singlet, and the choice of the four-spin plaquettes requires a breaking
of lattice symmetry. I discuss such collinear Néel–VBS quantum phase transitions in
Chapter 28.

We turn now to insulators in which the immobile electrons reside on triangular or
kagome lattices. Some possible fates of the electronic spins are sketched in Fig. 1.8. If
the exchange interactions between the spins are antiferromagnetic, then such lattices
are “frustrated,” because it is not possible to find classical spin configurations in which
the energy of each bond is minimized. The classical antiferromagnet has non-collinear
Néel order, as shown in Fig. 1.8. Such Néel states can also be found for quantum S =

1/2 spins, and have been observed in Ba3CoSb2O9 [166], as shown in Fig. 1.9.
Another state in Fig. 1.8 is the VBS. The spins pair into spin-singlet bonds as in

the gapped state of TlCuCl3. But this pairing breaks the symmetry of the triangular
lattice, and there are six equivalent patterns of the columnar pattern of singlet bonds;
this is similar to the plaquette VBS state of SrCu2(BO3)2. This symmetry breaking has
important consequences for the quantum phase transitions out of the VBS phase, as
investigated in Sections 16.5.2 and 26.2.3, and Chapter 28. An example of a VBS state
in κ-(BEDT-TTF)2Cu2(CN)3 [178] is shown in Fig. 1.10.

The remaining phase in Fig. 1.8 is the Z2 spin liquid. This does not break any sym-
metries, either lattice or spin rotation. So this state is a true Mott insulator, with no
caveats. It realizes a resonating valence-bond spin liquid, and will be the focus of much
discussion starting in Chapter 13. There is “long-range quantum entanglement” in a
spin liquid, and so it cannot be studied by the traditional perturbative approaches of
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tFigure 1.9 Non-collinear Néel order of Ba3CoSb2O9 [166]. The arrows indicate the direction of the magnetic moment on the Co
sites.

(a) (b) (c)

tFigure 1.10 A valence bond solid state in the organic compoundκ-(BEDT-TTF)2Cu2(CN)3 shown in (a) [178]. There is a single
unpaired spin on each organic molecule, and the molecules reside on a distorted triangular lattice distorted triangular
lattice shown in (b). These spins pair up to form the valence bond solid shown in (c). Reprinted with permission from
AAAS.

quantummany-body theory to be reviewed in Part I. As an experimental example, note
the observations [77] on Cu3Zn(OH)6FBr in Fig. 1.11, in which the spins reside on the
Cu atoms on a kagome lattice.

1.3 Ultracold Atoms

While the focus of this book is on electronic quantum matter, we will also consider
studies of ultracold atoms. Remarkable advances in cooling and trapping atoms have
opened in a new frontier in the experimental study of quantum many-body systems.
These offer a new set of experimental tools to study novel quantum phases, often
with single-site resolution, and the ability to control the couplings in the Hamiltonian.
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tFigure 1.11 (a) and (b) Crystal structures of the gapped spin liquid candidate Cu3Zn(OH)6FBr [77]. An image of a crystal is shown
in (c). (d) The spin gap∆ is measured in an applied magnetic field, and its slope indicates the presence of
fractionalized spin S = 1/2 excitations. Reprinted with permission from Chinese Physics Letters.

Connecting such studies to those in electronic quantum matter is a promising avenue
for future research.

The first studies of ultracold atoms focused on bosonic atoms, and cooling them to a
superfluid state: the theory of the dilute Bose gas is presented Chapter 3. Subsequently,
the atoms were placed in a periodic potential, and the superfluid–insulator quantum
phase transition was observed [95] as shown in Fig. 1.12. This is a Mott insulator,
because of repulsive interactions between the bosons, and an integer density of bosons
per unit cell. The transition of bosons between a Mott insulator and a superfluid are
discussed in Chapter 8.

More recent experiments have also examined Mott insulators of spin-1/2 fermionic
atoms, which form a Néel state on the square lattice, similar to La2CuO4 in Fig. 1.4.
By varying the density of atoms, these studies have now explored the phase diagram
of the doped Mott insulator. This is similar to the doped cuprate compounds, which
are discussed in Section 1.5. However the accessible temperatures in the ultracold-
atom systems are rather high on the relevant microscopic energy scales, in comparison
to the cuprates. Superconductivity has not yet been observed, but new information
has been revealed on the microscopic correlations at higher temperatures, as shown
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tFigure 1.12 The superfluid–insulator transition of ultracold, bosonic, Rb atoms [95, 276]. Reprinted with permission from Springer
Nature.

in Fig. 1.13. We will begin our study of the fermionic doped Mott insulators in
Chapter 9, with a focus on the low-temperature superfluidity. This superfluidity is
believed to be in the same class as the Bardeen–Cooper–Schrieffer (BCS) theory of
the condensation of fermion pairs, which is described in Chapter 4. At higher tem-
peratures, the fermionic doped Mott insulators exhibit the “pseudogap metal” and
the “strange metal,” as shown in Fig. 1.13: these are phases of matter which acquire
non-trivial many-body correlations, similar to those of spin liquids. A theory of
the pseudogap metal is described in Section 31.4, and that of the strange metal in
Chapter 34.

A different class of ultracold-atom experiments trap atoms in laser tweezers, as
shown in Fig. 1.14. A separate laser excites the atoms into Rydberg states, which have a
much larger size, and have large repulsive interactions with neighboring atoms excited
to Rydberg states. This off-site interaction induces quantum correlations between the
different Rydberg atoms, and this leads to rich possibilities for novel correlated phases.
Figure 1.15 shows theoretical predictions [244] for the phases of Rydberg atoms on a
square lattice. The phases are distinguished by the wavevectors of modulations in the
density of Rydberg excited states, which are absent only in the “disordered” regime.
Unlike the optical lattice experiments in Fig. 1.12, there is no superfluid phase here
because the number of atoms in the Rydberg states are not conserved. Experiments on
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δFL ≈ 30%

δ

δ

tFigure 1.13 Phase diagram of the doped Mott insulator realized by ultracold fermionic atoms on a square lattice [145]. The
experiments have explored spin correlations at high temperatures as a function of the doping δ . The bottom panel
sketches the evolution in the spin correlations around a mobile hole with increasing δ . Reprinted with permission
from AAAS.

tFigure 1.14 Atoms trapped by laser tweezers. The atoms can be excited to a Rydberg state by separate lasers. Figure by Jacob P.
Covey.

square-lattice arrays [65] are in close correspondence with the theoretical predictions,
and have also explored the quantum phase transitions between the states.

A more recent experiment [254] using Rydberg atoms studied Rydberg atoms
arranged on the links of a kagome lattice, as shown in Fig. 1.16. This experiment
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tFigure 1.15 Density-matrix renormalization group results [244] for the phases of a square-lattice array of Rb atoms in laser
tweezers shown in Fig. 1.14. The lattice spacing is a, the Rydberg blockade radius isRb, the laser detuning is δ , and
the Rabi frequency for the ground state to Rydberg state transition isΩ. Reprinted with permission from APS.

+

tFigure 1.16 A quantum liquid of excited Rydberg atoms (indicated by the larger circles), along with atoms in the ground state
(indicated by the smaller circles). The state is a coherent superposition of many such configurations, only two of which
are shown above.

shows evidence for the quantum correlations of a “spin liquid” state that is dis-
cussed in Section 16.6. Similar to the spin liquid noted in Fig. 1.11, this is a state
which is the coherent superposition of many configurations of atoms excited into
the larger Rydberg state. The excitations “resonate” with each other, similar to the
resonating-valence-bond state to be discussed starting in Chapter 13.
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tFigure 1.17 (a) Crystal structure of CeCoIn5. (b) Fermi surfaces of CeCoIn5 as measure by quantum oscillations [169]. In pure
CeCoIn5, the Fermi surfaces are computed by a theory which assumes the f electron on Ce is localized and not part of
the Fermi surface. After doping with 0.33% Sn, the Fermi surface includes the f electron, which has now become
mobile. Reprinted with permission from AAAS.

1.4 The Heavy-Fermion Intermetallic Compounds

Finally we turn to metallic electronic states with strong correlations, distinct from the
metallic Fermi liquid states discussed in Section 1.1. The heavy-fermion compounds
are described by Kondo lattice models, which are discussed in Chapter 30.

An example of such a compound is CeCoIn5, shown in Fig. 1.17. The rare-earth
element Ce has an electron in the f band which is nearly localized on the atomic site.
However, the spin of this f electron is an active degree of freedom, which interacts
via an exchange coupling with the mobile electrons from the other bands: this leads
to a description as a Kondo lattice model. At generic electron densities, the ground
state of the Kondo lattice model is a metal. A key question is whether this metal is
in the class of Fermi liquid states discussed in Fig. 1.2. Such a state must obey the
Luttinger relation, which dictates that the f states must also be included in the count of
states contributing to the volume of the Fermi surface. And indeed many intermetallic
compounds realize such a “heavy Fermi liquid” state, in which the main consequence
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tFigure 1.18 Schematic phase diagram of the hole-doped cuprate superconductors. The p = 0 line is a Mott insulator with
antiferromagnetic (AF) order, as in Fig. 1.4. Additional phases with charge-density wave order at lowT are not shown.

of the nearly localized nature of the f band is that the quasiparticle excitations on
the Fermi surface have a large effective mass. Such a heavy Fermi liquid state is also
realized in CeCoIn5 but only after doping with a small concentration of Sn – the Fermi
surface of this state is shown on the right of Fig. 1.17.

But without Sn doping, CeCoIn5 realizes a novel metallic state that we call the “frac-
tionalized Fermi liquid,” which is discussed in Chapter 31. In this state, the f electrons
are not included in the computation of the size of the Fermi surface, and the conven-
tional Luttinger relation is violated. Instead, the f electrons form a spin liquid, similar
to that in the Mott insulator in Fig. 1.11. The absence of the f states in the Fermi
volume computation implies the Fermi surface is “small” in the fractionalized Fermi
liquid, in contrast to the “large” Fermi surface of the heavy Fermi liquid. The localized
f -electron column in Fig. 1.17b shows the “small” Fermi surface of the fractionalized
Fermi liquid state of CeCoIn5.

1.5 The Cuprates

It was the discovery of the celebrated copper oxide-based high-temperature supercon-
ductors in 1987 that launched the modern era in the study of the quantum phases of
matter, which is the focus of this book. The superconductivity is obtained by doping
a Mott insulator, similar to La2CuO4 in Fig. 1.4, by changing the composition of ele-
ments away from the CuO2 plane. The low-energy physics is described by an electronic
Hubbard model, similar on the square lattice to that discussed for fermionic ultracold
atoms in Fig. 1.13. A schematic phase diagram as a function of electron density= 1− p
and temperature is shown in Fig. 1.18. Note the similarity to the ultracold-atom phase
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Overdoped Tl2Ba2CuO6+δ
Tc = 30K

1

1 – 

tFigure 1.19 Photoemission observations [205] of the Fermi surface of in Tl2Ba2CuO6+δ in the large-p Fermi liquid regime of
Fig. 1.18. The Fermi surface obeys the conventional Luttinger relation of Fig. 1.2. Reprinted with permission from APS.

diagram in Fig. 1.13. The nature of the low-temperature phases of the antiferromagnet
and superconductor is discussed in Chapter 9.

Much of Part V is directed towards a theory of the metallic phases that appear at
higher temperatures, shown in Fig. 1.18 (and also in Fig. 1.13). The large-p metallic
state (the “overdoped” regime) is a conventional Fermi liquid, and this is confirmed
by photoemission experiments, which show a Fermi surface obeying the conventional
Luttinger relation; see Fig. 1.19.

In contrast, the “pseudogap metal” at small p does not fall into the traditional
Fermi liquid paradigms. A great deal of experimental effort has been devoted to care-
fully characterizing the remarkable properties of this pseudogap metal, and associated
ordered phases at low T . I do not survey this work here, and only note the analog of
the photoemission observations in Fig. 1.19, but now carried out at low T . Figure 1.20
shows that the “large Fermi surface” of Fig. 1.19 is not present at small p. Instead
there is a gap in the electronic spectrum near the “antinodes” (this is the region of the
Brillouin zone near k = (π,0),(0,π)). The Fermi surface appears to only be present
in “arc”-like form near the “nodal region” (this is the region of the Brillouin zone
near k = (±π/4,±π/4)). There are strong theoretical constraints that the Fermi sur-
face must be a closed curve, and so a natural hypothesis is that the Fermi arcs are
only the front portion of small hole-pocket Fermi surfaces in the nodal region, and
the photoemission intensity on the “back side” of the pockets is suppressed by a small
quasiparticle residue (see Ref. [73] for transport evidence for such pocket Fermi sur-
faces). An attractive interpretation of such Luttinger-relation-violating small Fermi
surfaces is that the pseudogap metal is a fractionalized Fermi liquid, similar to that
discussed in Section 1.4 for the intermetallic compounds. However, in the cuprates
there is no analog of the f band in which some of the electrons can localize and so
reduce the volume enclosed by the Fermi surface. There is only one single band that
crosses the Fermi level, as is amply clear from the Fermi surface observed in Fig. 1.19,
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Ca2−xNaxCuO2Cl2
at x = 0.10tFigure 1.20 Photoemission spectrum of Ca2−xNaxCuO2Cl2 [264] in the underdoped pseudogap metal region of Fig. 1.18.

Reprinted with permission from AAAS.

tFigure 1.21 Resistivity of La2−xSrxCuO4 [94] in the strange-metal regime of Fig. 1.18. Reprinted with permission from AAAS.

and partially localizing some of the electrons in this band seems difficult to achieve. In
Section 31.4 I will present a theory for the formation of a fractionalized Fermi liquid
state in a single-bandmodel: this theory is able to successfullymodel the photoemission
spectra as a function of momentum and energy [173].

The last remaining metal in Fig. 1.18 is the “strange metal.” This also does not
fall into the Fermi liquid paradigm, and its well-known characteristic is the linear-
in-temperature resistivity shown in Fig. 1.21. Photoemission experiments and other
observations show that there are nowell-defined fermionic quasiparticles in the strange
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17 1.5 The Cuprates

metal, in contrast to both the pseudogap metal and the Fermi liquid. However, as dis-
cussed in Chapter 34, the breakdown of quasiparticles does not exclude the presence
of a sharp Fermi surface in momentum space. In Chapter 34 I also discuss theories
of strange metals without quasiparticles, along with an analysis of their transport
properties.
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2 Fermi Liquid Theory

The basic principles of Fermi liquid theory are reviewed, including the definition of
the Fermi surface for interacting electrons, and the divergence in the quasiparticle
lifetime at low temperature.

The conventional theory of metals starts from a theory of the free-electron gas, and
then perturbatively accounts for the Coulomb interactions between the electrons.
Already at leading order, we find a rather strong effect of the Coulomb interactions:
a logarithmic divergence in the effective mass of the single-particle excitations near
the Fermi surface. Further examination of the perturbation theory shows that this
divergence is due to a failure to account for the screening of the long-range Coulomb
interactions. Formally, screening can be accounted for by a simple modification of the
perturbative series: introduce a dielectric constant in the interaction propagator, and
sum only graphs that are irreducible with respect to the interaction line. Once screen-
ing is accounted for by this method, the effective mass of the single-particle excitations
becomes finite.

In this initial chapter we ask: Is it possible to give a description of the interacting-
electron gas that is valid to all orders in the Coulomb interactions? By “all orders in
perturbation theory” we are assuming the validity of the perturbation theory, and can-
not rule out non-perturbative effects, which could lead to the appearance of new phases
of matter. Indeed the study of such new phases of matter is the focus of a major part of
this book. But in this chapter, we present an all-orders description of the electron gas.
This starts by formalizing the definition of a “quasiparticle” excitation, as a central
ingredient in the theory of many-particle quantum systems.

2.1 Free-Electron Gas

Let us start by recalling the basic properties of the free-electron gas. We work in a sec-
ond quantized formalism with electron annihilation operators cpα , where p is momen-
tum and α,β is the electron spin. The electron operator obeys the anti-commutation
relation

[ckα ,c
†
k′β ]+ = δk,k′δαβ . (2.1)

21
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tFigure 2.1 Fermionic excitation spectrum of a Fermi liquid as a function of momentum p along a fixed direction from the origin.

We assume the dispersion of a single electron is εp. The chemical potential µ is assumed
to be included in εp; so for the jelliummodel εp= h̄2p2/(2m)−µ . Then theHamiltonian
is

H = ∑
p,α

εpc†
pα cpα . (2.2)

The T = 0 ground state of this Hamiltonian is

|G⟩= ∏
εp<0,α

c†
pα |0⟩. (2.3)

The equation εp = 0 defines the Fermi surface in momentum space, separating the
occupied and unoccupied states.

The elementary excitations of this state are of two types. Outside the Fermi surface
we have particle-like excitations

Particles: c†
p,α |G⟩, p outside Fermi surface, (2.4)

while inside the Fermi surface we have hole-like excitations

Holes: cp,α |G⟩, p inside Fermi surface. (2.5)

The energy of these excitations must be positive (by definition), and is easily seen to
equal |εp|, as illustrated in Fig. 2.1.

From these elementary excitations, we can now build an exponentially large num-
ber of multi-particle excitations. In the independent-electron theory, their energies are
simply the sum of the energies of the elementary excitations ∑p,α |εp|.

2.2 Interacting-Electron Gas

Our basic assumption is one of adiabatic continuity from the free-electron gas. We
imagine we can tune the strength of the Coulomb interactions, and slowly turn them
on from the independent-electron theory. Alternatively, we can assert that there is no
quantum phase transition as the strength of the interactions is increased: note this is
an assumption, and we will meet situations where this is not the case. In this adiabatic
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23 2.2 Interacting-Electron Gas

tFigure 2.2 A point p0 on the Fermi surface, and its unit normal n.

process, we assume that there is a correspondence between the ground states and the
elementary excitations of the free- and interacting-electron gas. So the state |G⟩ in
(2.3) evolves smoothly to the unknown ground state of the interacting-electron gas.
And, importantly, there is also a correspondence in the excitations. In the “jellium”
model, with continuous translational symmetry and a uniform background neutraliz-
ing charge, this correspondence is simply one-to-one: a particle excitation with energy
εp evolves into a “quasiparticle excitation” with a modified value of εp; and, simi-
larly, for a “quasihole” with modified energy −εp. An important assumption is that
εp remains a smooth function through the Fermi surface, and the energies of both
particles and holes is given by |εp|.

In the presence of a lattice, the process of adiabatic evolution is more subtle, because
we cannot assume that εp is only a function of |p|. Consequently the shape of the Fermi
surface can change in the adiabatic evolution, and a particle with momentum p can be
inside the Fermi surface for the free-electron gas, and outside the Fermi surface for
the interacting-electron gas. The crucial Luttinger theorem states that even though the
shape of the Fermi surface can evolve, the volume enclosed by the Fermi surface is an
adiabatic invariant; I defer discussion of this theorem to Section 30.2 in Part V. In the
presence of a lattice, our basic assumption is that there is a smooth function εp so that
the Fermi surface is defined by εp = 0, and the excitation energies of the quasiparti-
cles and quasiholes is |εp|. Near the Fermi surface, we assume a linear dependence in
momentum orthogonal to it: at a point p0 on the Fermi surface, let the normal to the
Fermi surface be the direction n (the value of pF can depend upon p0, see Fig. 2.2),
and so we can write for p close to p0

εp = νF(p−p0) ·n, νF = |∇pεp| ≡ pF/m∗ , (2.6)

where pF = |p0|. This equation defines the Fermi momentum pF , the Fermi velocity
νF , and the effective mass m∗, all of which can depend upon the direction p̂0 in the
presence of a lattice. Note that ∇pεp = |∇pεp|n is a vector normal to the Fermi surface.

A further assumption in the theory of the interacting-electron gas is that we can build
up the exponentially large number of other excitations also by composing the elemen-
tary excitations. (In a finite system of size N, the number of elementary excitations is
of order N, while the number of composite excitations is exponentially large in N.) As
we are interested in the thermodynamic limit, we can characterize these excitations by
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24 2 Fermi Liquid Theory

tFigure 2.3 Plot of the quasiparticle distribution functions n(p) and δn(p) of an excited state of the Fermi liquid. Note that
δn(p) has a discontinuity of unity at the Fermi surface.

the densities of quasiholes and quasiparticles. In practice, it is quite tedious to keep
track of two separate densities, along with a non-analytic dependence of their excita-
tion energy |εp| on p. Both these problems can be overcome by a clever mathematical
trick; we emphasize that there is no physics assumption involved in this trick – it is
merely a bookkeeping device. We postulate that the interacting ground state has the
same form as the free-electron ground state in (2.3). So the ground state has a density
of quasiparticles n0(p) given by

n0(p) = 1, p inside the Fermi surface,

n0(p) = 0, p outside the Fermi surface, (2.7)

as shown in Fig. 2.3. Then, an excited state is characterized by the density of quasipar-
ticles n(p), but the excitation energy will depend only upon

δn(p) = n(p)−n0(p), (2.8)

where δn(p) has a discontinuity of unity at the Fermi surface. So for p outside the Fermi
surface δn(p) measures the density of quasiparticle excitations, while for p inside the
Fermi surface−δn(p) measures the density of quasihole excitations. (All of these den-
sities can also depend upon the spin of the quasiparticles or quasiholes, a complication
we shall ignore in the following discussion.) So the actual density of excitations with
energy |εp| is |δn(p)|. For the total excitation energy, which depends on their product,
we can drop the absolute value, as in the first term on the right hand side of (2.9): this
is one of the advantages of this mathematical trick.

We assume we are at temperature T ≪ EF , where EF is the Fermi energy so that the
density of quasiparticles and quasiholes is small. Our first thought is that, because of
the low density, we can ignore the interactions between the quasiparticles and quasi-
holes, and compute the total energy of the multi-particle/hole excitations simply by
adding their individual energies. An important observation by Landau was that this
is not correct. If we wish to work consistently to order (T/EF)

2 in the total energy,
one (and only one) additional term is necessary; ignoring spin dependence, we have
the Landau energy functional
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25 2.3 Specific Heat

E[δn(p)] = ∑
p

εpδn(p)+
1

2V ∑
p,k

Fp̂,k̂ δn(p)δn(k) , (2.9)

where V is the volume of the system. At a temperature T ≪ EF , δn(p) is of order unity
only in a window ofmomenta with νF |p− pF | ∼ T , where |εp| ∼ T . Then, as we perform
the radial integral in the first term in (2.3), we pick up a factor T from εp, and a second
factor of T from the limits on the integral; so the first term is of order T 2. Landau’s
point is that the second term in (2.9) is also of order T 2; there now are two integrals over
radial momenta, and their product yields a factor of T 2. This term describes the inter-
action between the quasiparticles and quasiholes, and is characterized by the unknown
Landau interaction function Fp̂,k̂. To order T 2, we can consistently assume that all the
quasiparticles and quasiholes are practically on the Fermi surface in the interaction
term, and so Fp̂,k̂ depends only upon the directions of p and k.

Although the quasiparticles and quasiholes are assumed to interact in Landau’s
functional, the interaction is conservative, which means it does not scatter quasipar-
ticles between momenta or change the quasiparticle distribution function. The main
effect of the interaction term is that the change in the energy of the system upon adding
a quasiparticle or quasihole depends upon the density of excitations already present.
Scattering processes of quasiparticles are considered later in Section 2.6: these lead to a
finite quasiparticle lifetime, but the correponding corrections to the energy functional
are higher order in T .

Landau’s central point is that the values of m∗ and Fp̂,k̂ are sufficient to provide a
description of the low-temperature properties of the interacting-electron gas to order
(T/EF)

2, and all orders in the strength of the underlying Coulomb interactions.

2.3 Specific Heat

As a first application of Landau’s Fermi liquid theory, let us compute the specific heat.
Assuming a thermal distribution of excitations, we have, using the Fermi function
f (ε) = 1/(eε/T +1):

δn(p) = f (εp)−n0(p). (2.10)

Now using (2.7), the identity f (−ε) = 1− f (ε), and approximating εp = νF(p−p0) ·n
at low T close to the Fermi surface, we can easily show that δn(p) is an odd function
of (p−p0) ·n at each point on the Fermi surface p0. An immediate consequence is that
the second term in (2.9) vanishes to order T 2, because it has no further dependence
upon momenta normal to the Fermi surface. More physically stated, equal numbers of
quasiparticles and quasiholes are excited in thermal equilibrium and, as the Landau
interaction depends upon the total density of excitations, it does not contribute to the
total energy.

Consequently, the Landau interactions make no difference to the free energy, and so
the specific heat of the interacting-electron gas is the same as that of the free-electron
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26 2 Fermi Liquid Theory

gas, after replacing εp by the true quasiparticle dispersion. So we have the specific
heat

CV = γT, (2.11)

where the “γ-coefficient” is given by

γ =
π2k2

BT
3

g(0), (2.12)

with g(0) being the density of quasiparticle states at the Fermi level. For the spinful
jellium model in dimension d = 3

g(0) =
m∗pF

2π2h̄3 . (2.13)

2.4 Compressibility

The compressibility measures the change in electron density in response to a change
in the chemical potential. As a change in the chemical potential has a different effect
on quasiparticles and quasiholes, the Landau interaction parameters now do have an
important effect.

With the change µ → µ + δ µ , we can argue from the Landau theory that the
distribution of quasiparticles is

δn(p) = f (ε∗p )−n0(p), (2.14)

where

ε∗p =
δE

δn(p)

= εp−δ µ +
1
V ∑

k
Fp̂,k̂δn(k) . (2.15)

We have now accounted for the fact that the energy of each quasiparticle depends upon
the density of other quasiparticles via the Landau interaction. We did not have to
account for such a dependence in the computation of the specific heat because the sum
over k vanishes in that case. Note that δn(p) appears on both the left- and right-hand
sides of (2.14), and so has to be determined self-consistently. This is rather similar to
Hartree–Fock theory, where expectation values of fermion bilinears appeared both in
the Hartree–Fock Hamiltonian and in the self-consistency condition. The difference,
of course, is that the present considerations are exact at low T .

As T → 0, we expand the equations (2.14) and (2.15) to linear order in δ µ . Using
the low T identity

− ∂ f
∂ε

= δ (ε) (2.16)
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27 2.5 Dynamic Response Functions

we can conclude that the distribution function is of the form

δn(p) = Aδ µ δ (εp), (2.17)

where A is a p-independent constant. Inserting (2.17) into (2.14) and (2.15), we obtain

A = 1− A
V ∑

k
Fp̂,k̂δ (εk) . (2.18)

Combining all the results, we obtain the compressibility

dn
dµ

=
1

δ µ
1
V ∑

p
δn(p)

=
1

1+F0

1
V ∑

p
δ (εp)

=
g(0)

1+F0
, (2.19)

where

F0 =
1
V ∑

k
Fp̂,k̂δ (εk) (2.20)

is the average of the Landau interaction parameter around the Fermi surface. For
the case with full rotational symmetry (as in jellium), we can decompose the Lan-
dau interactions into angular-momentum components Fℓ, and F0 is then the s-wave
component.

So there is a renormalization by a factor of 1/(1+F0) of the compressibility from
the Landau interactions.

2.5 Dynamic Response Functions

We can extend the ideas of Fermi liquid theory to include responses to time-dependent
perturbations. We place the Fermi liquid in an external potential V (r, t), and examine
the response of the quasiparticle distribution function. Then (2.15) is modified to

ε∗p = εp+
1
V ∑

k
Fp̂,k̂δn(k,r, t)+V (r, t) , (2.21)

where we have also allowed the quasiparticle distribution function to become time-
dependent. Provided the external potential is slowly varying in space, we can use
semiclassical equations of motion to describe the time and space evolution of the
quasiparticles with average momentum p and position r:

d⟨r⟩
dt

=
∂ε∗p
∂p

d⟨p⟩
dt

=−
∂ε∗p
∂ r

. (2.22)
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28 2 Fermi Liquid Theory

From this we can write down the Boltzmann equation for the evolution of the
quasiparticle distribution function:

∂δn
∂ t

+
d⟨r⟩
dt

∂δn
∂ r

+
d⟨p⟩
dt

∂δn
∂p

= Icol . (2.23)

The right-hand side of (2.23) is the “collision” term, which scatters quasiparticles
around the Fermi surface among themselves. The key assumption of Fermi liquid the-
ory is that this scattering rate is small, as we will see in Section 2.6. Neglecting Icol, we
can solve (2.23) to obtain various collective properties of Fermi liquids, including the
existence of “zero sound.”

2.6 Green’s Functions and Quasiparticle Lifetime

For further discussion of the properties of the Fermi liquid, and the nature of its cor-
rections when we consider higher temperatures, it is useful to employ the language
of Green’s functions. We use the standard many-body Green’s function defined in
Ref. [39]. The most convenient definition starts from the Green’s functions defined
in imaginary time τ (ignoring the electron spin α)

G(p,τ) =−
〈
Tτ cp(τ)c†

p(0)
〉
, (2.24)

where Tτ is the time-ordering symbol. We can then Fourier transform this to the Mat-
subara frequencies ωn = (2n+1)πT/h̄, n integer, to obtain G(p, iωn). More generally,
we can consider the Green’s function in the complex z plane, G(p,z), obtained by ana-
lytic continuation of G(p, iωn). This Green’s function obeys the spectral representation

G(p,z) =
∫ ∞

−∞
dΩ

ρ(p,Ω)

z−Ω
, (2.25)

where ρ(p,Ω) = −(1/π)Im [G(p,Ω+ i0+)] > 0 is the spectral density. We will also
refer to the retarded Green’s function GR(p,ω) = G(p,ω + i0+), and more gener-
ally GR(p,z) = G(p,z) for z in the upper half-plane. Closely associated is the electron
self-energy Σ(p,z), which is related to the Green’s function by Dyson’s equation

G(p,z) =
1

z− ε0
p −Σ(p,z)

, (2.26)

where by ε0
p we now denote the bare electron dispersion before the effects of electron–

electron interactions are accounted for.
The postulates of Fermi liquid theory described above have strong implications for

the structure of the Green’s function in the complex frequency plane. Specifically, the
existence of long-lived quasiparticles near the Fermi surface implies that the Green’s
function has a pole very close to the real frequency axis, at a frequency obeying
Re(z)=εp for p close to the Fermi surface. The existence of such a pole implies a free-
particle behavior of the Green’s function at long times, representing the propagation of
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29 2.6 Green’s Functions and Quasiparticle Lifetime

p < pF p > pFtFigure 2.4 The poles of the Green’s functionGR(p,z) in the complex z plane. The poles are in the second Riemann sheet, and
the horizontal line represents the branch cut implied by (2.25).

the quasiparticle. In this section, I wish to go beyond Fermi liquid theory and include
a finite quasiparticle lifetime by taking the pole just off the real axis.

Actually, there is an important subtlety in the statement “there is a pole in theGreen’s
function,” which we need to keep in mind. The spectral definition (2.25) implies that
G(p,z) is an analytic function for all z, with a branch cut on the real frequency axis,
for an interacting system with a reasonably smooth spectral density ρ(p,Ω). The pole
is actually in a different Riemann sheet from the definition (2.25), and is reached by
analytically continuing across the branch cut. So the retardedGreen’s function GR(p,z)
is analytic for all z in the upper half-plane, and the pole is obtainedwhenwe analytically
continue GR(p,z) to the lower half-plane (where it is not equal to the G(p,z) defined
by (2.25)). For p close to the Fermi surface in a Fermi liquid, this pole is at a frequency
z = εp− iγp, where γp > 0 is related to the quasiparticle lifetime τp = 1/(2γp) because it
leads to exponential decay for the Green’s function in real time (the factor of two arises
because we measure the probability of observing a quasiparticle a time τp after creating
it). Note that the pole is in the lower half-plane of the analytically continued GR(p,z)
for both signs of εp, that is, for both quasiparticles and quasiholes; see Fig. 2.4.

Ultimately, this complexity can be succinctly captured by initially restricting atten-
tion to the G Green’s function on the imaginary frequency axis. Then, the existence of
the quasiparticle implies that the Green’s function defined by (2.25) obeys

G(p, iω) =
Zp̂

iω− εp+ iγp sgn(ω)
+Ginc(p, iωn) , (2.27)

where

εp = ε0
p +Re [Σ(p,0)] (2.28)

is the renormalized quasiparticle dispersion, ε0
p is the bare quasiparticle dispersion,

and

γp =−Im
[
Σ(p,εp+ i0+)

]
> 0 . (2.29)

Consistency of the above definitions requires that the inverse lifetime of the quasipar-
ticle is much smaller than its excitation energy:

γp≪ |εp| , (2.30)
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30 2 Fermi Liquid Theory

for p close the Fermi surface. The Fourier transform of G has a slowly decaying con-
tribution, which is just that of a free particle but with renormalized dispersion, and
an amplitude suppressed by Zp̂. Consequently, Zp̂ is the quasiparticle residue, and it
equals the square of the overlap between the free and quasiparticle wavefunctions. The
Ginc term is the “incoherent” contribution, associated with additional excitations cre-
ated from the particle–hole continuum upon inserting a single particle into the system:
this contribution decays rapidly in time, and can be ignored relative the quasiparticle
contribution for the low-energy physics.

From (2.27), we can now compute the momentum distribution function ne(p) of the
underlying electrons;

ne(p) =
〈
c†
pcp
〉
, (2.31)

where we are dropping the spin index. For a free-electron gas

ne(p) = θ(−ε0
p ), free electrons, T = 0, (2.32)

where θ(x) is the unit step function. So there is a discontinuity of size unity on the
Fermi surface in ne(p). For the interacting-electron gas, it is important to distinguish
ne(p) from the distribution function of quasiparticles n(p) in (2.8). The quasiparticle
momentum distribution function continues to have a discontinuity of size unity on the
Fermi surface εp = 0. For the electron momentum distribution function at T = 0, we
need to evaluate

ne(p) =
∫ ∞

−∞

dω
2π

G(p, iω)eiω0+ . (2.33)

Evaluating the integral in (2.33) using (2.27), we find a discontinuous contribution from
the pole near the Fermi surface. There is no reason to expect a discontinuity from Ginc,
and so we obtain

ne(p) = Zp̂ θ(−εp)+ · · · , interacting electrons, T = 0, (2.34)

where . . . is the contribution from Ginc. A typical plot of ne(p) is shown in Fig. 2.5.
Because ne(p) must be positive and bounded by unity, we have a constraint on the
quasiparticle residue

0 < Zp̂ ≤ 1 . (2.35)

tFigure 2.5 The momentum distribution function of bare electrons in a Fermi liquid atT = 0. There is a discontinuity of sizeZp̂
on the Fermi surface.
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31 2.6 Green’s Functions and Quasiparticle Lifetime

Note that a small Zp̂ is not an indication that the Fermi liquid theory is not robust:
it merely indicates a small overlap between the bare electron and the renormalized
quasiparticle. Systems with very small Zp̂ can be very good Fermi liquids: we will study
the heavy-fermion compounds in Chapter 30, which are of this type. Rather, it is a short
quasiparticle lifetime, or large γp, and the failure of (2.30), which is a diagnostic of the
breakdown of Fermi liquid theory. We will turn to “non-Fermi liquids” (which also
have Zp̂ = 0) in Chapters 32 and 34.

For an explicit evaluation of the inverse lifetime γp, we have to consider processes
beyond those present in Landau Fermi liquid theory. In particular, we have to evaluate
the imaginary part of the self energy in (2.29) for p near the Fermi surface. This requires
a somewhat tedious evaluation of the relevant Feynman diagrams, and we explicitly
compute an example in Section 34.1.2. For now, we are satisfied here by “guessing”
the answer by Fermi’s golden rule. Assuming only a contact interaction, U , between
the quasiparticles, we can write the inverse lifetime as

1
τp

= 2γp = 2πU2 1
V 2 ∑

k,q
f (εk)[1− f (εp+q)][1− f (εk−q)]

×δ
(
εp+ εk− εp+q− εk−q

)
. (2.36)

This is obtained by employing Fermi’s golden role to the process sketched in Fig. 2.6,
and including probabilities that the initial states are occupied, and the final states are
empty. The momentum integrals in (2.36) are quite difficult to evaluate in general, but
it is not hard to see that the result becomes very small for p near the Fermi surface and
small T , because of the constraints imposed by the Fermi functions and the energy-
conserving delta function. A simple overestimate can be made by simply ignoring the
constraints from momentum conservation, in which case we obtain

γε ∼U2[d(0)]3 p−d
F

∫ ∞

−∞
dε1dε2dε3 f (ε1)[1− f (ε2)][1− f (ε3)]

×δ (ε + ε1− ε2− ε3)

=U2[d(0)]3 p−d
F ×

{
π2T 2/4 for ε = 0

ε2/2 for T = 0 .
(2.37)

tFigure 2.6 Decay of a quasiparticle with momentum p by scattering off a pre-existing quasiparticle with momentum k to
produce quasiparticles of momena p+ q and k− q.
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32 2 Fermi Liquid Theory

More careful considerations of momentum conservations are needed to obtain the
precise coefficients (see Section 34.1.2 for an example), but they show that the power
laws above in T and ε are correct. So, at low temperatures, γp ∼ T 2 is always much
smaller than |εp| ∼ T , and this justifies Fermi liquid theory.

We can also use these results to give a formal definition of the Fermi surface using
Green’s functions. Notice that γε in (2.37) vanishes as ε → 0 at T = 0. This follows
from the vanishing of the phase space for the decay of an excitation with energy ε as
ε → 0. This is actually a special case of a more general phenomenon following from
the stability of the ground state, and does not even require excitations to be close to
the Fermi surface. The more general statement is

Im
[
Σ(p,Ω+ i0+)

]
→ 0 as Ω→ 0 at T = 0 (2.38)

for any p, and its validity can be checked by examining the structure of the Feynman
graph expansion for Σ. We will see in Chapter 32 that (2.38) applies also to non-Fermi
liquids without quasiparticle excitations. We can now define the Fermi surface by the
pole in the Green’s function which is determined by

G−1(pF , i0
+) = 0 at T = 0. (2.39)

By (2.38), the left-hand side of (2.39) is real, and so the solution of (2.39) determines a
surface of co-dimension 1 in p space, which is the Fermi surface. These definitions are
useful in establishing the Luttinger relation constraining the volume enclosed by the
Fermi surface, which is discussed in Section 30.2.

Problem

2.1 Consider fermions ckα with a Dirac dispersion in dimensions d = 1,2,3, described
by the Hamiltonian

H = νF ∑
k

c†
k (k ·σσσ)ck+

U
2V ∑

k,k′,q

c†
k+q,α c†

k′−q,β ck′,β ck,α , (2.40)

where σσσ is a vector of d Pauli matrices. As in (2.36), use Fermi’s golden rule to
compute the lifetime of a particle with a small momentum k at a low temperature
T . Show that

γk ∼U2 [Max(νF |k|,T )]2d−1 . (2.41)

Unlike the estimate in (2.37) for a Fermi surface, it is important to include the
conservation of momentum to obtain this estimate. So Dirac quasiparticles are
well defined in d = 2,3, but not in d = 1. A full consideration of the situation in
d = 1 appears in Chapter 12.

https://doi.org/10.1017/9781009212717.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.003


3 Dilute Bose Gas

The Bogoliubov theory of theweakly interacting Bose gas is described using both the
Hamiltonian and path-integral approaches. The off-diagonal long-range order in the
ground state is related to the excitation spectrum of second sound modes.

I described a fundamental quantum liquid state in Chapter 2: that of interacting
fermions. This liquid turned out to be smoothly connected to the liquid of free
fermions, and we used this to our advantage to develop the basic principles of Fermi
liquid theory. This chapter turns to a second fundamental quantum liquid state, that of
interacting bosons. In this case, it turns out that the non-interacting Bose liquid is not
a particularly good starting point for understanding the ground state of bosons with
even a weak interaction. Fundamentally new ideas on broken symmetry are needed to
understand the Bose liquid. In this chapter, I present the theory of the weakly inter-
acting Bose gas, which will then form a basis for the more general discussion of broken
symmetry in Chapter 5.

3.1 Bogoliubov Theory

We consider bosons bk, where k is a wavevector, interacting with a weak, repulsive
short-range interaction u0. The Bose operator obeys the commutation relation

[bk,b
†
k′ ] = δk,k′ (3.1)

and the Hamiltonian is

H = ∑
k

εkb†
kbk+

u0

2V ∑
k,k′,q

b†
k+qb

†
k′−qbk′bk , (3.2)

whereV is the volume. In continuum free space the boson dispersion is εk= h̄2k2/(2m),
where m is the mass of the boson. But our analysis will also apply for other monotonic
dispersions with a minimum at εk=0 = 0. We assume there is a high momentum cutoff
in the interaction term in (3.2), beyondwhich the simple contact form of the interaction
does not apply.

33
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34 3 Dilute Bose Gas

We will develop a theory for the ground state of H in a perturbation expansion in
u0. At u0 = 0, the lowest energy state has all bosons in the k= 0 state, with

|G⟩= 1√
N0!

(b†
0)

N0 |0⟩ , (3.3)

where |0⟩ is the empty state with no bosons, and N0 is the number of bosons in the k= 0
state. This is the Bose condensate, with all the bosons in the single-particle ground
state.

Once we turn on interactions between the bosons, some fraction of the bosons will
occupy non-zero momenta even in the ground state. Rather than computing this frac-
tion at a fixed total particle number, it turns out to be far easier to describe the ground
state in the grand canonical ensemble at a fixed chemical potential µ . In this case, we
need to find the state with smallest value for the “grand energy” H−µN, where

N = ∑
k

b†
kbk. (3.4)

To begin, let us just use the state in (3.3) as a variational trial wavefunction, and
evaluate the expectation value of the grand energy

⟨G|H−µN |G⟩=−µN0 +
u0

2V
N0(N0−1)

=V
[
−µn0 +

u0

2
n0(n0−1/V )

]
, (3.5)

where

n0 =
N0

V
(3.6)

is the density of particles in the k= 0 state. Minimizing (3.5) with respect to n0 in the
thermodynamic limit (N→ ∞) we obtain

n0 =
µ
u0

(3.7)

and the optimum value of the grand energy is

⟨G|H−µN |G⟩=V
[
− µ2

2u0

]
. (3.8)

The result in (3.8) is the leading answer in the small u0 expansion at fixed µ : notice that
it diverges as 1/u0.

We note an important feature of the computation above: the 1/V term in (3.5)
dropped out in the thermodynamic limit; this term arose from the non-zero commuta-
tor [b0,b

†
0] = 1. The surviving termswould have been obtained if we had just ignored the

non-zero commutator, and just replaced b0 by the number
√

N0. This is a consequence
of having a non-zero density of particles at k = 0. Going forward, we will directly use
the replacement b0→

√
N0, and this will only discard unimportant terms that vanish

in the thermodynamic limit.
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35 3.1 Bogoliubov Theory

We now want to compute the corrections to (3.8) at order (u0)
0. For this, we need to

include the contributions of the bosons at k ̸= 0. We return to the original Hamiltonian
in (3.2), replace b0 →

√
N0, and keep all terms which are second order in bk, b†

k with
k ̸= 0. This yields

H−µN =V
[
−µn0 +

u0

2
n2

0

]
+ ∑
k̸=0

(εk−µ +u0n0)b†
kbk

+
u0n0

2 ∑
k̸=0

(
b†
kb†
−k+b−kbk+b†

kbk+b†
−kb−k

)
. (3.9)

The first line of (3.9) is the same as (3.5), and we optimized this by choosing n0 in (3.7).
The remaining lines of (3.9) describe the Bogoliubov Hamiltonian for bosons with
k ̸= 0, in which the boson b0 has been replaced by the number n0 in (3.7). A notable
feature of the Bogoliubov Hamiltonian is that it appears to not conserve the total num-
ber of bosons, with the presence of terms that annihilate or create pairs of bosons. Of
course, the total number of bosons is actually conserved but, by treating b0 as a num-
ber, we are not keeping precise track of the number of bosons in the condensate: in the
thermodynamic limit, we can safely ignore the difference between a condensate with
N0 particles or N0±2 particles.

We can now proceed to diagonalize (3.9), and so obtain the order (u0)
0 correction

to the ground-state energy, and also the spectrum of excitation at non-zero k; note that
all the terms in the Bogoliubov Hamiltonian are of order (u0)

0 after using (3.7). We
can diagonalize (3.9) by introducing a new set of bosons, ηk, which obey the canonical
Bose commutation relations

[ηk,η†
k′ ] = δk,k′ . (3.10)

These are related to the bk by a Bogoliubov transformation

bk = ηk cosh(θk)−η†
−k sinh(θk) (3.11)

with θ−k = θk an arbitrary parameter for now. This transformation has been chosen
so that the commutator (3.10) implies the commutator (3.1) and vice versa. Inserting
(3.11) into (3.9), we find that we can get all the terms that do not conserve the total
number of ηk bosons to cancel, provided we choose

tanh(2θk) =
u0n0

εk+u0n0
. (3.12)

Then the grand Hamiltonian becomes

H−µN =−V µ2

2u0
+ ∑
k ̸=0

[Ek− εk−u0n0]

+ ∑
k ̸=0

Ekη†
kηk, (3.13)
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36 3 Dilute Bose Gas

tFigure 3.1 Excitation spectrum of Bose gas for εk = h̄2k2/(2m)with k = |k|.

where

Ek =
√

ε2
k +2u0n0εk . (3.14)

This is the Hamiltonian for free ηk bosons with energy Ek > 0. So the first line of (3.13)
is the energy of the ground state, which has zero ηk ̸=0 bosons, that is, the new ground
state is defined by

ηk ̸=0 |G⟩= 0. (3.15)

See Problem 3.4 for an explicit representation of |G⟩ in terms of the b†
k operators.

The excited states consist of arbitrary numbers of ηk ̸=0 bosons with energy Ek, which
is sketched in Fig. 3.1. At large |k|, we have the free dispersion of the underlying bosons
with Ek ≈ εk. However, at small |k|,

Ek→ c|k|, c =

√
h̄2u0n0

m
(3.16)

for ε = h̄2k2/(2m). So there is a gapless spectrum of linearly dispersing bosonic parti-
cles. It can be shown that this excitation carries longitudinal density fluctuations (we
will see this more explicitly in Section 3.3), and so is a “phonon” and c is a sound
velocity. The path-integral analysis in Section 3.3 also shows that the gaplessness of
the spectrum in (3.14) is a direct consequence of a broken symmetry in the ground
state of the interacting Bose gas.

The excitation in (3.16) is sometimes called a “second sound” excitation to dis-
tinguish it from the usual “first sound” mode found also in a classical gas. The
fundamental distinction between them is that a second sound excitation is a coherent
excitation in a collisionless regime, while the first sound excitation is a hydrodynamic
mode in a collision-dominated regime. Both sound modes exist in the present Bose
gas at low T . As in Section 2.6 on the Fermi liquid, we can compute the lifetime
of the excitation in Fig. 3.1 using Fermi’s golden rule from higher-order terms in H
that were omitted in the Bogoliubov Hamiltonian: these will lead to a collision time
τk which diverges rapidly as T → 0. The second sound mode is present in the colli-
sionless regime ωτk ≫ 1, while the first sound mode is present in the hydrodynamic
collision-dominated regime ωτk≪ 1, where we use |k|= ω/c.
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37 3.2 Off-Diagonal Long-Range Order

3.2 Off-Diagonal Long-Range Order

Apeculiar feature of the ground state we have described above is that the k= 0 wavevec-
tor is treated differently from all non-zero k even in the thermodynamic limit. It would
be preferable to have a statement of this feature in terms of correlation functions of
local operators, as that would help generalize the theory to situations where periodic,
or even random, potentials are present and then the plane-wave basis plays no special
role. To this end, we introduce the field operator

ψ(r) =
1√
V ∑

k
bkeik·r . (3.17)

From (3.1), this obeys the commutation relation

[ψ(r),ψ†(r)] = δ (r− r′) . (3.18)

We now examine the position–space correlator〈
ψ†(r)ψ(r′)

〉
=

1
V ∑

k
nb(k)eik·(r′−r). (3.19)

where nb(k) is the boson momentum distribution function

nb(k) =
〈

b†
kbk
〉
, (3.20)

the analog of the electron momentum distribution function in (2.31) (assuming trans-

lational invariance,
〈

b†
kbk′

〉
is non-zero only for k = k′). We can evaluate nb(k) by

transforming to the ηk basis using (3.11), and then at T = 0 we obtain after using
(3.15)

nb(k) =
{

N0 k= 0
sinh2(θk) k ̸= 0.

(3.21)

In the thermodynamic limit (V → ∞, N0→ ∞, n0 = N0/V fixed), we can write this as

nb(k) = n0(2π)dδ (k)+
1
2

(
εk+u0n0

Ek
−1
)
. (3.22)

The co-efficient in front of δ (k) can be verified by comparing the integral of (3.22) with
the summation of (3.10) over some region of k space including the origin. Finally, we
insert (3.22) into (3.19) and obtain〈

ψ†(r)ψ(r′)
〉
= n0 +

∫ ddk
(2π)d

1
2

(
εk+u0n0

Ek
−1
)

eik·(r′−r). (3.23)

The important point is that the k integral in (3.23) yields a term which vanishes as
|r− r′| → ∞, and so

lim
|r−r′|→∞

〈
ψ†(r)ψ(r′)

〉
= n0. (3.24)
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38 3 Dilute Bose Gas

This is the key statement of off-diagonal long-range order (ODLRO): the left-hand side
has the interpretation of an off-diagonal element of the one-particle density matrix,
and this does not vanish as the r and r′ are separated by an infinite distance. It is a
fundamental characteristic of the ground state of the dilute Bose gas, and indicates
the presence of a broken symmetry. We discuss the broken symmetry features further
in Chapter 5, along with the implication for superfluidity and superconductivity. As
we raise the temperature, the Bose gas turns into a normal liquid without ODLRO,
and the vanishing of ODLRO implies that this must be accompanied by a phase
transition.

It is also useful to contrast the one-particle density matrix of the Bose gas in (3.23),
with that of the Fermi liquid. In the latter case, the fermion momentum distribution
function is given by (2.34) and Fig. 2.5, and it does not have a δ (k) term, unlike (3.22).
Instead, it is characterized by a discontinuity at the Fermi surface; after a Fourier
transform, we obtain from (2.34), for an isotropic Fermi surface,

〈
ψ†(r)ψ(r′)

〉
= Z

∫ kF

0

d3k
(2π)d eik·(r′−r)+ · · ·

=
Z

2π2r3

(
sin(kFr)− cos(kFr)

kFr

)
+ · · · . (3.25)

Clearly there is no ODLRO in the Fermi gas. It is replaced by a characteristic term
that oscillates with the Fermi wavevector kF, and has an envelope which decays as 1/r3

in dimension d = 3; the ellipses indicate terms that decay faster. There are no such
oscillatory terms in the Bose gas.

3.3 Path Integral Theory

The Bogoliubov theory presented above provides a simple intuitive description of the
superfluid ground state. However, some of its features appearmysterious at first glance:
for example, why is the excitation spectrum gapless, and why does Ek disperse linearly
at small k in (3.16)? Moreover, the connection of these results to the ODLRO and sym-
metry breaking is not clear. Many of these issues are clarified in a path-integral theory
that I will now describe. This formulation will also be useful for the considerations of
symmetry and superfluidity in Chapter 5.

Following the coherent-state path integral described inAppendixA, we canwrite the
partition function of the boson Hamiltonian (3.2) as the path integral over the boson
field ψ(r,τ), where τ is imaginary time extending on the thermal circle of circumference
β = h̄/(kBT ), and ψ is periodic around the circle. We have, setting h̄ = kB = 1, the path
integral for the partition function

Z = Tre−βH =
∫
Dψ(r,τ)e−S. (3.26)
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39 3.3 Path Integral Theory

where the action S is

S =

∫ β

0

dτ
∫

ddr
[

ψ∗
∂ψ
∂τ

+
|∇ψ|2

2m
−µ|ψ|2 + u0

2
|ψ|2

]
. (3.27)

Here, we focus on the case where εk = k2/(2m).
We will evaluate path integral by finding the saddlepoint of the action, and examin-

ing the fluctuations about the saddle point. The saddle point of (3.27) is at

ψ =
√

n0eiθ0 , (3.28)

where n0 is as in (3.7), and the angle θ0 is arbitrary. So by picking a saddle point with
an arbitrary value of θ0, we “break” a globalU(1) symmetry of the action under which

ψ(r,τ)→ ψ(r,τ)eiθ , (3.29)

where θ is independent of space and time.
Let us now examine fluctuations about the saddlepoint (3.28). It is convenient to

parameterize these fluctuations by two real fields, n1(r,τ) and θ(r,τ):

ψ(r,τ) = (n0 +n1(r,τ))1/2 eiθ(r,τ). (3.30)

It is clear that n1 represents density fluctuations, and θ(r,τ) represents fluctuations in
the phase of the condensate shown by (3.28). Inserting (3.30) into (3.27), we obtain

S = S0 +

∫ β

0

dτ
∫

ddr

[
in1

∂θ
∂τ

+
u0

2
n2

1 +
n0 (∇θ)2

2m
+

(∇n1)
2

8m(n0 +n1)
+n1

(∇θ)2

2m

]
. (3.31)

Note that all terms depend only upon the spatial or temporal gradients of θ : this
is a consequence of the global U(1) symmetry (3.29), and this feature will help us
understand the gapless nature of the excitation spectrum. Let us now transform to
momentum space, and retain only terms quadratic in θ and n1 (this will turn out to be
equivalent to the Bogoliubov theory). Then (3.31) yields the following imaginary time
action:

S2 =

∫ β

0

dτ ∑
k

[
in1k

∂θ−k
∂τ

+
1
2

(
u0 +

k2

4mn0

)
|n1k|2 +

n0k2

2m
|θk|2

]
. (3.32)

This is precisely the action of a set of harmonic oscillators, one for each k, with “coor-
dinate” θk, and canonically conjugate “momentum” n1k. So the density fluctuation of a
Bose gas is canonically conjugate to the phase of the condensate. The energy spectrum
of this set of oscillators is most conveniently obtained by performing the Gaussian
functional integral over n1k with action S2; this yields the action for phase fluctuations

Sθ =

∫ β

0

dτ ∑
k

[
1

2(u0 + k2/(4mn0))

∣∣∣∣∂θk
∂τ

∣∣∣∣2 + n0k2

2m
|θk|2

]
. (3.33)

This is clearly the action of a set of harmonic oscillators with frequency

ωk =

[
n0k2

m

(
u0 +

k2

4mn0

)]1/2

. (3.34)
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40 3 Dilute Bose Gas

Comparing (3.34) with (3.14), we confirm that ωk = Ek, the energy of the ηk bosons
in the Bogoliubov theory: so these bosons are simply the annihilation operators of
oscillators representing fluctuations of the phase of the condensate.

Problem

3.1 Consider aweakly interactingBose gas at a fixed chemical potential µ , and temper-
ature T , described by the Hamiltonian in (3.2). We will compute the total density
ρ = (1/V )∑k⟨b†

kbk⟩ as an expansion in powers of u0, including terms up to order
u0

0. Following the analysis in Section 3.1, we write

bk =
√

µ
u

δk=0 + b̃k (3.35)

and diagonalize theHamiltonian by expressing b̃k in terms of the Bogoliubov oper-
ators ηk. Evaluate the average density at a temperature T , and obtain an expression
for the density ρ(µ,T ) in the form

ρ(µ,T ) =
µ
u0

+
∫ d3k

8π3 G(k,T,µ)+O(u0) (3.36)

for some function G. Evaluate the momentum integral in the limiting regimes T ≪
µ and T ≫ µ .

3.2 Re-examine Problem 3.1 by the path-integral method. Instead of (3.30), we write

ψ =

√
µ
u0

+ψ1 (3.37)

and expand the Lagrangian to order ψ2
1 . Then, after evaluation of the Gaussian

integral over ψ1, show that

ρ(µ,T ) =
µ
u0

+

∫
d3k
8π3 T ∑

ωn

(
iωn +

k2

2m
+µ

)
(

ω2
n +

(
k2

2m
+µ

)2

−µ2

)eiωn0+ +O(u0), (3.38)

where ωn is an integer multiple of 2πT . Evaluate the frequency summation, and
compare with (3.36).

3.3 Consider a Bose gas described by the Hamiltonian (in first-quantized form)

H =− h̄2

2m

N

∑
j=1

∇∇∇2
j +

1
2

N

∑
i ̸= j=1

u(ri− r j) , (3.39)

where u is the interaction between pairs of particles.
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41 3.3 Path Integral Theory

(a) Prove that the total momentum

P =
h̄
i

N

∑
j=1

∇∇∇ j (3.40)

commutes with H. So every eigenstate of H can also be chosen to be an
eigenstate of P.

(b) Let ψ be any eigenstate of H and P with eigenvalues E and p. Prove that a state
boosted by a velocity v

exp

(
imv ·

N

∑
j=1

r j/h̄

)
ψ (3.41)

is also an eigenstate of H and P, with eigenvalues E + p · v+Nmv2/2 and p+
Nmv, respectively.

(c) Let the ground state of H be ψ0 with energy E0 and momentum P = 0. Then
a state with a single Bogoliubov excitation has momentum P = p and energy
E0+ε(p) (where ε(p) is the energy of the Bogoliubov excitation).We now form
a state with superflow at velocity v by boosting ψ as in Eq. (3.41). Show that,
if

ε(p)+p · v> 0, (3.42)

this superflowing state has an energy lower than that of a state with a sin-
gle Bogoliubov excitation of momentum p, also boosted by a velocity v. The
Landau criterion for the stability of superflow with velocity v is that (3.42) be
satisfied for all p.

3.4 We described the ground state |G⟩ of a weakly interacting Bose gas by condensing
N0 particles in the zero momentum state, and then requiring

ηk|G⟩= 0 , k ̸= 0, (3.43)

where bk and ηk are related by

bk = ηk cosh(θk)−η†
−k sinh(θk). (3.44)

Show that we can write |G⟩ as

|G⟩=
(

b†
0

)N0
exp

(
−∑
k̸=0

fkb†
kb†
−k

)
|0⟩, (3.45)

where |0⟩ is the empty state with no bosons. Determine fk.
3.5 A more general form of the ground state |G⟩ is the state

|ϕ⟩=
(

eiϕ b†
0

)N0
exp

(
−e2iϕ ∑

k̸=0
fkb†

kb†
−k

)
|0⟩, (3.46)

where the phase ϕ is arbitrary. This arbitrariness corresponds to the phase of the
condensate, which we had arbitrarily set to zero earlier. From the states |ϕ⟩, we
can obtain the state |N⟩ with a definite number of N particles
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42 3 Dilute Bose Gas

|N⟩=
∫ 2π

0

dϕ
2π

e−iNϕ |ϕ⟩. (3.47)

Evaluate the mean and variance of the number of particles in the state |ϕ⟩ by
computing

N = ⟨ϕ |N̂|ϕ⟩ , (∆N)2 = ⟨ϕ |(N̂−N)2ϕ⟩, (3.48)

where

N̂ = ∑
k

b†
kbk. (3.49)

It is simplest to do this by transforming to the ηk basis, and using ηk|ϕ⟩= 0.
3.6 We describe the Anderson–Higgs mechanism in charged superfluid. We consider

a superfluid of charged bosons ψ with long-range Coulomb interactions:

H =
∫

d3x
∇∇∇ψ†(x)∇∇∇ψ(x)

2m

+
1
2

∫
d3xd3y

[
ψ†(x)ψ(x)−n0

]
U(x−y)

[
ψ†(y)ψ(y)−n0

]
. (3.50)

Here U(x) = e2/|x| is the Coulomb potential, and n0 is a background charge
that maintains global charge neutrality. You can assume that the Hamiltonian is
implicitly normal ordered.

(a) Find the ground state ψ(x) = ψ0 of H.
(b) Derive equations of motion for field ψ(x), that is, compute i∂tψ(x).
(c) Let us consider fluctuations on top of the ground state. Linearize the equation

of motion ψ(x) = ψ0 +δψ(x) you derived around the ground state. Find the
dispersion relation Ek of elementary excitations.

(d) What is different from the case with short-range interactions considered in this
chapter? What is the physical picture of the low-energy excitations?
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4 Bardeen−Cooper−Schrieffer Theory
of Superconductivity

The Bardeen–Cooper–Schrieffer theory of superconductivity in a Fermi gas with
attractive interactions is described. The spectrumof fermionic excitations is obtained,
and their energy gap is related to the critical temperature for superconductivity.

The Bardeen–Cooper–Schrieffer (BCS) theory was first proposed by these authors in
1957, and it resolved the long-standing problem of superconductivity in simple metals.
The parent state of the superconductor is a simple metal, well described by the jel-
lium model: it has quasiparticles with dispersion εk, which are long-lived near a Fermi
surface. The Coulomb interaction between two quasiparticles is screened but remains
repulsive. The BCS theory exploits the remarkable fact that the interaction between
quasiparticles near the Fermi surface can sometimes become attractive. Studies of the
coupling of the electrons to lattice vibrations (phonons) had shown that exchange of
phonons can induce a weak attractive interaction between quasiparticles within a win-
dow of energies between±ωD of the Fermi level. Here ωD is the Debye frequency of the
phonons (roughly, the maximum phonon frequency). We have ωD ≪ EF because the
atomic mass is much larger than the electron mass. The BCS theory is quantitatively
successful because ωD≪ EF, and so the electrons prefer to form pairs only close to the
Fermi surface.

However, we know today that, even without phonons, electrons on lattices can expe-
rience a net attractive interaction in certain channels from the Coulomb interactions
alone. This interaction is not restricted to the vicinity of the Fermi surface, and so
a quantitive theory of superconductivity is much more difficult. Nevertheless, it is
generally believed that the BCS pairing theory is at least qualitatively correct in describ-
ing the superconducting state of such higher-temperature superconductors, as I will
discuss further in Chapter 9.

4.1 The BCSWavefunction

We start by introducing the BCS wavefunction as a variational state for electrons with
an attractive interaction. As the electrons prefer to from pairs, let us assume that a pair
of electrons with coordinates r1, r2 and spins σ1, σ2 have the wavefunction

43
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44 4 Bardeen−Cooper−Schrieffer Theory of Superconductivity

g(r1− r2)χ12, (4.1)

where g(r) is the spatial wavefunction, and the spin wavefunction of a spin-singlet pair
is

χi j =
1√
2

[
δσi↑δσ j↓−δσi↓δσ j↑

]
. (4.2)

This separation between the spin and spatial parts of the wavefunction is expected in
the absence of spin–orbit interactions. Notice, we assumed that there is no motion of
the center ofmass of the two electrons, whichmeans thewavefunction is independent of
(r1 + r2)/2. For N electrons (N even) we can form N/2 pairs, and so the wavefunction,
which simply places each pair of electrons into the zero center-of-mass momentum
state, is

Ψ(r1σ1,r2σ2, . . . ,rNσN) = (4.3)

CA [g(r1− r2)χ12g(r3− r4)χ34 · · ·g(rN−1− rN)χN−1,N ] ,

where A antisymmetrizes the wavefunction by summing over all permutations, and C
is a normalization constant.

This wavefunction is not easy to work with. Fortunately, there is a simple represen-
tation using second quantized field operators ψσ (r), which annihilate an electron with
spin σ and coordinate r:

|Ψ⟩ ∝
[∫

d3r1d3r2 ψ†
↑ (r1)ψ

†
↓ (r2)g(r1− r2)

]N/2

|0⟩ . (4.4)

It is easy to verify that the electron pairs are in a spin-singlet state when g(−r) = g(r).
Next, we transform this wavefunction to momentum space

|Ψ⟩ ∝

[
∑
k

g(k)c†
k↑c

†
−k↓

]N/2

|0⟩ , (4.5)

where the c†
kα are electron creation operators, as in Chapter 2. This is almost the final

form of the BCS wavefunction. By comparing to (3.3), it is evident that (4.5) is simply a
Bose–Einstein condensate of electron pairs (Cooper pairs) in a zero momentum state.
However, this form is still cumbersome to work with, and does not connect in any
evident manner to the ordinary metal when there is no pairing.

A more convenient form is obtained by working in the full Fock space with arbitrary
numbers of electrons (as was also the case for the Bose gas in Chapter 3). Provided N is
large enough, this should make no difference to the thermodynamic properties, for the
same reasons that the grand canonical ensemble gives the same results as the canonical
ensemble. So we write

|Ψ⟩ ∝ PN exp

(
∑
k

g(k)c†
k↑c

†
−k↓

)
|0⟩ , (4.6)
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where PN is the projector onto the subspace of N particles. Now we can exploit the
fact that operators with different values of k in the sum all commute with each other
to write

|Ψ⟩ ∝ PN ∏
k

exp
(

g(k)c†
k↑c

†
−k↓

)
|0⟩ . (4.7)

Finally, we use the fact that the square of the argument of each exponential vanishes
to obtain the BCS wavefunction

|Ψ⟩= PN ∏
k

(
uk+νkc†

k↑c
†
−k↓

)
|0⟩ , (4.8)

and we express g(k) in terms of two new functions uk and νk:

g(k) =
νk
uk

. (4.9)

In the N→ ∞ limit, the projector PN can be ignored in most computations because all
expectation values of local operators are dominated by terms in a window of order

√
N

about the mean number of particles N. So the BCS state is

|BCS⟩= ∏
k

(
uk+νkc†

k↑c
†
−k↓

)
|0⟩ . (4.10)

It is easy to show that the wavefunction is normalized when

|uk|2 + |νk|2 = 1 , ∀k . (4.11)

Anice property of thewavefunction in (4.10) is that it can also describe the free-electron
Fermi surface state with the choice

uk = 0 and νk = 1 for εk < 0,

uk = 1 and νk = 0 for εk > 0, (4.12)

where we have absorbed the chemical potential in the definition of εk. We will see
shortly that the superconducting state is one which in the discontinuity of uk, νk at
εk = 0 is smoothed out on the scale of ωD.

4.2 Off-Diagonal Long-Range Order

We now show that the BCS state has off-diagonal long-range order (ODLRO) very
similar to that of the Bose gas in Section 3.2. The Bose field operator is now replaced
by an electron-pair (or Cooper-pair) operator.

What makes the |BCS⟩ state different from other variational states encountered in
quantum mechanics is that it does not conserve the total electron number. Conse-
quently, when we evaluate expectation values of operators that annihilate a pair of
electrons in a spin-singlet state, we obtain a non-zero value:

⟨BCS|ck↑c−k↓ |BCS⟩ ̸= 0 . (4.13)
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46 4 Bardeen−Cooper−Schrieffer Theory of Superconductivity

Indeed, we can define an infinite family of states, labeled by an angle θ , which differ
from the BCS state at θ = 0 only by an overall phase factor after projection to a fixed
number of particles:

|BCSθ ⟩= ∏
k

(
uk+νkeiθ c†

k↑c
†
−k↓

)
|0⟩ ,

PN |BCSθ ⟩= eiNθ/2PN |BCS⟩ . (4.14)

Now the expectation value of the spin-singlet electron-pair operator acquires this phase
factor:

⟨BCSθ |ck↑c−k↓ | BCSθ ⟩ ∝ eiθ , (4.15)

and the energy of the |BCSθ ⟩ is independent of the angle θ .
There is an analogy here with the broken spin-rotation symmetry in a ferromagnet,

which is worth exploiting. Consider a ferromagnet in which the Hamiltonian is invari-
ant under spin rotations in the XY plane. Then the ferromagnetic state “breaks” this
rotation symmetry by picking an arbitrary direction labeled by the angle θ along which
the ferromagnetic moment is oriented. Similarly, in the BCS theory, the Hamiltonian
is invariant under the “rotation”

ckσ → eiϕ ckσ (4.16)

because it conserves the total number of particles. Under this transformation θ → θ +

2ϕ , and so by choosing a definite θ , the |BCSθ ⟩ breaks this “rotation” symmetry.
The reader might be concerned that the state with a fixed particle number does not

break this symmetry because

⟨BCSθ |PN ck↑c−k↓PN |BCSθ ⟩= 0 . (4.17)

However, this also has an analogy in the ferromagnet: we can also choose a state for the
ferromagnet in which we average over the different orientations of the ferromagnetic
moment, so that the net moment vanishes. Even more explicitly, note that the number
projection operator can be expressed as an average over the values of θ

PN |BCS⟩=
∫ 2π

0

dθ
2π

e−iNθ/2 |BCSθ ⟩ . (4.18)

As in the ferromagnet, and in the Bose gas in Section 3.2, the way to avoid sensitivity
to these global averages is to characterize the physics in terms of correlation functions
of spatially local operators. So let us define the Cooper-pair operator

ΨC(R) =
∫

d3rg(r)ψ↑(R+ r/2)ψ↓(R− r/2), (4.19)

which annihilates the electron pair in (4.1) centered at the spatial position R. Then,
in the BCS state, we have a non-zero “condensate” Ψ0 associated with the non-zero
expectation value

⟨BCSθ |ΨC(R) |BCSθ ⟩= Ψ0 ̸= 0 . (4.20)
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47 4.3 Bogoliubov Theory

On the other hand, from (4.17), we have

⟨BCSθ |PN ΨC(R)PN |BCSθ ⟩= 0 . (4.21)

This strong consequence of the projection operator disappears when we consider two-
point correlation functions of ΨC(R). A lengthy but straightforward computation
shows that

lim
|R|→∞

⟨BCSθ |Ψ†
C(R)ΨC(0) |BCSθ ⟩= |Ψ0|2

= lim
|R|→∞

⟨BCSθ |PN Ψ†
C(R)ΨC(0)PN |BCSθ ⟩ . (4.22)

Noting the analogy to (3.24), we may regard this as the formal definition of the
ODLRO in the BCS state. Also note that it is only the state without number projection
that has a nice “clustering” property:

lim
|R|→∞

⟨Ψ†
C(R)ΨC(0)⟩= ⟨Ψ†

C(R)⟩⟨ΨC(0)⟩ . (4.23)

This is the main reason it is better to work with |BCSθ ⟩ rather than PN |BCSθ ⟩: we can
assume that well-separated operators are independent.

4.3 Bogoliubov Theory

At this point, we could proceed as Bardeen, Cooper, and Schrieffer did, and perform
a variational computation on a suitable Hamiltonian to find the optimum values of uk
and νk. However, we follow an alternative, and simpler, route which also gives useful
information on the nature of the excitations and the properties at non-zero temper-
ature. In Hartree–Fock theory the variational procedure is equivalent to decoupling
the Hamiltonian into all possible combinations of bilinears of the form ⟨c†

k1σ1
ck2σ2⟩.

Analogously, given the discussion above, we will now also allow bilinears of the form
⟨ck1σ1ck2σ2⟩ (and their Hermitian conjugates) and obtain the BogoliubovHamiltonian.
The justification is ultimatelyWick’s theorem, which can be shown to hold also for such
bilinears. So, in a general notation, we are going to approximate:

A†B†CD≈ ⟨A†D⟩B†C+ ⟨B†C⟩A†D−⟨A†D⟩⟨B†C⟩
−⟨A†C⟩B†D−⟨B†D⟩A†C+ ⟨A†C⟩⟨B†D⟩
+⟨A†B†⟩CD+ ⟨CD⟩A†B†−⟨A†B†⟩⟨CD⟩. (4.24)

The new terms are in the last line, and keeping these terms is equivalent to doing a
variational computation with the BCS wavefunction.

We will perform computations with the simple Hamiltonian introduced in BCS
theory:

H = ∑
kσ

εkc†
kσ ckσ −

U0

2V

′

∑
k,k′,q

∑
σ ,σ ′

c†
k+q,σ c†

k′−q,σ ′ck′σ ′ckσ . (4.25)
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48 4 Bardeen−Cooper−Schrieffer Theory of Superconductivity

Here the prime on the momentum summation indicates that all operators are restricted
to within ωD of the Fermi level: |εk| < ωD, |εk′ | < ωD, |εk′−q| < ωD, |εk+q| < ωD. The
novel ingredient is the attractive interaction of strength U0 experienced by electrons
within ωD of the Fermi surface. This is presumed to be a reasonable approximation of
the effect of phonons, and will be the driving force for superconductivity.

Applying (4.24) we now drop the Hartree–Fock factorizations in the first two lines,
as we assume these have already been absorbed into the definitions of εk. Keeping only
the third line, we obtain the Bogoliubov Hamiltonian

HB = ∑
kσ

εkc†
kσ ckσ −∑

k

[
∆c†

k↑c
†
−k↓+∆∗ c−k↓ck↑

]
+ constant, (4.26)

where the important parameter ∆ will turn out to be the BCS energy gap, one of the
key predictions of the BCS theory. The value of ∆ is to be determined by solving a self-
consistency equation in the ground state (or density matrix, at non-zero temperature)
of HB

∆ =
U0

V

′

∑
k

〈
c−k↓ck↑

〉
HB

, (4.27)

where V is the volume of the system.
To proceed, we need to determine the eigenstates and eigenenergies of HB. This can

be achieved by a Bogoliubov rotation:(
ck↑

c†
−k↓

)
=

(
u∗k νk
−ν∗k uk

)(
γk↑

γ†
−k↓

)
(4.28)

and the inverse rotation(
γk↑

γ†
−k↓

)
=

(
uk −νk
ν∗k u∗k

)(
ck↑

c†
−k↓

)
. (4.29)

Here uk and νk are an arbitrary set of complex numbers obeying the normalization
(4.11), and not yet related to the parameters in the BCS wavefunction (although they
will be soon). The transformations (4.28) and (4.29) ensure that the γkσ are canonical
fermion operators obeying the same anti-commutation relations as the ckσ :

[γkσ ,γk′σ ′ ]+ = 0[
γkσ ,γ†

k′σ ′

]
+
= δσσ ′δk,k′ . (4.30)

Also note that the rotations in (4.28) and (4.29) correspond to unitary matrices, while
that in (3.22) does not.

We now insert (4.28) into HB and demand that the coefficents of terms like γγ and
γ†γ† vanish. A simple computation shows that this can be satisfied provided we choose

uk = sin(φk)
νk = eiθ cos(φk)
∆ = |∆|eiθ
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49 4.4 The Energy Gap

sin(2φk) =
|∆|√

ε2
k + |∆|2

. (4.31)

Thus, we have fixed all the uk and νk in terms of two real parameters |∆| and θ . The
value of |∆|will be fixed shortly by applying the self-consistency condition (4.27), while
the angle θ will remain undetermined. So we are free to choose to θ , corresponding to
the broken ‘rotation’ symmetry we discussed in Section 4.1.

After these transformations, the Bogoliubov Hamiltonian just reduces to a free-
fermion form

HB = ∑
kσ

Ekγ†
kσ γkσ + constant, (4.32)

where the fermion dispersion is

Ek =
√

ε2
k + |∆|2 . (4.33)

Notice the close analogy of thesemanipulations to those for the Bose gas in Section 3.1.
The dispersion obtained there in (3.14) was for bosonic quasiparticles representing
phase and density fluctuations; in contrast, (4.33) applies to fermionic quasiparticles.
Moreover, the spectrum in (4.33) shows that it requires a minimum energy |∆| to create
any Bogoliubov quasiparticle excitation, and these minimum energy excitations are on
the Fermi surface of the parent metal where εk = 0; this is in contrast to the gapless
spectrum in (3.14). Here we have fermionic excitations above the ground state in which
there are no Bogoliubov quasiparticles:

γkσ |BCS⟩θ = 0, ∀k. (4.34)

By our notation, we have already indicated that the required ground state is indeed the
BCS state in (4.14), as is not difficult to verify from (4.28) and (4.29). So the uk and νk
above are indeed the required variational parameters in the BCS state.

Note that the BCS state also has a sector with bosonic excitations above the ground
state, similar to that of the Bose gas in Chapter 3. These will be discussed in Chapter 6.

4.4 The Energy Gap

Our remaining task is to determine the energy gap |∆|. From (4.27) we obtain

∆ =
U0

V ∑
k

[
u∗kνk

〈
γ−k↓γ†

−k↓

〉
HB
−νku∗k

〈
γ†
k↓γk↓

〉
HB

]
. (4.35)

As HB is a free-fermion Hamiltonian, these expectation values are easy to evaluate.
Also, using the relations in (4.31), we obtain

|∆|= |∆|U0

V

′

∑
k

tanh(Ek/(2T ))
2Ek

. (4.36)
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50 4 Bardeen−Cooper−Schrieffer Theory of Superconductivity

tFigure 4.1 Solution of∆ from (4.38) forωD = 1,λ = 0.25.

Now we insert a factor of 1 =
∫

dεδ (ε − εk) on the right-hand side and inter-
change the order of k summations and ε integration. Then we obtain without further
approximation

|∆|= |∆|U0

∫ ωD

−ωD

dε d(ε)
tanh

(√
ε2 + |∆|2/(2T )

)
2
√

ε2 + |∆|2
, (4.37)

where d(ε) = (1/V )∑k δ (ε − εk) is the density of states. As the integral is focused on
the vicinity of the Fermi level, we can approximate d(ε)≈ d(0), and obtain finally

|∆|= |∆|λ
∫ ωD

−ωD

dε
tanh

(√
ε2 + |∆|2/(2T )

)
2
√

ε2 + |∆|2
, (4.38)

with λ > 0 a dimensionless coupling constant given by

λ =U0d(0), (4.39)

where d(0) is the single spin density of states at the Fermi level of the parent metal.
We now need to solve (4.38) for |∆| as a function of temperature, λ , and ωD. Of

course, one solution is simply ∆ = 0. This is the non-superconducting “normal state.”
This is the only solution above a critical temperature Tc. However, for T < Tc, there is
a solution with ∆ ̸= 0, and this is lower in energy from the normal state, whenever it
exists. A plot of the numerical solution for ∆ from (4.38) is shown in Fig. 4.1.
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51 4.4 The Energy Gap

We can make analytic progress in two important limits. First consider T = 0. Then
∆ = ∆0 (4.38) reduces to

1
λ

=
∫ ωD

0

dε√
ε2 +∆2

0

= sinh−1
(

ωD

∆0

)
. (4.40)

So as λ → 0 we have

∆0 = 2ωD exp
(
− 1

λ

)
. (4.41)

The energy gap is exponentially small.
On the other hand, at T = Tc, ∆ = 0+, and then (4.38) yields

1
λ

=
∫ ωD

0
dε

tanh(ε/(2Tc))

ε

= ln
(

ωD

2Tc

)
− ln

(π
4

)
+ γ +O

(
Tc

ωD

)
, (4.42)

where γ is now Euler’s constant. So at small λ

Tc =
2
π

eγ ωD exp
(
− 1

λ

)
. (4.43)

It is now useful to compute the ratio of ∆0 and Tc. We can do this by comparing (4.41)
and (4.43), but it is instructive to compute the ratio directly in amanner that illuminates
the universality of the result. Let us subtract (4.42) from (4.40) and obtain∫ ωD

0

dε

 1√
ε2 +∆2

0

− tanh(ε/(2Tc))

ε

= 0. (4.44)

We can now change variables to the dimensionless quantity y = ε/∆0 and write this as∫ ωD/∆0

0

dy

[
1√

y2 +1
− tanh(y∆0/(2Tc))

y

]
= 0. (4.45)

Now the key observation is that the integrand is∼ 1/y3 at large y, and so is convergent
as y→ ∞. The upper limit of the integrand is ωD/∆≫ 1 for small λ , and so we can
safely take it to infinity. There is also no singularity in the integral as y→ 0. In effect,
the integral is dominated by ε ∼ ∆0 ∼ Tc≪ ωD, and so it only depends upon universal
physics at energies well below those where the details of the phonon band structure
become important. So now we have a result that is explicitly an equation only for z≡
2∆0/Tc: ∫ ∞

0

dy

[
1√

y2 +1
− tanh(yz/4)

y

]
= 0 . (4.46)

Performing the integral in (4.46), we can solve for z and obtain the famous BCS result

2∆0

Tc
= 2πe−γ = 3.52775398 . . . . (4.47)

This relationship was verified in early optical experiments, quickly establishing the
validity of the BCS theory in the lower Tc superconductors.
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Problems

4.1 (a) Compute the expectation values of the number operator

N̂ = ∑
k

(
c†
k↑ck↑+ c†

k↓ck↓
)

(4.48)

in the BCS ground state. Do this using the BCS wavefunction in (4.10), or
using the Bogoliubov operators in (4.29). Show that〈

N̂
〉
= 2∑

k
|νk|2 . (4.49)

(b) Next, compute the variance in the number δN2 =
〈
N̂2
〉
−
〈
N̂
〉2

by both
methods, and show that

δN2 = 4∑
k
|uk|2|νk|2 . (4.50)

(c) Compute the relative standard deviation δN/
〈
N̂
〉
for ∆ much smaller than the

Fermi energy.
4.2 Consider ametal in the presence of amagnetic field field B that couples only via the

Zeeman coupling to the electrons. So the completeHamiltonian is (after absorbing
g-factors etc. in the definition of B)

H = ∑
k

(
εk
[
c†
k↑c

†
k↑+ c†

k↓c
†
k↓

]
−B

[
c†
k↑c

†
k↑− c†

k↓c
†
k↓

])
. (4.51)

(a) Obtain an exact expression for the average value of the magnetization density

M =
1
V ∑

k

(
c†
k↑c

†
k↑− c†

k↓c
†
k↓

)
(4.52)

at a temperature T . Express your answer in terms of an integral over the single
spin density of states per unit volume, g(ε).

(b) Take the B→ 0 limit, and write M = χPB, where χP is the Pauli spin suscepti-
bility; what is the value of χP?

(c) Now we address the same problem for a BCS superconductor. In the presence
of a Zeeman term the Hamiltonian is

H = HB−B∑
k

(
c†
k↑ck↑− c†

k↓ck↓
)
, (4.53)

where HB is given in (4.26). Express the Hamiltonian in terms of the Bogoli-
ubov operators that diagonalize HB.

(d) Determine the magnetization density to linear order in B at a non-zero tem-
perature T . Express your final result as an integral over the energy of the
single-particle states of the metal and its density of states.
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5 Broken Symmetry and Superfluidity

The concept of broken symmetry is introduced, and combined with constraints from
gauge invariance toobtain the Londonequation for superfluids and superconductors.
The Meissner effect is described, and the London penetration depth is computed.

The defining property of the Bardeen–Cooper–Schrieffer (BCS) theory is the existence
of off-diagonal long-range order (ODLRO), defined by the correlator of the Cooper-
pair operator

lim
|r|→∞

〈
Ψ†

C(r)ΨC(0)
〉
= |Ψ0|2 ̸= 0 . (5.1)

Note that this correlator can be evaluated either in the fixed N (canonical ensemble)
or the fixed θ (grand-canonical ensemble) BCS state, and the same answer is obtained
in both cases. We will now investigate some general consequences of the presence of
ODLRO. Combined with the constraints of gauge invariance, we will see that the main
properties of a superconductor follow from rather general considerations.

Similar ideas apply to the theory of the Bose gas inChapter 3, simply by replacing the
Cooper-pair operator ΦC with the boson field operator ψ . But I present this discussion
in the context of the BCS theory.

The basic idea is that we need to consider the field ΨC(r) as an “order parameter,”
which must be included along with other thermodynamic variables (such as pres-
sure, temperature, volume) in a description of macroscopic properties. Linked to
this order parameter is a conjugate variable that determines its response to external
perturbations: this is the “helicity modulus.”

As will become clear below, the helicity modulus of a superconductor (or a super-
fluid) is the analog of the shear modulus of a crystalline solid. A crystalline solid is
characterized by long-range order in the atomic positions. A shear strain is a “twist”
in these atomic positions, and the change in energy of the solid from a shear strain
is determined by a shear modulus. Similarly, when we twist the order parameter of a
superconductor, by making its phase space-dependent, the change is characterized by
the helicity modulus.

53
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54 5 Broken Symmetry and Superfluidity

x

x⊥

0 L

h1 h2

tFigure 5.1 System with d−1 periodic directions x⊥, and open boundary conditions along the single x direction. External fields
h1 and h2 are applied on the two boundaries.

5.1 Ising Model and Surface Tension

We begin by describing the simplest case of the Ising model of ferromagnetism. We
want to impose an external Zeeman field, which will twist the ferromagnetic order
parameter, and ask for the change in the free energy.

Take a d ≥ two-dimensional Ising model at non-zero temperature, which has open
boundary conditions along one preferred direction 0 < x < L, and periodic boundary
conditions along the remaining d−1 dimensions x⊥ of length L⊥ (see Fig. 5.1) We now
apply an external field at the x = 0 and x = L boundaries so that the Hamiltonian is

H = HIsing−∑
x⊥

{h1 σ(0,x⊥)+h2 σ(L,x⊥)} , (5.2)

where σ(x,x⊥) = ±1 is the Ising variable. Imagine we can compute the free energy of
this Ising model exactly, and then we compute the free-energy difference

∆F = F(h1 =−h2)−F(h1 = h2) . (5.3)

We are interested in the behavior of ∆F as both L,L⊥ → ∞. The total free energy, F ,
has an extensive term∼ LLd−1

⊥ . As the external perturbation is only on the boundaries,
we don’t expect ∆F to be extensive: we ask for the leading sub-extensive term.

The form of ∆F turns out to be dramatically different depending upon whether we
are above or below the critical temperature Tc, that is, depending upon whether the
ferromagnetic long-range order is absent or present. Above the critical temperature,
what happens at the x = 0 boundary should be largely independent of what happens at
the x = L boundary, as there are no long-range correlations. So we expect

∆F ∼ Ld−1
⊥ exp(−L/ξ ), T > Tc . (5.4)

Here, ξ is correlation length, which remains finite as we take the large volume limit.
However, below Tc, the imposed boundary conditions will prefer that the x = 0 bound-
ary has a ferromagnetic moment in the opposite (same) direction as the x= L boundary
for h1 = −h2 (h1 = h2). Consequently, somewhere in between there must be a domain
wall between the oppositely oriented ferromagnets for h1 = −h2, which is absent for
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h1 = h2. The width of this domain wall is set by the ordered state correlation length ξ .
This domain wall will have a non-zero free energy per unit area, and so we expect

∆F = ΣLd−1
⊥ , T < Tc, (5.5)

where the proportionality constant Σ is the surface tension, which has dimensions of
(energy)×(length)1−d . Note that Σ is independent of L, as L→∞, and also independent
of precisely how we choose the boundary conditions. It is an intensive thermody-
namic variable (like the pressure or the temperature) that characterizes the new physical
properties of the ferromagnetic phase.

5.2 XY Model and Helicity Modulus

Let us now go through the same argument for the case of a continuous broken sym-
metry, rather than a discrete broken symmetry. So we consider a XY ferromagnet,
described by an angular variable θ(x,x⊥) that is periodic with period 2π. We apply
boundary conditions so that the two-component fields h1 and h2 in Fig. 5.1 have
an angle Θ between them. This will impose a twist of θ by an angle Θ, with the
Hamiltonian

H = HXY −h∑
x⊥

{cos [θ(0,x⊥)]+ cos [θ(L,x⊥)−Θ]} . (5.6)

Now the free-energy difference is

∆F(Θ) = F(Θ)−F(Θ = 0). (5.7)

Because the order parameter is continuous, the system will try to rotate the ferromag-
netic moment so that it minimizes ∆F . The optimum strategy turns out to be to spread
the twist uniformly between x = 0 and x = L. We expect there to be a local free-energy
cost, which depends upon the square of the gradient of the local twist; it can only
depend upon the gradient, because a uniform twist costs no energy, and a positive
gradient should have the same energy as a negative gradient. So we obtain

∆F(Θ) =
1
2

ρs

(
Θ
L

)2

Ld−1
⊥ L, T < Tc, (5.8)

where Θ/L is the gradient of the phase. The prefactor ρs is the advertized intensive
thermodynamic variable: the helicity modulus. Depending upon the context, it is also
referred to as the superfluid or spin stiffness, and often as the “superfluid density.” But
it is not a density, and has dimensions of (energy)×(length)2−d .

It is useful to express (5.8) in the framework of Landau–Ginzburg–Wilson theory.
We imagine that there is a coarse-grained effective Hamiltonian that describes the local
thermodynamics of a small region with many microscopic degrees of freedom. We
choose to represent all these local degrees of freedom by a single collective variable:
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the angular field θ(r), which represents the local orientation of the order parameter.
Then the content of (5.8) is the effective Hamiltonian

He f f =
ρs

2

∫
ddr (∇rθ(r))2 , (5.9)

imposing an energy cost proportional to the local gradient squared of the local order
parameter.

5.3 Superconductors and Gauge Invariance

We now have all the ingredients to define the helicity modulus of a BCS supercon-
ductor. After coarse-graining the electronic degrees of freedom, we treat the phase of
the Cooper-pair operator as a classical variable representing the local phase of the
Cooper-pair condensate

ΨC(r) = |ΨC(r)|exp(iθ(r)) . (5.10)

Then the effective Hamiltonian for θ(r) is (5.9).
We can now use gauge invariance to obtain a very powerful result: the generaliza-

tion of He f f in the presence of an external vector potential A(r). In the presence of an
external electromagnetic field, we know that the underlying physics must respect gauge
invariance under which the electron field operator ψ(r) and the electromagnetic field
transform as

ψσ (r)→ ψσ (r)exp
(
−i

e
h̄c

χ(r)
)
,

A(r)→ A(r)+∇rχ(r) . (5.11)

From the definition of the Cooper-pair operator and its phase field, we therefore
conclude that

ΨC(r)→ΨC(r)exp
(
−i

2e
h̄c

χ(r)
)

θ(r)→ θ(r)− 2e
h̄c

χ(r) . (5.12)

Now it is clear that there is a unique way to make (5.9) gauge invariant: it must be
replaced by

He f f =
ρs

2

∫
ddr

(
∇rθ(r)+

2e
h̄c
A(r)

)2

. (5.13)

Note we did not need any other new parameters to describe this coupling, only
fundamental constants of nature. Gauge invariance precisely quantizes the relative
coefficents of the two terms inside the brackets, and this has many dramatic physical
consequences.
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5.4 The London Equation

We now restrict our considerations to the London gauge ∇r ·A= 0.
From a knowledge of the dependence of the effective action on A, we can also

compute the physical electronic current

J(r) =−c
δHe f f

δA(r)
. (5.14)

(This equation is easily seen to be a property of the microscopic Hamiltonian, and so it
should also apply to the effectiveHamiltonian, providedwe preserve gauge invariance.)
Taking this derivative from (5.13), we obtain the London equation

J(r) =−ρs(2e)2

h̄2c
A(r) . (5.15)

This is the key equation that determines the basic properties of a superconductor.
First, we can take the time derivative of (5.15) and obtain

dJ
dt

=
ρs(2e)2

h̄2 E, (5.16)

which implies that the current accelerates in the presence of an electric field, which
means there is no resistance. By itself, this is not a remarkable statement, as it also holds
for a perfect metal with no impurities. However, (5.16) also holds in the presence of
impurities and other perturbations that break translational invariance, as it only relied
on two basic features: (i) the presence of long-range order, and (ii) gauge invariance.
Therefore, we do indeed obtain the explanation for superconductivity from the London
equation.

Next, we can combine (5.15) with Maxwell’s equations, and obtain an explanation
of the Meissner effect: the expulsion of magnetic flux by a superconductor. We use the
Maxwell equation

∇r×B =
4π
c
J (5.17)

and the definition B = ∇r×A. In the London gauge ∇r ·A= 0 we obtain then that in
a superconductor

∇2
rB =

1
λ 2

L
B, (5.18)

where λL is the London penetration depth

1
λ 2

L
=

4πρs(2e)2

h̄2c2
. (5.19)

Note that λL, which is directly measurable in experiments, depends only upon ρs and
fundamental constants of nature. So ρs is also a measurable variable.

It is easy to see that (5.18) implies the Meissner effect. Consider a superconductor
in the half space x > 0, with a boundary at x = 0 to the free space present for x < 0 (see
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58 5 Broken Symmetry and Superfluidity

L

tFigure 5.2 Magnetic field penetrates a distanceλL into the superconductor.

Fig. 5.2). Apply a magnetic field B= B0ẑ in the free-space region. Matching boundary
conditions at x = 0, we find that the magnetic field inside the superconductor is

B(r) = B0 exp(−x/λL) ẑ, x > 0; (5.20)

which means it decays to zero in a distance of the order of the London penetra-
tion depth. From (5.17) we see that there is a supercurrent on the surface of the
superconductor:

J(r) =
B0c

4πλL
exp(−x/λL) ŷ, x > 0 . (5.21)

It is this supercurrent that “screens” the external magnetic field inside the supercon-
ductor. As long as the external magnetic field is present, this supercurrent will flow
“forever.”

Problems

5.1 Couple the Bose gas theory in (3.27) to a time-independent vector potential A, via
∇∇∇→ ∇∇∇− iA. So the current of the bosons is

J =
1

2mi
[ψ∗(∇∇∇− iA)ψ−ψ(∇∇∇+ iA)ψ∗] . (5.22)

Evaluate ⟨J⟩ in linear response to A, and to leading non-vanishing order in u. Do
not assume any particular gauge choice for A. You will need to insert (3.35) into
(5.22) and expand it as

J =− µ
u0m

A+
1

2mi

√
µ
u0

(∇∇∇ψ̃−∇∇∇ψ̃∗)+O(u0
0). (5.23)

Evaluate the second term in (5.23) to linear order in A and so show that

⟨Ji⟩=−
µ

u0m

(
δi j−

kik j

k2

)
A j +O(u0

0). (5.24)

where k is the wavevector Explain why this answer is a sensible generalization of
the London equation to an arbitrary gauge.
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6 Landau–Ginzburg Theory

The Landau–Ginzburg functional of superconductivity is derived from the Bardeen–
Cooper–Schrieffer theory.

The Bardeen–Cooper–Schrieffer (BCS) theory of Chapter 4 works extremely well at
zero temperature in the limit of weak attraction between the electrons. It gives a satis-
factory description of the ground state, and of the fermionic Bogoliubov quasiparticle
excitations. However, it is not too convenient to work with when we are thinking about
situations in which the angle θ can be space- and time-dependent, that is, when we
have bosonic phase fluctuations present, like those considered in Section 3.3 for the
Bose gas. Moreover, as we raise the temperature to approach Tc, we also have to con-
sider fluctuations in the amplitude of the gap |∆|. Such effects are more conveniently
discussed in the Landau–Ginzburg framework, which is expressed directly in terms of
the Cooper-pair operator, but allows it to be space- and time-dependent.

Apart from leading to a complete description of the physics near Tc, the Landau–
Ginzburg theory was also historically the vehicle for some remarkable theoretical
predictions described inChapter 7: the existence of vortices with quantized electromag-
netic flux and a new vortex lattice phase of matter found in type-II superconductors.

6.1 Hubbard–Stratonovich Transformation

In place of the BCS Hamiltonian in (4.25), it is more convenient here to work with a
Hubbard model of electrons on a lattice of sites i with a weak on-site attraction U < 0:

H = H0 +H1,

H0 = ∑
kσ

εkc†
kσ ckσ ,

H1 =U ∑
i

c†
i↑c

†
i↓ci↓ci↑. (6.1)

We set up the computation of the partition function in time-ordered perturbation
theory using the interaction representation associated with H0. Then
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60 6 Landau–Ginzburg Theory

Z = Trexp(−H/T )

= Z0

〈
Tτ exp

(
−
∫ β

0
dτĤ1(τ)

)〉
0
, (6.2)

where the time evolution in the interaction representation is given by

Ĥ1(τ) = eH0τ H1e−H0τ , (6.3)

β = 1/T , and the expectation values are evaluated in the free-particle ensemble at
temperature T with partition function

Z0 = Trexp(−H0/T ) . (6.4)

TheHubbard–Stratonovich transformation is the functional generalization of a simple
identity of a Gaussian integral∫

dψdψ∗ exp
(
−|ψ|2/a−ψz∗−ψ∗z

)
= exp

(
a|z|2

)∫
dψdψ∗ exp

(
−|ψ|2/a

)
, (6.5)

where the integrals are over the complex ψ plane. We apply this identity repeatedly to
Z/Z0 at each site i and each time τ (which we momentarily discretize). In this manner
we obtain

Z
Z0

=

〈
Tτ exp

(
−U

∫ β

0
dτ ∑

i
ĉ†

i↑(τ)ĉ
†
i↓(τ)ĉi↓(τ)ĉi↑(τ)

)〉
0

=
∫

∏
i
DΨi(τ)DΨ∗i (τ)exp

(
−
∫ β

0
dτ ∑

i

|Ψi|2

|U |

)

×

〈
Tτ exp

(
−
∫ β

0
dτ ∑

i

[
Ψi(τ)ĉ†

i↑(τ)ĉ
†
i↓(τ)+H.c.

])〉
0

≡
∫

∏
i
DΨi(τ)DΨ∗i (τ)exp

(
−SLG [Ψi(τ)]

)
, (6.6)

where the Landau–Ginzburg action is

SLG [Ψi(τ)] =
∫ β

0
dτ ∑

i

|Ψi|2

|U |

− ln

〈
Tτ exp

(
−
∫ β

0
dτ ∑

i

[
Ψi(τ)ĉ†

i↑(τ)ĉ
†
i↓(τ)+H.c.

])〉
0

. (6.7)

So far, everything is exact. We have formally rewritten the partition function of the
electronic system in terms of the path integral of the complex field Ψi(τ). This field
couples to the local electron Cooper-pair operator, and so we have theory expressed
in terms of the Cooper pairs alone. Unfortunately, this theory has a very complicated,
highly non-local, action functional in (6.7), and so is usually not a very useful object
to work with.
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6.2 Expansion nearTc

Gorkov argued that, for temperatures near Tc, we can expand SLG[Ψ] in powers of Ψ,
where the average value of Ψ is expected to be small.

Let us begin by keeping terms only to quadratic order. Then, after Fourier transfor-
mations, we can write

SLG [Ψi(τ)] =
T
V ∑

k,ωn

|Ψ(k,ωn)|2
[

1
|U |
−P(k, iωn)

]
+ · · · , (6.8)

where P(k, iωn) is given by the particle–particle bubble graph shown in Fig. 6.1:

P(k, iωn) =
T
V ∑

p,εn

1
(iεn− εp)(−iεn + iωn− εk−p)

. (6.9)

Performing the sum over frequencies by partial fractions, we obtain

P(k, iωn) =
1
V ∑

p

1− f (εp)− f (εk−p)
(−iωn + εk−p+ εp)

. (6.10)

Focusing further on the form at k= 0 and ωn = 0, we can write

P(0,0) =
1
V ∑

p

1−2 f (εp)
2εp

≈ d(0)
∫ Λ

−Λ
dε

tanh(ε/(2T ))
2ε

, (6.11)

where d(0) is the single spin density of states at the Fermi level, and Λ is an upper cutoff
of the order of the Fermi level. Now we notice from (6.8) that the coefficient of |Ψ|2,
at k = ωn = 0, vanishes at a temperature where 1/|U | = P(0,0), and this is precisely
the same equation for Tc as we obtained in the BCS theory in (4.42). For T > Tc, the
coefficient is positive, and in this case the action is minimized at Ψ = 0, that is, in the
normal state. On the other hand, for T < Tc, the coefficient will be negative, and then
the optimum values of Ψ are non-zero. indicating there is a Cooper-pair condensate,
and we obtain a superconductor. To determine the value of ⟨Ψ⟩, we need the term in
the action which has four powers of Ψ – we will examine this shortly.

tFigure 6.1 Feynman diagram leading to (6.9).
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62 6 Landau–Ginzburg Theory

But first, let us examine the consequences of spatial and time-dependent variations
in Ψ by expanding P for small ωn and k. Considering first the frequency dependence,
we have

P(0, iωn) =
1
V ∑

p

1−2 f (εp)
−iωn +2εp

≈ d(0)
∫ Λ

0

dε
ε

tanh
( ε

2T

)[
1− ω2

n

ω2
n +4ε2

]
≈ d(0)

[
ln
(

Λ
T

)
− ω2

n

2T

∫ ∞

0
dε

1
ω2

n +4ε2

]
= d(0)

[
ln
(

Λ
T

)
− π|ωn|

8T

]
, (6.12)

where we have symmetrized the momentum integral about the Fermi level, and
assumed the density of states is energy independent. In a similar manner, we can
evaluate the dependence upon small k, and obtain

P(k, iωn)≈ d(0)
[

ln
(

Λ
T

)
− π|ωn|

8T
− Cν2

F k2

T 2

]
, (6.13)

where C is a dimensionless numerical constant of the order of unity, whose value will
depend upon the precise shape of the Fermi surface.

Finally, to complete the derivation of the Landau–Ginzburg theory, we need the
coefficient of the |Ψ|4 term. This is obtained by evaluating the graph shown in Fig. 6.2.
Close to Tc, it turns out only the zero momentum and frequency term is needed, and
this evaluates to

T
2V ∑

k,ωn

1
(ω2

n + ε2
k)

2 ≈
d(0)T

2 ∑
ωn

∫ ∞

−∞
dε

1
(ω2

n + ε2)2

=
7ζ (3)
16π2

d(0)
T 2 . (6.14)

Note that ωn is a fermionic frequency, and so there is no n = 0 term in (6.14).

tFigure 6.2 Feynman diagram leading to (6.14).
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6.3 Effective Classical Theory

We can now collect all the results, and obtain an explicit prediction for the thermo-
dynamics of the superconductor close to Tc.

The equal-time thermal fluctuations of the order of the parameter Ψ(r) are expressed
in terms of a free energy functional FLG[Ψ(r)] and partition function

Z =

∫
DΨ(r)DΨ∗(r)exp

(
−FLG[Ψ(r)]

T

)
. (6.15)

The Landau–Ginzburg free-energy functional can be written as

FLG[Ψ(r)] =

∫
ddr

[
D|∇rΨ(r)|2 +α|Ψ(r)|2 + β̃

2
|Ψ(r)|4

]
, (6.16)

From our results in the Gorkov expansion, we can now read off the values of all
the parameters in this free energy (we have rescaled Ψ(r) by a factor of 1/

√
d(0) for

convenience)

α =
T −Tc

Tc
,

β̃ =
7ζ (3)

8π2d(0)T 2
c
,

D =
Cν2

F
T 2

c
, (6.17)

where Tc has the same value as that computed in the BCS theory in Chapter 4. We have
replaced all occurrences of T in the original theory by Tc, except in α . As α vanishes
at T = Tc, we do have to retain the first-order correction in T −Tc is α . Minimizing the
free energy, we see that ⟨Ψ⟩= 0 for T > Tc, and

⟨Ψ⟩=
√
−α/β̃ , T < Tc . (6.18)

We can now compute the helicity modulus by writing Ψ(r) =

√
−α/β̃eiθ(r) and

computing the coefficient of (∇rθ(r))2 to obtain

ρs =
2D|α|
Tcβ̃

, T < Tc . (6.19)

The results in (6.18) and (6.19) are mean-field predictions. As we move closer to
Tc, fluctuation corrections from the functional integral in (6.15) become important:
these are treated in the theory of classical critical phenomena, which we do not explore
here. We only note that fluctuations about the mean field can be ignored only when the
Ginzburg criterion is satisfied:

β̃Tc

Dd/2

1
|α|(4−d)/2 ≪ 1 . (6.20)
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64 6 Landau–Ginzburg Theory

So when we approach Tc, this criterion is violated for small enough |T − Tc| as long
as d < 4. Only for d > 4 is the mean field adequate for the critical behavior. We can
estimate the prefactor

β̃Tc

Dd/2 ∼
(

Tc

EF

)d−1

. (6.21)

So if Tc ≪ EF , as is the case at weak coupling, the window of strong fluctuations is
present only for a narrow window near Tc.

6.4 Classical Dynamics

From the frequency dependence of P, we can also write down a classical theory for
the dynamic fluctuations of Ψ, valid near Tc. It is written in terms of a time-dependent
Ginzburg–Landau theory, and also known as Model A in the theory of dynamic crit-
ical phenomena by Hohenberg and Halperin [111]. This dynamics is described by the
Langevin equation

∂Ψ(r, t)
∂ t

=−Γ
δFLG[Ψ(r, t)]

δΨ∗(r, t)
+ζ (r, t). (6.22)

This dynamics is dissipative, with damping determined by Γ, and ζ (r, t) is a Gaussian
random noise term, which ensures that the relaxation is towards a thermal state at a
temperature T . This is achieved by choosing the noise correlator〈

ζ (r, t)ζ ∗(r′, t ′)
〉
= 2ΓT δ d(r− r′)δ (t− t ′) ; (6.23)

(this is a version of the fluctuation–dissipation theorem see Problem 6.1). The damping
arises from the |ωn| term in P, and is associated with the decay of Cooper pairs into
the two-particle continuum of the Fermi liquid. From our result for this coefficient, we
obtain

Γ =
8
π

Tc . (6.24)

6.5 Magnetic Field

It is simple to use gauge invariance to add the orbital coupling of the magnetic field
to the Landau–Ginzburg functional. Following our earlier argument for the London
equation in Section 5.3, we can now write

FLG[Ψ(r)] =

∫
ddr

[
D
∣∣∣∣(∇r+ i

2e
h̄c
A
)

Ψ(r)
∣∣∣∣2 +α|Ψ(r)|2 + β̃

2
|Ψ(r)|4

]
. (6.25)

https://doi.org/10.1017/9781009212717.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.007


65 Problems

Minimization of FLG in the presence of a non-zero A leads to much rich physics: the
appearance of vortices with quantized flux and the theory of type II superconductors,
discussed in Chapter 7.

Problems

6.1 Use the Gaussian approximation forFLG in (6.16) in the Langevin equation (6.22)
to compute the equilibrium two-point correlator (the dynamic structure factor)〈
|Ψ(k,ω)|2

〉
. Next, couple Ψ linearly to a space- and time-dependent external

field, to obtain the dynamic susceptibility from the linearized version of (6.22).
Finally, use the fluctuation–dissipation relation in (11.22) to verify the consistency
of (6.23).
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7 Vortices in Superfluids and Superconductors

The vortex solutions of neutral and charged superfluids are obtained as saddle points
of the Landau–Ginzburg functional.

Our treatment of superfluids and superconductors has focused on spatially uniform
saddle points of the action, and a discussion of fluctuations about such saddle points.
However these systems also display an important class of spatially non-uniform saddle
points: vortices. Usually, these saddle points have a higher energy than the ground state,
but are locally stable: they have a topologically non-trivial structure that prevents a
runaway decay to the ground state. Despite their higher energy, these saddle points can
be crucial at higher temperatures because they are entropically preferred: this is the
situation in the Kosterlitz–Thouless transition of two-dimensional superfluids, which
is discussed in Section 25.2. In some cases, the spatially non-uniform solution can be
the lowest energy state: this happens to type-II superconductors in an appliedmagnetic
field, as discussed in Section 7.4.

7.1 Neutral Superfluids

Let us look for topologically non-trivial saddle points of the Landau–Ginzburg free
energy (6.16), which is also the time-independent part of the action in (3.27) for the
Bose gas. We will restrict our attention to saddle points whose spatial non-uniformity
extends only along two spatial directions r= (x,y). So we consider the free energy

F [Ψ(r)] =
∫

d2r

[
D|∇rΨ(r)|2 +α|Ψ(r)|2 + β̃

2
|Ψ(r)|4

]
. (7.1)

The saddle-point condition

δFLG

δΨ(r)
= 0 (7.2)

leads to the equation

−D∇2
rΨ+αΨ+ β̃ |Ψ|2Ψ = 0 . (7.3)
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67 7.1 Neutral Superfluids

We now examine solutions of (7.3) that have a rotational symmetry about the origin of
coordinates, and so we make the ansatz

Ψ(r) = f (r)einθ , (7.4)

where

r =
√

x2 + y2 , θ = tan−1(y/x) (7.5)

are polar coordinates, f (r) is an unknown function, and n must be an integer for the
solution (7.4) to be single-valued. A non-zero n implies a topologically non-trivial
winding of the phase of the superfluid, and this ensures the metastability of such
solutions.

Rather than solving (7.3), it is useful to insert the ansatz (7.4) directly into the
original free energy (7.1). Then we obtain

F = 2π
∫ ∞

0

rdr

[
D
(

d f
dr

)2

+Dn2 f 2

r2 +α f 2 +
β̃
2

f 4

]
. (7.6)

We are looking for solutions whose deviation from the spatially uniform solution is
limited to a region near the origin, and so we have

f (r→ ∞) =

√
−α
β̃

. (7.7)

Our task is to minimize the expression in (7.6) for each integer n. For n = 0, the spa-
tially uniform solution applies, and (7.7) holds for all r. However, for n ̸= 0, the global
minimum of (7.6) is spatially non-uniform: thus the vortex solution is “protected” by
a non-zero phase winding. This is immediately apparent from the fact that for f =

constant, the f 2/r2 term leads to a divergence in the r integral at r = 0. The equa-
tion satisfied by a spatially non-uniform f can be obtained by taking the variational
derivative of (7.6), which yields

− D
r

d
dr

(
r

d f
dr

)
+Dn2 f

r2 +α f + β̃ f 3 = 0. (7.8)

An exact solution of (7.8) is not possible, but we can deduce the basic features from
asymptotic analysis. We focus on the r→ 0 region, where the first two terms in (7.8)
dominate, and make the ansatz

f (r→ 0) = rp , (7.9)

where p is an unknown parameter Inserting (7.9) into (7.8) we obtain from the r→ 0
limit

p2 = n2. (7.10)

The solution p = |n| is easily seen to have the lower energy.
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68 7 Vortices in Superfluids and Superconductors

tFigure 7.1 The function f (r) for a neutral vortex, obtained by minimization of (7.6) for n = 1,D = 1,α =−1, β̃ = 1.
The coherence length is ξc = 1.

The full solution of (7.8) interpolates between the limits in (7.7) and (7.9). This can
be easily obtained by a numerical minimization of (7.6), and the result in shown in
Fig. 7.1. The linear form in (7.9) holds for r ≲ ξc, where ξc is the “coherence length”

ξc =

√
−α
D

. (7.11)

The region r ≲ ξc is known as the vortex core, and linear vanishing of f at the origin
ensures that there is no divergence of the free energy at r = 0, and the core has a finite
contribution.

An important feature of an n ̸= 0 vortex solution is that it carries a persistent super-
current. This is permitted because a solutionwith n ̸= 0 breaks time-reversal andmirror
symmetries. We can compute the current by gauging the globalU(1) symmetry of (7.1)
to (6.25), and then evaluating the functional derivative (5.14) to obtain

J =
1
i
(Ψ∗∇rΨ−Ψ∇rΨ∗)

= 2Dn
f 2

r
êθ , (7.12)

where êθ is a unit vector in the θ direction of polar coordinates. The current pattern is
sketched in Fig. 7.2. Note that the current falls off as 1/r as r→ ∞.

Although the vortex solution removes the logarithmic divergence in the energy of a
vortex solution at r = 0, there remains a divergence as r→∞ that we discuss now. From
(7.6), we can write
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69 7.2 Charged Superfluids

tFigure 7.2 Superflow around a vortex core of size∼ ξc.

Fvortex−Fno vortex ≈ 2πDn2
∫ ∞

ξc

rdr
f 2

r2

=
2πn2D|α|

β̃

∫ ∞

ξc

dr
r
. (7.13)

For an isolated vortex, this logarithmic divergence is only cut off by the system size
L, and so the energy of a single vortex diverges as ln(L/ξ ). But this is a rather mild
divergence, and isolated vortices can be detected in moderate-size systems. But in an
infinite system, vortices can only occur as vortex/anti-vortex pairs so that there is no
net circulation of the current at infinity. The energy of such a pair will then be

Fvortex/anti-vortex ≈
4πn2D|α|

β̃
ln
(

R
ξc

)
, (7.14)

where R is the separation between the vortices. This implies an attractive 1/R force
between a vortex and an anti-vortex in two dimensions, a feature that will play an
important role in Section 25.2.

7.2 Charged Superfluids

Let us now consider the case of a charged superfluid, where the free energy is given
by (6.25) with an additional vector potential A, not present in (7.1). The vortex solu-
tion has the supercurrent in (7.12), and this current produces a magnetic field; so A
is necessarily non-zero in a charged superfluid. As I now describe, the non-zero A
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has the remarkable consequence of removing the logarithmic divergence in (7.13), and
rendering the energy of an isolated vortex finite.

Given the azimuthal symmetry of the vortex, a natural choice for A is

A(r) =
Φ(r)
2πr

êθ . (7.15)

The Φ(r) is the flux enclosed in a circle of radius r:

Φ(r) =
∫ r

0
d2rBz =

∫ r

0
d2r(∂xAy−∂yAx) =

∮
A.dr. (7.16)

Now we insert the ansatzes (7.15) and (7.4) into (6.25), and obtain in place of (7.6)

F = 2π
∫ ∞

0

rdr

[
D
(

d f
dr

)2

+D
(

n− qΦ
2π h̄c

)2 f 2

r2 +α f 2 +
β̃
2

f 4

]
, (7.17)

where q = 2e is the charge of a Cooper pair. The only change is in the coefficient of the
f 2/r2 term. Notice that we can make this term vanish as r→ ∞ if and only if

lim
r→∞

Φ(r) = nΦ0, (7.18)

where

Φ0 =
hc
q

(7.19)

is the flux quantumof a superfluid in which the condensate has charge q. The quantized
flux value is preferred because, only then, we remove the logarithmic divergence in
system size in the energy of the vortex.

The full solution of the vortex configuration specified by f (r) and Φ(r) is obtained
by minimizing the sum of (7.17) and the electromagnetic energy

Ftotal = F +
1

8π

∫
d2r(∂xAy−∂yAx)

2

= F +
2π
8π

∫ ∞

0
rdr
(

1
2πr

dΦ
dr

)2

. (7.20)

We will not enter into the details of this, but sketch the qualitative form of the solution
in Fig. 7.3. The form of f (r) is similar to that in Fig. 7.1, while the magnetic field Bz(r)
extends nearly uniformly out to a distance of order the London penetration depth λL

we encountered in (5.19). In the present situation, the value of ρs is given by (6.19),
and so

1
λ 2

L
=

8πD|α|q2

h̄2c2β̃
. (7.21)

For r < λL, Φ quickly reaches its asymptotic value in (7.18). Consequently we can
expect that the free energy of a vortex is modified from (7.13) to

Fvortex−Fno vortex ≈
2πn2D|α|

β̃
ln
(

λL

ξc

)
. (7.22)
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tFigure 7.3 Solution of a vortex in a charged superfluid, obtained by minimizing (7.20). Parameters are as for the neutral vortex in
Fig. 7.1, along with q/(h̄c) = 0.075. So ξc = 1 andλL = 2.66.

Morever, the interaction energy of a vortex/anti-vortex pair will be as in (7.14) for
R < λL, and have only an exponentially weak R dependence for R > λL.

All of the above analysis assumes that λL ≫ ξc, which is the case for type-II
superconductors.

7.3 Flux Quantization

The remarkable quantization of flux in a vortex observed in (7.18) and (7.19) deserves
further comment. It is actually a very robust feature, and applies in far more general
situations than that considered so far: in cases where there is no rotation symmetry,
and even when translational symmetry is broken by the presence of disorder.

Let us assume that far from the core of the vortex we have

Ψ(r) = |Ψ0|eiθ(r), (7.23)

where |Ψ0| takes a possibly space-dependent value that minimizes the local free energy.
Then there is a term in the free energy of the form∣∣∣∣(∇r−

iq
h̄c
A
)

Ψ
∣∣∣∣2 = |Ψ0|2

(
∇rθ −

q
h̄c
A
)2

+ · · · . (7.24)

The energy will therefore be minimized if we are able to choose

∇rθ =
q
h̄c
A (7.25)
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as r→ ∞. Integrating (7.25) over a large contour C we then have

qΦ(r→ ∞)

h̄c
=

q
h̄c

∮
C
A.dr=

∮
C

∇rθ .dr= 2πn. (7.26)

The last inequality follows from the single-valuedness of eiθ , and implies the quanti-
zation of the flux in integer multiples of Φ0.

7.4 Vortex Lattices

Let us now consider a two-dimensional section of a superconductor placed in the pres-
ence of a uniform magnetic field Bext oriented in the z direction. We assume that Bext is
created by some fixed set of external currents Jext , so that

∇r×Bext =
4π
c
Jext . (7.27)

This field will act on the superconductor, and produce a supercurrent J specified
by the analog of (5.14), which will in turn modify the total magnetic field to B(r), not
equal to Bext . Indeed, the total magnetic field will be given by the Maxwell equation

∇r×B =
4π
c

(Jext+J) . (7.28)

Furthermore, the presence of a non-zero B will also produce a spatial variation in Ψ(r)
related to that found in the vortex solution.

We would like to reduce the determination of B = ∇r×A and Ψ(r) in the presence
of Bext to an energy minimization problem. The required free energy turns out to be a
simple modification of

Ftotal = F +
1

8π

∫
d2r(∂xAy−∂yAx−Bext)

2, (7.29)

where F is that specified in (6.25). Taking the variational derivative of (7.29) with
respect to A(r), we obtain (7.28). So the problem is reduced to minimizing (7.29) with
respect to A(r) and Ψ(r).

This minimization problem was first addressed by Abrikosov [2]. For the suitable
set of parameters, the minimum energy solution is a vortex lattice. This is a triangular
lattice of n = 1 vortices similar to that found in Section 7.2. Each vortex carries a flux
hc/q and so the vortex lattice spacing is given by

BextAt =
hc
q
, (7.30)

where At is the area of the unit cell of the triangular lattice. This prediction by
Abrikosov has since been confirmed by the observation of a such a vortex lattice in
numerous experiments.
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73 Problems

Problems

7.1 Consider a neutral superfluid with a vortex at r= 0 and an anti-vortex at r= (R,0)
with R≫ ξc. Neglect the vortex-core regions of size ξc, and assume that outside
the core we need only account for variations in the phase of the superfluid order
with

Ψ(r) =

√
−α
β̃

eiθ(r) . (7.31)

Insert (7.31) into (7.1), obtain the saddle-point equation for θ(r), and solve this
equation for the configuration noted; this solution will be a sum of solutions of
the form in (7.5). Finally, insert this solution back into (7.1), and so obtain (7.14)
to logarithmic accuracy.
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8 Boson Hubbard Model

The phase diagram of the boson Hubbard model is obtained in mean-field theory,
containing lobes of Mott insulators and a superfluid. The continuum quantum field
theories of the quantum phase transitions are obtained.

Our theory of the Bose gas in Chapter 3 was perturbative in the repulsive interaction
between the bosons, u0. This analysis always yields a superfluid ground state for the
Bose gas. This chapter begins our discussion of strong interactions, where the ground
state need not be a superfluid or, for fermions, a Fermi liquid.

For bosons in the continuum, we know from experiments on helium-4 that it realizes
a hexagonal-closed-packed (hcp) crystalline solid under pressure at T = 0, and this
solid has a zero helicity modulus (neglecting the possibility of a supersolid). However,
the T = 0 transition from the superfluid to the hcp solid is first order, and no controlled
analytic treatment is available in the vicinity of the transition.

In this chapter we therefore consider a simpler situation: bosons moving on a fixed
background lattice. This situation is realized in ultracold-atom systems in the presence
of an optical lattice created by standing waves of lasers. We show in this chapter that
for lattice bosons, for a sufficiently strong, but finite, repulsive interaction, there can
be quantum transitions from the superfluid to a gapped non-superfluid phase, which
is often referred to in this context as an “insulator.” We first restrict our attention to
just on-site repulsive interactions, in which case the Hamiltonian realizes a Hubbard
model, and we obtain “trivial” insulators at integer densities that do not break any lat-
tice symmetries. The superfluid to trivial-insulator transition can be second order, and
Section 8.3 describes an emergent continuum theory for the vicinity of the transition
which is distinct from that discussed in Chapter 3 for the dilute Bose gas.

Section 8.4 begins our consideration of insulators at non-integer densities. These
cannot be trivial, and here we only discuss the case where there is translational sym-
metry breaking so that density in the new unit cell is again an integer. More subtle
examples of insulators that do not break translational symmetry at non-integer filling
will occupy much of Parts II and IV.

74
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75 8.1 Lattice Hamiltonian

8.1 Lattice Hamiltonian

Here, we introduce the boson operator b̂i, which annihilates bosons on the sites, i, of
a regular lattice in d dimensions. These Bose operators and their Hermitian conjugate
creation operators obey the commutation relation[

b̂i, b̂
†
j

]
= δi j, (8.1)

while two creation or annihilation operators always commute. It is also useful to
introduce the boson number operator

n̂bi = b̂†
i b̂i, (8.2)

which counts the number of bosons on each site. We allow an arbitrary number
of bosons on each site. Thus the Hilbert space consists of states |{m j}⟩, which are
eigenstates of the number operators

n̂bi|{m j}⟩= mi|{m j}⟩, (8.3)

and every m j in the set {m j} is allowed to run over all non-negative integers. This
includes the “vacuum” state with no bosons at all |{m j = 0}⟩.

The Hamiltonian of the boson Hubbard model is

HB =−w ∑
⟨i j⟩

(
b̂†

i b̂ j + b̂†
j b̂i
)
−µ ∑

i
n̂bi +(U/2) ∑

i
n̂bi(n̂bi−1). (8.4)

The first term, proportional to w, allows hopping of bosons from site to site (⟨i j⟩ rep-
resents nearest neighbor pairs); if each site represents a superconducting grain, then w
is the Josephson tunneling that allows Cooper pairs to move between grains. The sec-
ond term, µ , represents the chemical potential of the bosons: changing the value of µ
changes the total number of bosons. Depending upon the physical conditions, a given
system can either be constrained to be at a fixed chemical potential (the grand canonical
ensemble) or have a fixed total number of bosons (the canonical ensemble). Theoreti-
cally it is much simpler to consider the fixed chemical-potential case, and results at fixed
density can always be obtained from them after a Legendre transformation. Finally,
the last term, U > 0, represents the simplest possible repulsive interaction between the
bosons. We have taken only an on-site repulsion. This can be considered to be the
charging energy of each superconducting grain. Off-site and longer-range repulsions
are undoubtedly important in realistic systems, but these are neglected in this simplest
model.

The Hubbard model HB is invariant under a global U(1)≡ O(2) phase transforma-
tion, as in (3.29), under which

b̂i→ b̂ieiϕ . (8.5)

This symmetry is related to the conservation of the total number of bosons

N̂b = ∑
i

n̂bi; (8.6)

it is easily verified that N̂b commutes with Ĥ.
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76 8 Boson Hubbard Model

We begin our study of HB by introducing a simple mean-field theory in Section 8.2.
This theory displays superfluid–insulator transitions, andwe employ the coherent-state
path-integral approach of Appendix A to obtain continuum quantum theories describ-
ing fluctuations near the quantum critical points in Section 8.3. Our treatment builds
on the work of Fisher et al. [83].

8.2 Mean-Field Theory

The strategy, as in any mean-field theory, is to model the properties of HB by the best
possible sum, HMF , of single-site Hamiltonians:

HMF = ∑
i

(
−µ n̂bi +(U/2) n̂bi(n̂bi−1)−Ψ∗Bb̂i−ΨBb̂†

i

)
, (8.7)

where the complex number ΨB is a variational parameter. We have chosen a mean-field
Hamiltonianwith the same on-site terms as HB and have added an additional termwith
a “field” ΨB to represent the influence of the neighboring sites; this field has to be self-
consistently determined. Notice that this term breaks the U(1) symmetry and does not
conserve the total number of particles. This is to allow for the possibility of broken-
symmetric phases, whereas symmetric phases will appear at the special value ΨB = 0.
As we saw in the analysis of HR, the state that breaks the U(1) symmetry will have a
non-zero stiffness to rotations of the order parameter; in the present case, this stiffness
is the superfluid density characterizing a superfluid ground state of the bosons.

Another important assumption underlying (8.7) is that the ground state does not
spontaneously break a translational symmetry of the lattice, as the mean-field Hamil-
tonian is the same on every site. Such a symmetry breaking is certainly a reasonable
possibility, but we will ignore this complication here for simplicity.

Let us determine the optimum value of the mean-field parameter ΨB by a standard
procedure. First, we determine the ground-state wavefunction of HMF for an arbitrary
ΨB; because HMF is a sum of single-site Hamiltonians, this wavefunction will simply
be a product of single-site wavefunctions. Next, we evaluate the expectation value of
HB in this wavefunction. By adding and subtracting HMF from HB, we can write the
mean-field value of the ground-state energy of HB in the form

E0

Ns
=

EMF(ΨB)

Ns
−Zw

〈
b̂†〉⟨b̂⟩+ ⟨b̂⟩Ψ∗B +〈b̂†〉ΨB, (8.8)

where EMF(ΨB) is the ground-state energy of HMF , Ns is the number of sites of the lat-
tice, Z is the number of nearest neighbors around each lattice point (the “coordination
number”), and the expectation values ⟨b̂⟩ and

〈
b̂†
〉

are evaluated in the ground state
of HMF. The final step is to minimize (8.8) over variations in ΨB. This step has been
carried out numerically and the results are shown in Fig. 8.1.

Notice that even on a single site, HMF has an infinite number of states, corresponding
to the allowed values m≥ 0 of the integer number of bosons on each site. The numerical
procedure necessarily truncates these states at some large occupation number, but the
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tFigure 8.1 Mean-field phase diagram of the ground state of the boson Hubbard modelHB in (8.4). The notation M.I. n refers to a
Mott insulator with n0(µ/U) = n. The dashed lines are sketches of contours of equal density: the line A has
density 1, the line C has density 1/2, and the line B has a density between 0 and 1.

errors are not difficult to control. In any case, we will show that all the essential prop-
erties of the phase diagram can be obtained analytically. Also, by taking the derivative
of (8.8) with respect to ΨB, it is easy to show that at the optimum value of ΨB is

ΨB = Zw⟨b̂⟩; (8.9)

this relation, however, does not hold at a general point in parameter space.
First, let us consider the limit w=0. In this case, the sites are decoupled, and the

mean-field theory is exact. It is also evident that ΨB = 0, and we simply have to
minimize the on-site interaction energy. The on-site Hamiltonian contains only the
operator n̂, and the solution involves finding the boson occupation number (these
occupation numbers are the integer-valued eigenvalues of n̂) that minimizes HB. This
is simple to carry out, and we get the ground-state wavefunction

|mi = n0(µ/U)⟩ , (8.10)

where the integer-valued function n0(µ/U) is given by

n0(µ/U) =



0, for µ/U < 0,
1, for 0 < µ/U < 1,
2, for 1 < µ/U < 2,
...

...
n, for n−1 < µ/U < n.

(8.11)

Thus, each site has exactly the same integer number of bosons, which jumps discon-
tinuously whenever µ/U goes through a positive integer. When µ/U is exactly equal
to a positive integer, there are two degenerate states on each site (with boson numbers
differing by 1) and so the entire system has a degeneracy of 2Ns . This large degeneracy
implies a macroscopic entropy; it will be lifted once we turn on a non-zero w.
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78 8 Boson Hubbard Model

Wenow consider the effects of a small non-zero w. As is shown inFig. 8.1, the regions
with ΨB = 0 survive in lobes around each w = 0 state (8.10) characterized by a given
integer value of n0(µ/U). Only at the degenerate point with µ/U = integer does a non-
zero w immediately lead to a state with ΨB ̸= 0. We will consider the properties of this
ΨB ̸= 0 later, but now we discuss the properties of the lobes with ΨB = 0 in some more
detail. Inmean-field theory, these states have wavefunctions still given exactly by (8.10).
However, it is possible to go beyond mean-field theory and make an important exact
statement about each of the lobes. The expectation value of the number of bosons in
each site is given by 〈

b̂†
i b̂i
〉
= n0(µ/U), (8.12)

which is the same result one would obtain from the product state (8.10) (which, I
emphasize, is not the exact wavefunction for w ̸= 0). There are two important ingre-
dients behind the result (8.12): the existence of an energy gap and the fact that N̂b

commutes with HB. First, recall that at w = 0, provided µ/U was not exactly equal to
a positive integer, there was a unique ground state, and there was a non-zero energy
separating this state from all other states (this is the energy gap). As a result, when we
turn on a small non-zero w, the ground state will move adiabatically without undergo-
ing any level crossings with any other state. Now the w = 0 state is an exact eigenstate
of N̂b with an eigenvalue Nsn0(µ/U), and the perturbation arising from a non-zero w
commutes with N̂b. Consequently, the ground state will remain an eigenstate of N̂b with
precisely the same eigenvalue, Nsn0(µ/U), even for small non-zero w. Assuming trans-
lational invariance, we then immediately have the exact result (8.12). Notice that this
argument also shows that the energy gap above the ground state will survive everywhere
within the lobe. These regions with a quantized value of density and an energy gap to
all excitations are known as “Mott insulators.” Their ground states are very similar to,
but not exactly equal to, the simple state (8.10). They involve in addition terms with
bosons undergoing virtual fluctuations between pairs of sites, creating particle–hole
pairs. The Mott insulators are also known as “incompressible” because their density
does not change under changes of the chemical potential µ or other parameters in HB:

∂ ⟨N̂b⟩
∂ µ

= 0. (8.13)

It is worth re-emphasizing here the remarkable nature of the exact result (8.12). From
the perspective of classical critical phenomena, it is most unusual to find the expecta-
tion value of any observable to be pinned at a quantized value over a finite region of
the phase diagram. The existence of observables such as N̂b that commute with the
Hamiltonian is clearly a crucial ingredient.

The numerical analysis shows that the boundary of the Mott-insulating phases is
a second-order quantum phase transition (i.e., a non-zero ΨB turns on continuously).
With the benefit of this knowledge, we can determine the positions of the phase bound-
aries. By the usual Landau theory argument, we simply need to expand E0 in (8.8) in
powers of ΨB,

E0 = E00 + r|ΨB|2 +O(|ΨB|4), (8.14)
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and the phase boundary appears when r changes sign. The value of r can be computed
from (8.8) and (8.7) by second-order perturbation theory, and we find

r = χ0(µ/U) [1−Zwχ0(µ/U)] , (8.15)

where

χ0(µ/U) =
n0(µ/U)+1

Un0(µ/U)−µ
+

n0(µ/U)

µ−U(n0(µ/U)−1)
. (8.16)

The function n0(µ/U) in (8.11) is such that the denominators in (8.16) are positive,
except at the points at which the boson occupation number jumps at w = 0. The
solution of the simple equation r = 0 leads to the phase boundaries shown in Fig. 8.1.

Finally, we turn to the phase with ΨB ̸= 0. The mean-field parameter ΨB varies con-
tinuously as the parameters are varied. As a result, all thermodynamic variables also
change, and the density does not take a quantized value; by a suitable choice of param-
eters, the average density can be varied smoothly across any real positive value. So this
is a compressible state in which

∂ ⟨N̂b⟩
∂ µ

̸= 0. (8.17)

As we noted earlier, the presence of a ΨB ̸= 0 implies that theU(1) symmetry is broken,
and there is a non-zero stiffness (i.e. helicity modulus) to twist in the orientation of the
order parameter.

We also note that extensions of the boson Hubbard model with interactions beyond
the nearest neighbor can spontaneously break translational symmetry at certain den-
sities. If this symmetry breaking coexists with the superfluid order, one can obtain a
“supersolid” phase.

A notable feature of Fig. 8.1 is that states with an energy gap to all excitations, and
no broken translational symmetry, only appear at exactly integer-quantized densities.
We can ask if this is a generic feature; are there gapped states with no broken symme-
try at other densities? In one spatial dimension, the answer is no, and this is one of
the consequences of the Lieb–Schultz–Mattis theorem [159]. However, the answer in
spatial dimension d = 2 (and higher) is yes, and describing examples of such systems
is a major focus of Parts II and IV.

8.3 Continuum Quantum Field Theories

Returning to our discussion of the boson Hubbard model, here I describe the low-
energy properties of the quantum phase transitions between the Mott insulators and
the superfluid found in Section 8.2. We will find that it is crucial to distinguish between
the two different cases, each characterized by its own universality class and continuum
quantum field theory. The important diagnostic distinguishing the two possibilities is
the behavior of the boson density across the transition. In the Mott insulator, this den-
sity is of course always pinned at some integer value. As one undergoes the transition
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to the superfluid, depending upon the precise location of the system in the phase dia-
gram of Fig. 8.1, there are two possible behaviors of the density: (a) the density remains
pinned at its quantized value in the superfluid in the vicinity of the quantum critical
point, or (b) the transition is accompanied by a change in the density.

We begin by writing the partition function of HB, ZB = Tre−HB/T in the coherent-
state path-integral representation derived in Appendix A:

ZB =

∫
Dbi(τ)Db†

i (τ)exp
(
−
∫ 1/T

0
dτLb

)
,

(8.18)

Lb= ∑
i

(
b†

i
dbi

dτ
−µb†

i bi +(U/2)b†
i b†

i bibi

)
−w ∑

⟨i j⟩

(
b†

i b j +b†
jbi
)
.

Here, we have changed the notation ψ(τ)→ b(τ), as is conventional; we are dealing
exclusively with path integrals from now on, and so there is no possibility of confu-
sion with the operators b̂ in the Hamiltonian language. Also note that the repulsion
proportional to U in (8.4) becomes the product of four boson operators above, after
normal ordering, and we can then use (A.4).

It is clear that the critical field theory of the superfluid–insulator transition should be
expressed in terms of a spacetime-dependent field ΨB(x,τ), which is analogous to the
mean-field parameter ΨB appearing in Section 8.2. Such a field is most conveniently
introduced by the applying the Hubbard–Stratonovich transformation of Section 6.1
on the coherent-state path integral. We decouple the hopping term proportional to w
by introducing an auxiliary field ΨBi(τ) and transforming ZB to

ZB =
∫
Dbi(τ)Db†

i (τ)DΨBi(τ)DΨ†
Bi(τ)exp

(
−
∫ 1/T

0
dτL′b

)
,

L′b = ∑
i

(
b†

i
dbi

dτ
−µb†

i bi +(U/2)b†
i b†

i bibi−ΨBib
†
i −Ψ∗Bibi

)
+∑

i, j
Ψ∗Biw

−1
i j ΨB j. (8.19)

We have introduced the symmetric matrix wi j whose elements equal w if i and j are
nearest neighbors, and vanish otherwise. The equivalence between (8.19) and (8.18)
can be easily established, as in Section 6.1, by simply carrying out theGaussian integral
over ΨB; this also generates some overall normalization factors, but these have been
absorbed into a definition of the measure DΨB. Let us also note a subtlety we have
glossed over. Strictly speaking, the transformation between (8.19) and (8.18) requires
that all the eigenvalues of wi j be positive, for only then are the Gaussian integrals over
ΨB well defined. This is not the case for, say, the hypercubic lattice, which has nega-
tive eigenvalues for wi j. This can be repaired by adding a positive constant to all the
diagonal elements of wi j and subtracting the same constant from the on-site b part
of the Hamiltonian. We will not explicitly do this here as our interest is only in the
long-wavelength modes of the ΨB field, and the corresponding eigenvalues of wi j are
positive.

https://doi.org/10.1017/9781009212717.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.009


81 8.3 Continuum Quantum Field Theories

For our future purposes, it is useful to describe an important symmetry property
of (8.19). Notice that the functional integrand is invariant under the following time-
dependent U(1) gauge transformation:

bi→ bieiϕ(τ),

ΨBi→ΨBieiϕ(τ), (8.20)

µ → µ + i
∂ϕ
∂τ

.

The chemical potential µ becomes time-dependent above, and so this transformation
takes one out of the physical parameter regime; nevertheless (8.20) is very useful, as it
places important restrictions on subsequent manipulations of ZB.

The next step is to integrate out the bi, b†
i fields from (8.19). This can be done exactly

in powers of ΨB and Ψ∗B: The coefficients are simply products of Green’s functions of
the bi. The latter can be determined in closed form because the ΨB-independent part
of L′b is simply a sum of single-site Hamiltonians for the bi: these were exactly diag-
onalized in (8.10), and all single-site Green’s functions can also be easily determined.
We re-exponentiate the resulting series in powers of ΨB, Ψ∗B and expand the terms in
spatial and temporal gradients of ΨB. The expression forZB can now be written as [83]

ZB =
∫
DΨB(x,τ)DΨ∗B(x,τ)exp

(
−VF0

T
−
∫ 1/T

0
dτ
∫

ddxLB

)
, (8.21)

LB = K1Ψ∗B
∂ΨB

∂τ
+K2

∣∣∣∣∂ΨB

∂τ

∣∣∣∣2 +K3 |∇ΨB|2 + r̃|ΨB|2 +
u
2
|ΨB|4 + · · · .

Here V = Nsad is the total volume of the lattice, and ad is the volume per site. The
quantity F0 is the free-energy density of a system of decoupled sites; its derivative with
respect to the chemical potential gives the density of the Mott-insulating state, and so

− ∂F0

∂ µ
=

n0(µ/U)

ad . (8.22)

The other parameters in (8.21) can also be expressed in terms of µ , U , and w but we
will not display explicit expressions for all of them. Most important is the parameter
r̃, which can be seen to be

r̃ad =
1

Zw
−χ0(µ/U), (8.23)

where χ0 was defined in (8.16). Notice that r̃ is proportional to the mean-field r in
(8.15); in particular, r̃ vanishes when r vanishes, and the two quantities have the
same sign. The mean-field critical point between the Mott insulator and the super-
fluid appeared at r = 0, and it is not surprising that the mean-field critical point of the
continuum theory (8.21) is given by the same condition.

Of the other couplings in (8.21), K1, the coefficient of the first-order time derivative
also plays a crucial role. It can be computed explicitly, but it is simpler to note that the
value of K1 can be fixed by demanding that (8.21) be invariant under (8.20) for small
ϕ ; a simple calculation shows that we must have

K1 =−
∂ r̃
∂ µ

. (8.24)
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We pause to note the similarity of the argument requiring invariance under (8.20), to
that used for establishing the Luttinger relation of Fermi liquid theory in Section 30.2
around (30.28). Both involve constraints that arise when we have a background density
of the conserved particle number, and this type of “anomaly” will continue to play an
important role in Parts II and IV.

In the present case, the relationship (8.24) has a very interesting consequence. Notice
that K1 vanishes when r̃ is µ-independent; however, this is precisely the condition that
the Mott insulator–superfluid phase boundary in Fig. 8.1 has a vertical tangent, that
is, at the tips of the Mott-insulating lobes, such as the where the contour A meets the
insulator. This is significant because, at the value K1 = 0, (8.21) is a relativistic field
theory, for a complex scalar field ΨB. So the Mott insulator to superfluid transition is
in the universality class of a relativistic scalar-field theory for K1 = 0.

In contrast, for K1 > 0, we have a rather different field theory with a first-order time
derivative: in this case we can drop the K2 term as it involves two time derivatives and
so is irrelevant with respect to the single time derivative in the K1 term; then the field
theory in (8.21) is identical to the theory (3.27) for the dilute Bose case in Chapter 3.
However, in the present situation, the bosons are not necessarily dilute; instead, we
have shown that the excess density of bosons over the density of the Mott insulator
can be effectively treated as a dilute gas. Similarly, for K1 < 0, we have an essentially
identical theory of bosonic “holes” and a depletion of density from the Mott insulator.

To conclude this section, I would like to correlate the above discussion on the dis-
tinction between the two universality classes with the behavior of the boson density
across the transition. This can be evaluated by taking the derivative of the total free
energy with respect to the chemical potential, as is clear from (8.4):〈

b̂†
i b̂i
〉
=−ad ∂F0

∂ µ
−ad ∂FB

∂ µ

= n0(µ/U)−ad ∂FB

∂ µ
, (8.25)

where FB is the free energy resulting from the functional integral over ΨB in (8.21).
In mean-field theory, for r̃ > 0, we have ΨB = 0, and therefore FB = 0, implying〈

b̂†
i b̂i
〉
= n0(µ/U), for r̃ > 0. (8.26)

This clearly places us in a Mott insulator. As argued in Section 8.2, Eqn. (8.26) is an
exact result.

For r̃ < 0, we have ΨB = (−r̃/u)1/2, as follows from a simple minimization of LB;
computing the resulting free energy we have

〈
b̂†

i b̂i
〉
= n0(µ/U)+ad ∂

∂ µ

(
r̃2

2u

)

≈ n0(µ/U)+
ad r̃
u

∂ r̃
∂ µ

. (8.27)
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83 8.4 Insulators at Non-Integer Filling

In the second expression, we ignored the derivative of u as it is less singular as r̃
approaches 0; I will comment on the consequences of this shortly. Thus, at the transi-
tion point at which K1 = 0, by (8.24) we see that the leading correction to the density of
the superfluid phase vanishes, and it remains pinned at the same value as in the Mott
insulator. Conversely, for the case K1 ̸= 0, the transition is always accompanied by a
density change and the excess density can be effectively treated in the dilute Bose gas
theory of (3.27).

Let me close by commenting on the consequences of the omitted higher-order terms
in (8.27) to the discussion above. Consider the trajectory of points in the superfluid
with their density equal to some integer n. The implication of the above discussion is
that this trajectory will meet the Mott insulator with n0(µ/U) = n at its lobe. The rel-
ativistic phase transition then describes the transition out of the Mott insulator into
the superfluid along a direction tangential to the trajectory of density n. The approxi-
mations made above merely amounted to assuming that this trajectory was a straight
line.

For a deeper understanding of the nature of the fixed-density superfluid–insulator
transition at the tips of the Mott lobe, where K1 = 0, we need to analyze the relativistic
quantum field theory of an M = 2 component scalar with O(M) symmetry. The basic
features of this relativistic field theory are described in Chapters 10 and 11, and they are
applied to physical properties of the superfluid–insulator transition in Section 11.2. We
will find a remarkable new feature at the superfluid–insulator quantum critical point
in d = 2: this is a many-body quantum state without quasiparticle excitations. There is
much additional discussion on such non-quasiparticle states in Chapters 32 and 34.

8.4 Insulators at Non-Integer Filling

A key feature of the phase diagram in Fig. 8.1 is that all the integers have exactly an
integer number of bosons per site. Here, we argue that, once we move away from the
purely on-site interactions, insulators are also possible at rational densities, ⟨n̂b⟩= p/q,
with p and q rational. The simplest ones are those that break translational symmetry
so that the boson density per unit cell is again an integer. Insulators at non-integer
rational densities that do not break translational symmetry are far more subtle, and
will be discussed extensively in Parts II and IV.

Here we limit ourself to the important case of density per site ⟨n̂b⟩= 1/2. In Fig. 8.1
notice that at µ = 0 there is a superfluid state at any non-zero w at density 1/2 along the
contour C. It is not difficult to show that at very small w such a superfluid is unstable
to the formation of an insulator in the presence of longer-range interactions. With an
eye to future applications, let us consider “hard-core” bosons B̂i for which the on-site
repulsion U is so large that we may ignore all states with more than a single boson on
each site

B̂†
i B̂i = 0,1 . (8.28)
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84 8 Boson Hubbard Model

tFigure 8.2 Insulators of hard-core bosons at density 1/2. In the site density wave, the site density oscillates in space with
ηi =±1 on the two sublattices. In the bond density wave, the site density is uniform, but translational symmetry is
broken by the preferential occupation of certain bonding orbitals.

Let us include a nearest-neighbor repulsionV between such bosons in the Hamiltonian

Hhc =−w ∑
⟨i j⟩

(
B̂†

i B̂ j + B̂†
j B̂i
)
−µ ∑

i
B̂†

i B̂i +V ∑
⟨i j⟩

B̂†
i B̂iB̂

†
j B̂ j . (8.29)

Then, for w→ 0, µ > 0, andV large, we shouldmaximize the density of bosons without
paying the energy cost V of nearest-neighbor repulsion. This is achieved in the site (or
“charge”) density wave shown in Fig. 8.2. Notice that this state has density of exactly
1/2, and a two-fold degeneracy; there is another state in which the empty and occupied
sites are interchanged. Translational symmetry has been broken, the unit-cell size has
been doubled, and so the net density per unit cell is 1. Most importantly, this insulator
has a gap of order V to all excitations. This means that it is stable to the onset of
superfluidity upon turning on a small w.

For more complicated off-site interactions, it is also possible to form the bond den-
sity wave state at density 1/2, as shown in Fig. 8.2. This state also doubles the unit cell,
and has unit density per unit cell. We meet such states in our study of antiferromagnets
in Part IV, where they are usually known as a valence-bond solid (VBS).

Problems

8.1 We investigate the superfluid–insulator transition in the boson Hubbard model
with a staggered potential:

HB = ∑
i
(−µ + ε0ηi)b

†
i bi−w ∑

⟨i j⟩

(
b†

i b j +b†
jbi

)
,+

U
2 ∑

i
ni(ni−1), (8.30)

where ni = b†
i bi and ηi =+1 (ηi =−1) on sublattice A (sublattice B) of the square

lattice. Note that ε0 > 0 breaks the sublattice symmetry, and there are two sites per
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85 Problems

unit cell. Assume U > 2ε0. The analysis below will parallel that carried out in this
chapter for ε0 = 0.

(a) First consider the ground state at w = 0 as a function of µ . The crucial point
is that this ground state is non-degenerate, except at certain isolated values of
µ . Find the range of values of µ for which the average density per site is 1/2,
that is, there is one boson per unit cell, and the filling is ν = 1. We will assume
µ lies within this range from now on.

(b) Compute the exact on-site boson correlators χAA(τ) =
〈

T
(

bA(τ)b†
A(0)

)〉
and χBB(τ) =

〈
T
(

bB(τ)b†
B(0)

)〉
at w = 0. Compute these using the spectral

decomposition, and your knowledge of the exact eigenstates at w = 0. After
transforming to imaginary frequencies, these susceptibilities should agree at
ω = 0 with (8.16) with µ → µ± ε0.

(c) Expand these susceptibilities at small ω , and identify the co-efficients as below

χAA(ω) =−rA + iK1Aω−K2Aω2 + · · ·
χBB(ω) =−rB + iK1Bω−K2Bω2 + · · · . (8.31)

Verify the analog of (8.24):

K1A =−∂ rA

∂ µ
, K1B =−∂ rB

∂ µ
. (8.32)

(d) Now consider w ̸= 0, and proceed as below (8.18). This yields a path integral
over a complex field ψi(τ) where i extends over both the A and B sublattices.
The quadratic terms in the effective action are

S =

∫
dω
2π

[
∑
i, j

ψ∗i (ω)w−1
i j ψ j(ω)−∑

i∈A
χAA(ω)|ψi(ω)|2−∑

i∈B
χBB(ω)|ψi(ω)|2

]
.

(8.33)
(e) Now write (8.33) in momentum space; the quadratic form becomes a 2× 2

matrix. Argue that when the lower eigenvalue of this matrix at k = 0 and ω = 0
crosses zero we reach the superfluid phase. In this manner, determine that the
phase boundary between the ν = 1 insulator and the superfluid in the w,µ
plane is given by

1
Z2w2 = rArB. (8.34)

(f) Near the critical point, focus on the effective action for the lower eigenmode
only; for this you will need the form of the lower eigenvalue as a function of k
and ω . In this manner, argue that the phase transition at the tip of the ν = 1
Mott lobe is given by the Wilson–Fisher conformal field theory.

8.2 Supersolids. Consider a double-layer boson Hubbard model of bosons b̂1i and b̂2i

on two parallel layers 1,2:
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86 8 Boson Hubbard Model

H2B =−w ∑
⟨i j⟩

(
b̂†

1ib̂1 j + b̂†
1 jb̂1i + b̂†

2ib̂2 j + b̂†
2 jb̂2i

)
−w∑

i

(
b̂†

1ib̂2i + b̂†
2ib̂1i

)
+ ∑

i

(
−µ
[
n̂b1i + n̂b2i

]
+

U
2

[
n̂b1i(n̂b1i−1)+ n̂b2i(n̂b2i−1)

])
+V ∑

i
n̂b1in̂b2i +W ∑

⟨i j⟩

[
n̂b1in̂b1 j + n̂b2in̂b2 j

]
. (8.35)

Thus, bosons on the same layer have an on-site repulsion U > 0, bosons on
opposite layers have a repulsion V > 0. Bosons on the same layer also have a
nearest-neighbor interaction W , and we will allow W to have either sign. Con-
sider the case where the average boson density per site and per layer is exactly 1/2,
and we take the limit U → ∞: thus, no site can have more than one boson. Use a
variational approach to determine the ground state of H2B as a function of V/w
and W/w. The proposed mean-field variational wavefunction is

|G⟩= ∏
i

(
α1 +α2b̂†

1i +α3b̂†
2i +α4b̂†

1ib̂
†
2i

)
|0⟩ , (8.36)

where |0⟩ is the empty state, and α1, α2, α3, and α4 are variational parameters.
Normalization of the wavefunction implies that

|α1|2 + |α2|2 + |α3|2 + |α4|2 = 1. (8.37)

(a) Show that the average density of 1/2 implies

|α2|2 + |α3|2 +2|α4|2 = 1. (8.38)

(b) Compute ⟨G|H2B|G⟩ for a lattice with the same-layer coordination number Z.
Then minimize this as a function of the α1,2,3,4 subject to the constraints (8.37)
and (8.38). The results yield a phase diagram, and the phases can be identified
as discussed below.

(c) Argue that any phase with α1 ̸= 0 must be a superfluid.
(d) Similarly, show that any phase with α1 = α4 = 0 is an insulator.
(e) The model H2B has a layer interchange symmetry, and our mean field allows

this symmetry to be spontaneously broken. Show that this symmetry is broken
in phases in which |α2| ̸= |α3|. As such phases break a lattice symmetry, it is
natural to refer to them as “solids.”

(f) Are there any regimes which are both solids and superfluids? Such a phase
would be a supersolid.

(g) Determine the order (first or second) of all quantum phase transitions in the
phase diagram.
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9 Electron Hubbard Model

The phase diagram of the electron Hubbard model is described. The superexchange
interaction of the Mott insulator leads to antiferromagnetic order on the square
lattice. The dopedMott insulator is described by a t–J model, and a Bardeen–Cooper–
Schrieffer mean-field analysis of the t–J model is shown to lead to d-wave supercon-
ductivity. The magnetism of the metallic state is described by a paramagnon theory,
and the exchange of paramagnons is also shown to lead to d-wave superconductivity.
The metallic antiferromagnet is shown to exhibit Fermi surface reconstruction.

This chapter begins a discussion of the Hubbard model of Chapter 8 applied to spin-
1/2 fermions instead of bosons, and the further developments are the focus of much of
this book. Both the Fermi statistics and the spin of the lattice particles makes a crucial
difference to the physics, and the problem is considerably more complicated than the
boson case of Chapter 8. The present chapter contains a description of phases that can
be obtained viamean-field descriptions, which are ultimately similar to those employed
in Chapter 8: the Fermi statistics and spin already make a significant difference to the
phases so obtained. However, the full phase diagrams of Hubbard and related models
are far richer than those encountered in the present chapter: Parts II and IV introduce
new ideas on fractionalization and emergent gauge fields, which lead to novel phases
that are not discussed here.

Our attention will mostly focus on the square lattice, and we will consider the
Hamiltonian

HU =−t ∑
⟨i j⟩

[
c†

iα c jα + c†
jα ciα

]
+∑

i

[
−µ(ni↑+ni↓)+Uni↑ni↓

]
, (9.1)

where ciα annihilates a fermion on site i with spin α,β =↑,↓, and the number operators
are

ni↑ = c†
i↑ci↑ , ni↓ = c†

i↓ci↓. (9.2)

The fermions hop with amplitude t between sites, and have a local repulsion U > 0.
A more realistic model will also have long-range Coulomb interactions between the
fermions, but we assume this is screened, and focus only on the new physics introduced
by the on-site interaction U .

A very instructive starting point is the analog of the Mott-insulating phases of
bosons in Fig. 8.1, which is shown in Fig. 9.1. As in the boson case, we expect such
phases to be present for U≫ t, when there an integer number of fermions on each site.
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t/U

µ/U

0

1

Empty

Band insulator

AF
insulator

AF
metal

d-wave superconductor

A

B Paramagnon
theory

Fermi
liquid

t–J
model

tFigure 9.1 Schematic phase diagram of the mean-field states of the electron Hubbard model in (9.1) discussed in this chapter.
The evolution of the Fermi surface from the antiferromagnetic (AF) insulator to the Fermi liquid is shown in Fig. 9.7
along contour A with a fixed density of one electron per site. If the electron density is different from unity, then the
antiferromagnetic metal is present even for small t/U , and the Fermi surface evolves along contour B as in Fig. 9.8.
Most of the metallic region is expected to be unstable to d-wave superconductivity (at least at smallU ), and we
present two complementary approaches to the superconducting instabilities in Sections 9.3 and 9.4.3.

Because of the exclusion principle, only Mott insulators with n0 = 0,1,2 are permitted
here. It is also easy to see that the Mott insulators with n0 = 0,2 are trivial: all the states
in the Hilbert space of the fermions are either empty or occupied, and the empty/filled
state is an exact ground state. Furthermore, the filled state is also a band insulator, as
there is only one state at this density

∏
i

c†
i↑c

†
i↓ |0⟩= ∏

k
c†
k↑c

†
k↓ |0⟩ . (9.3)

So there is only a single Mott insulator, with exactly one fermion per site. However,
its physics is far more subtle than the corresponding boson Mott insulator. In stark
contrast to the boson case, this Mott insulator has an exponentially large degeneracy
in the limit U → ∞. Each site can be occupied with a spin-up or -down fermion, and
so the total number of ground states at U = ∞ is 2N , where N is the number of lattice
sites. Section 9.1 shows how this degeneracy is lifted by a superexchange interaction
that appears at the first order in the t/U expansion: this leads to the antiferromagnetic
insulator state, sketched in Fig. 9.1.

At the right end of Fig. 9.1, where U is small, we obtain the Fermi liquid state of
Chapter 2. With increasing U , there is an onset of antiferromagnetic order already
in the metal, in the antiferromagnetic metal phase, before there is a transition to
the antiferromagnetic insulator at integer filling: this evolution is described using the
paramagnon theory in Section 9.4.

Much of the metallic region in Fig. 9.1 is expected to have an instability to electron
pairing, and the onset of d-wave superconductivity at low temperatures. This instability
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89 9.1 The Superexchange Interaction

is described using the large U approach of the t–J model in Section 9.3, and the small-
U approach of the paramagnon theory in Section 9.4.3. Qualitatively, the same d-wave
state is obtained from these two approaches.

9.1 The Superexchange Interaction

The exponential degeneracy of the Mott insulator at integer density must be lifted at
a large but finite U , and we investigate this here in a perturbation theory in t/U . The
expansion in 1/U must involve degenerate perturbation theory, and for infinite systems
this is best investigated by an effective Hamiltonian method: we explicitly describe this
method later in Problem 9.1. The steps in this method are: (i) separate theHilbert space
into the subspace of interest, and “other” states that have a zeroth-order energy well
separated from this subspace; and (ii) perform a canonical transformation (often called
the Schrieffer–Wolff transformation) to eliminate thematrix elements between the sub-
space and the other states. For the Hubbard model, this procedure can be implemented
order-by-order in t/U , as described in Ref. [168].

We are interested here only in the leading correction to the Hamiltonian at order
t2/U . In this case, we can sidestep the somewhat cumbersome canonical transforma-
tion procedure, and obtain the needed answer by a shortcut. It is not difficult to see
from the mechanics of the canonical transformation that only pair-wise interactions
between nearest-neighbor sites are generated at order t2/U , and each pair of sites can
be treated independently of all other pairs for the purposes of obtaining the effective
Hamiltonian. Consequently, we can obtain the needed Hamiltonian by exactly diago-
nalizing HU for a pair of sites, and mapping the spectrum onto the states of an effective
Hamiltonian.

So we consider the spectrum of HU for two sites i = 1,2 for a total of two electrons.
This model has a total of six states, listed below with their energies E0 at t = 0 (because
there is no fluctuation in the total number of electrons, we can safely drop the µ term):

|1⟩= c†
1↑c

†
2↑ |0⟩ ; E0 = 0,

|2⟩= c†
1↑c

†
2↓ |0⟩ ; E0 = 0,

|3⟩= c†
1↓c

†
2↑ |0⟩ ; E0 = 0,

|4⟩= c†
1↓c

†
2↓ |0⟩ ; E0 = 0,

|5⟩= c†
1↑c

†
1↓ |0⟩ ; E0 =U,

|6⟩= c†
2↑c

†
2↓ |0⟩ ; E0 =U. (9.4)

Clearly, the subspace of interest contains the states |1,2,3,4⟩, and we have to eliminate
their coupling to the states |5,6⟩. The hopping term, Ht , in HU has the non-zero matrix
elements

⟨5|Ht |2⟩= ⟨6|Ht |2⟩=−t,

⟨5|Ht |3⟩= ⟨6|Ht |3⟩= t . (9.5)
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It is now apparent that |1⟩ and |4⟩ are already exact eigenstates of the two-site Hamil-
tonian with total energy E = 0, and we only need to diagonalize the remaining 4× 4
Hamiltonian.

We can reduce the work further, by considering eigenstates of parity and total spin.
The following state has odd parity under site exchange, total spin S = 1, and no non-
zero matrix elements associated with Ht

1√
2
(|2⟩+ |3⟩) ; E = 0 . (9.6)

Clearly, this state combines with |1⟩ and |4⟩ to form a spin triplet with energy E = 0.
Similarly the state

1√
2
(|5⟩− |6⟩) ; E =U , (9.7)

with total spin S = 0, odd parity under site exchange, decouples from all other states.
This state is not part of the low-energy subspace.

Finally, we have to consider the remaining two states, which have total spin 0 and
even parity under site exchange

|a⟩= 1√
2
(|2⟩− |3⟩) ,

|b⟩= 1√
2
(|5⟩+ |6⟩) . (9.8)

The Hamiltonian on these two states reduces to

Hab =

(
0 −2t
−2t U

)
(9.9)

and so we have the remaining two eigenenergies

E =U/2±
√

4t2 +(U/2)2 . (9.10)

So we have found four low-energy states, a triplet with energy E = 0, and a singlet
with energy E = U/2−

√
4t2 +(U/2)2. The other two states have energy ∼U in the

limit of large U , and we will not consider them further. The four low-energy states
reduce to linear combinations of the states |1,2,3,4⟩ in (9.4) as t/U → 0. The total
spin of the energy eigenstates shows us that to order t2/U , the same eigenstates and
eigenenergies are obtained from the effective Hamiltonian

He f f =−
J
4
+ JS1 ·S2, (9.11)

where

Si =
1
2

c†
iα σσσαβ ciβ (9.12)

is the spin operator on site i = 1,2, σσσ are the Pauli matrices, and the exchange constant

J =−
[
U/2−

√
4t2 +(U/2)2

]
≈ 4t2

U
. (9.13)

So we have reduced the two-site, two-electron Hubbard model to a spin model, with
S = 1/2 spin on each site, coupled to each other with an antiferromagnetic exchange
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interaction J > 0. The antiferromagnetism refers to the fact that classically the spins
prefer opposite orientations, and quantum mechanically they form a spin singlet in the
ground state. It is now a simple step to write down the effective Hamiltonian for the
entire lattice Hubbard model, within the Mott insulator with one electron per site:

HJ = J ∑
⟨i j⟩
Si ·S j. (9.14)

Unravelling the structure of the eigenstates of HJ for spin S = 1/2 occupy the next
two sections, and a significant portion of Parts II and IV. However, if we consider
the model in (9.14) for general S on a bipartite lattice, the ground state for large S is
smoothly connected to the classical ground state: this is the Néel state characterized
by a non-zero expectation value of the Néel order parameter

N = ηiSi, (9.15)

where ηi =±1 on the two sublattices.

9.2 Insulating Antiferromagnets and Hard-Core Bosons

A first analysis of the phases of the S = 1/2 antiferromagnetic Hamiltonian follows
from a mapping between the spin-1/2 states, and a hard-core lattice boson Bi. We make
a correspondence between the up and down and the boson state as follows (dropping
the site index)

|↓⟩ ⇔ |0⟩ ,
|↑⟩ ⇔ B† |0⟩ . (9.16)

As there are no additional states, the bosons must satisfy the hard-core constraint on
every site

B†
i Bi ≤ 1 . (9.17)

This mapping between states also implies a mapping between operators:

Si+ = Six + iSiy ⇔ ηiB
†
i ,

Si− = Six− iSiy ⇔ ηiBi,

Siz ⇔ B†
i Bi−1/2. (9.18)

For our convenience below, we have a chosen a phase factor ηi =+1 on the A square
sublattice, and ηi =−1 on the B square sublattice (ηi = eik·ri with k= (π,π)). In phases
in which the total spin Sz vanishes, the average B boson density is 1/2.

The hard-core boson representation is clearly tied to states that are eigenstates of
Sz, and so does not naturally preserve the full SU(2) rotation symmetry of the HJ .
Consequently, in the context of the boson model, it is conventional to consider a more
general Hamiltonian with only a U(1) spin rotation symmetry, often referred to as the
XXZ Hamiltonian:

HXXZ = ∑
⟨i j⟩

[
JX

2
(Si+S j−+S j+Si−)+ JZSizS jz

]
. (9.19)
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For JZ = JX = J, (9.19) reduces to (9.14). Inserting the boson representation in (9.18)
into (9.19), we obtain the Hamiltoinian for the hard-core bosons

HXXZ = ∑
⟨i j⟩

[
−JX

2

(
B†

i B j +B†
jBi

)
+ JZ

(
B†

i BiB
†
jB j−

B†
i Bi

2
−

B†
jB j

2

)]
, (9.20)

where we have dropped an additive constant. So we have obtained a model of bosons
with a nearest-neighbor hopping matrix element JX , and a nearest-neighbor repulsion
JZ . The ηi in (9.18) were chosen so that the sign of the hopping prefers that single
boson dispersion has a minimum at momentum k = 0. This Hamiltonian is of the
form considered earlier in (8.29).

9.2.1 Possible ground states

One advantage of the boson representation is that we can use our previous study of
boson systems in Section 8.4, and some intuition, to guess possible states of the spin
system. This correspondence between boson states and spin states on the square lattice
is shown in Fig. 9.2. From our discussion of the Bose gas in Chapter 3, we can expect
that the bosons will condense into a superfluid state with ⟨B⟩ ̸= 0, despite the hard-core
interactions. Numerical studies have shown that the ground state is indeed a superfluid
for 0≤ JZ ≤ JX . In terms of the spin degrees of freedom, this superfluid corresponds to
Néel order in the XY plane, as shown in Fig. 9.2. This follows from the operator cor-
respondence in (9.18), where a uniform condensate in Bi translates into a “staggered”
expectation value for the spin operator ∼ ηi. The phase θ0 of the condensate in (3.28)
determines the orientation of the spins within the XY plane: a real condensate with
θ0 = 0 leads to spins in the X direction.

The second panel of Fig. 9.2 shows another state that appears for JZ ≥ JX . In this
case, there is a strong nearest-neighbor repulsion between the bosons in (9.20), and so
the bosons will try to not occupy nearest-neighbor sites. As the average boson density is
1/2, we have the possibility of a site (or “charge”) density wave state in which one sub-
lattice is preferentially occupied. For JZ > JX , this state is a Mott insulator of bosons,
similar to those found in Chapter 8, but with an important difference: translational
symmetry is broken by the the checkerboard pattern, so that we obtain the required
integer number of bosons in the expanded unit cell, as required for a Mott insulator.
The broken symmetry also implies that the ground state is degenerate: there are two
equivalent density wave states, depending upon which sublattice is preferentially occu-
pied. In the spin language, this state has Néel order along the Z direction, as shown in
Fig. 9.2. At JZ = JX , the underlying Hamiltonian has a SU(2) rotation symmetry, and
so the properties of the Néel state oriented along the Z direction should be the same as
those for the Néel state along the X direction, which is not a Mott insulator of bosons;
this will become clearer when we consider the excitation spectra in Section 9.2.2.

A third possible state is shown in the bottom panel of Fig. 9.2. This a bond den-
sity wave of the B bosons, or a valence-bond solid (VBS) of the spins. This state is
also a Mott insulator of the B bosons, but now the translational symmetry has been
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tFigure 9.2 Correspondence between states of hard-core bosons (left) and the antiferromagnet on the square lattice. The non-zero
expectation values are equated to values independent of i; so theηi factor leads to the sublattice oscillations in the
Néel states. Compare with Fig. 8.2.

broken in a manner that preserves reflection symmetry about the centers of the links
of the lattice; the unit cell has doubled so that there are an integer number of bosons
per unit cell: in a fully ordered wavefunction, each boson occupies an orbital which
is a linear combination of the states on a pair of sites. In the spin language, the spins
form singlet valence bonds between nearest-neighbor sites. Unlike the other states in
Fig. 9.2, this state preserves full spin rotation symmetry, but does break translational
symmetry. The VBS state is not present for the nearest-neighbor Hamiltonian HXXZ

we have considered here, but it does appear for models with further neighbor couplings
[79, 161, 192, 296]: the VBS state plays an important role in the structure of the gauge
theories of fractionalized phases, as we shall see in Sections 16.5.2 and Chapter 26.

An interesting feature of the states I have listed so far is that all of them break either
the spin rotation symmetry or a lattice rotation symmetry. We have not found any state
that preserves all symmetries of theHamiltonian HXXZ . In fact, such states are possible,
and will be the major focus of Parts II and IV: such states feature fractionalization and
emergent gauge fields. We can further ask for states with neither broken symmetry
nor fractionalization, that is, trivial states like the Mott insulators at integer filling in
Chapter 8. In fact, such trivial states do not exist for HXXZ applied to S = 1/2 spins, as
proven in Refs. [105, 194].
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9.2.2 Excitations of Insulating Magnets

This section will describe the excitation spectra of the states in Fig. 9.2. In the spin lan-
guage, these excitations are known as “magnons” or “spin waves” for the Néel states,
and “triplons” for the VBS state with SU(2) symmetry. All these excitations carry inte-
ger spin Sz, or B boson number, even though the underlying spins have Sz =±1/2. We
will meet excitations with half-integer spin or boson number in Parts II and IV, when
we describe states with fractionalization; such excitations are “spinons.”

First, let us consider the X-Néel state in Fig. 9.2. This is a superfluid of the B bosons,
which has a gapless “phonon” excitation with a linear dispersion at long wavelengths,
as in (3.16). For the antiferromagnet, this is a gapless spin wave. The gaplessness is now
a reflection of the broken spin rotation symmetry about the z axis in the X-Néel state.

For a systematic derivation of the spin wave spectrum, we need to generalize the
boson representations of the spins to general spin S, and then perform a 1/S expansion.
However, at linear order for S = 1/2, we proceed here in the spirit of the dilute gas
theory of Chapter 3, in the expectation that the hard-core repulsion is not crucial in the
dilute gas limit. The dilute gas limit appears most simply for the Z-ferromagnet, with
JZ < JX < 0, in which case the ground state is simply the B boson vacuum. In the spin
language, all spins are polarized with Siz =−1/2, as befits a ferromagnet, and it is easy
to show that this is an exact eigenstate of HXXZ . To obtain the excitation spectrum, we
retain only the quadratic terms in (9.20), and then the Hamiltonian describes bosons

HXXZ = ∑
k

EkBk†Bk, (9.21)

with disperson

Ek = 2|JZ |+ |JX |(cos(kx)+ cos(ky)) . (9.22)

This dispersion has a minimum at k = (π,π), but this is an artifact of the ηi factors
in (9.18), which are superfluous for a ferromagnet. For |JZ |> |JX |, these magnon exci-
tations are gapped at all momenta: this reflects the fact that the Z-ferromagnet only
breaks the discrete Siz → −Siz symmetry of HXXZ , and so the gapless excitations of
Section 3.3 do not exist here. However, for JZ = JX < 0, HXXZ has the full SU(2) rota-
tion symmetry of HJ , and then the magnon excitations are gapless: their dispersion
E(π,π)+k ∼ k2. So, somewhat surprisingly, we have found quadratically dispersing exci-
tations in a ferromagnet with SU(2) spin rotation symmetry, in contrast to the linearly
dispersing excitations noted above for the X-antiferromagnet, which is a superfluid of
the B bosons. This quadratic dispersion is a consequence of a special feature of the
ferromagnet: the ferromagnetic order parameter is also the generator of rotations of
SU(2) symmetry [100, 111].

Let us now derive the excitations of the Z-Néel state by the dilute Bose gas approach.
By the cases already considered, we expect a gapped magnon spectrum for JZ > JX > 0,
and a linearly dispersing gapless magnon at the SU(2) point JZ = JX > 0 where it should
be the same as the X-Néel state. To obtain a classical ground state that is a boson
vacuum, we need tomodify themapping in (9.16) and (9.18).We retain these mappings
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tFigure 9.3 Magnon dispersion for theZ-Néel state in (9.25), for JZ = JX = 1.

for i ∈ the B sublattice, but for i ∈ A sublattice, we use instead

|↓⟩ ⇔ A† |0⟩ ,
|↑⟩ ⇔ |0⟩ ,

Si+ = Six + iSiy ⇔ Ai,

Si− = Six− iSiy ⇔ A†
i ,

Siz ⇔ 1/2−A†
i Ai . (9.23)

Then the A and B boson vacuum will have spins Siz = 1/2 on the A sublattice, and
Siz =−1/2 on the B sublattice, exactly as needed for the Z-Néel state. Inserting (9.23)
into (9.19), we now obtain

HXXZ =
′

∑
k

[
−JX (cos(kx)+ cos(ky))(B−kAk+A†

kB†
−k)+2JZ(A

†
kAk+B†

kBk)
]
, (9.24)

where the prime indicates the sum is over the reduced Brillouin zone because the unit
cell has been doubled. We can diagonalize (9.24) by the Bogoliubov transformation of
Section 3.1, and hence obtain the dispersion relation for a pair of degenerate magnons

Ek =
(
4J2

Z− J2
X (cos(kx)+ cos(ky))

2)1/2
. (9.25)

As expected, this has a gap for JZ > JX , and has a gapless linear dispersion for JZ = JX .
We show a plot of this dispersion in Fig. 9.3 for the gapless case.

Finally, we address the excitation spectrum of the VBS state, which does not break
any spin rotation symmetry. The spectrum of this state is always gapped and, for
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tFigure 9.4 A triplon excitation in a VBS state: shown is an Sz = 1 excitation on a bond, hopping vertically by a lattice spacing.

JZ = JX , often referred to as a “triplon”: these are the three states of the gapped S = 1
excitation plotted in Fig. 9.4. A full derivation of the triplon dispersion spectrum may
be found in Ref. [237].

9.3 The t–J Model and d-Wave Pairing

We now move away from the Mott insulator, and consider the case where the den-
sity of fermions deviates from exactly one per site. With an eye to the application to
the cuprates, we consider doping the Mott insulator with a density of p holes, so the
density of fermions is 1− p. Then a simple generalization of the insulating effective
Hamiltonian HJ in (9.14) is the popular t–J model

HtJ =−t ∑
⟨i j⟩
Pd

[
c†

iα c jα + c†
jα ciα

]
Pd−µ ∑

i
c†

iα ciα + J ∑
⟨i j⟩
Si ·S j, (9.26)

where Pd is a projection operator that annihilates any state in which there are two
fermions on any site:

Pd = ∏
i
(1−ni↑ni↓). (9.27)

This ensures that

∑
α

c†
iα ciα ≤ 1,∀i . (9.28)

The t–J model description applies along the arrow sketched in Fig. 9.1: in the large U
limit of the original Hubbard model in (9.1) and, for densities 1− p with p> 0, the low-
energy subspace includes all states that obey (9.28). The effective Hamiltonian in this
subspace will contain the hopping term descending directly from that already in (9.28),
along with the Pd operators, which ensures that both the initial and final states are in
the low-energy subspace. The order t2/U computation that led to the exchange term
in (9.14) and (9.26) also leads to some additional terms in the effective Hamiltonian,
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which are not contained in (9.26) (see Ref. [168]), but we will follow common practice
and ignore them because they are not believed to be essential to the physics.

A key property of the p ̸= 0 t–J model is that it is not an insulator, but a conductor.
It is possible for electrons to hop from site to site, with amplitude t, while remaining
within the low-energy subspace: this is the process where an electron hops from a singly
occupied site to one that is empty (a “hole”). The constraint of no double occupancy
does not fully restrain motion of the electron charge once p ̸= 0.

But the construction of a theory of this conductor is difficult because of the no-
double-occupancy constraint, that is, the central difficulty in the study of the t–J
model in (9.26) is the role of the projection operator Pd . This is clearly crucial in the
insulating p→ 0 limit, when HtJ reduces to HJ in (9.14): then we obtain a model of
S = 1/2 spins, not electrons, and we described such models using hard-core bosons
in Sections 9.2.1 and 9.2.2; theories of “spin liquid” phases of such spin models are
discussed in Parts II and IV. Much theoretical effort has been expended in extending
such theories of localized spins to p ̸= 0, when mobile charge carriers are also present.

In this chapter, we take a “vanilla” point of view [10], and treat the Pd operator, and
the exchange interaction J, in a mean-field manner. This yields a theory of a metallic
phase that is a conventional Fermi liquid, with all the properties described inChapter 2.
We also describe the tendency of the quasiparticles to pair as in Chapter 4, and this
leads to a theory of d-wave superconductivity. The cuprates do indeed display d-wave
pairing, and so this is an important success of the vanilla theory. However, such vanilla
approaches do not give a reasonable description of the small, but non-zero, p regime,
where we obtain a “pseudogap” metal, and also of quantum phase transitions that
extend out of the pseudogap phase. We turn our attention to such matters in Part V,
and in Section 31.4.

The main idea of the vanilla approach is that the dominant effect of the Pd operator
is to renormalize the hopping t to a smaller value. This has the effect of increasing the
effectivemass of the carriers in a p-dependentmanner, with the effectivemass diverging
in the insulating p→ 0 limit; this is often called the Brinkman–Rice renormalization
[36]. We will see later in Section 31.4 that the mass divergence as p→ 0 is incorrect,
and so restrict our attention to moderate values of p, where the present approach is
reasonable (in the “overdoped” regime of the cuprates). From a variational point of
view, the vanilla approach corresponds to the Gutzwiller wavefunction for the metallic
state

|Vanilla metal⟩= Pd ∏
εp<0,α

c†
pα |0⟩ (9.29)

in which we project out all states with double-occupied sites in the free-fermion wave-
function in (2.3).We can obtain an estimate of the renormalized hopping by computing
the dispersion of a quasiparticle added to this wavefunction of the vanilla metal.

Implicitly carrying out this renormalization of t in themetallic state, we now proceed
to apply the BCS theory of superconductivity in Chapter 4 to the exchange interaction
in HtJ in (9.26).

A transparent view of the origin of pairing is obtained by rewriting the exchange
interaction in a different manner. We use the Pauli matrix identity
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∑
ℓ=x,y,z

σ ℓ
αβ σ ℓ

γδ =−2εαγ εβδ +δαβ δγδ , (9.30)

where εαβ is the antisymmetric tensor with ε↑↓ = 1. This identity is easily verified by
explicit evaluation for the various possibility of the spin indices. Inserting this identity
into HJ in (9.14) after using (9.12), we obtain

HJ = J ∑
⟨i j⟩

[
−1

2

(
εαγ c†

iα c†
jγ

)(
εβδ c jδ ciβ

)
+

1
4

(
c†

iα ciα

)(
c†

jβ c jβ

)]
. (9.31)

The first term in (9.31) is written as a number operator of a pair of electrons in
a spin singlet, that is, a Cooper pair on the link ⟨i j⟩. Any such Cooper pair gains
energy for J > 0, and hence the superconductivity with singlet pairing is connected
to antiferromagnetism.

We now return to HtJ in (9.14), and proceed with the Bardeen–Cooper–Schrieffer
(BCS) factorization of Chapter 4. We perform the factorization here in real space,
rather than momentum space. Then we obtain

HtJ,BCS =−t ∑
⟨i j⟩

[
c†

iα c jα + c†
jα ciα

]
−µ ∑

i
c†

iα ciα

− J
2 ∑
⟨i j⟩

[
∆i jεαβ c†

iα c†
jβ +∆∗i jεαβ c jβ ciα −|∆i j|2

]
, (9.32)

where

∆i j =−
〈
εαβ ciα c jβ

〉
. (9.33)

(For simplicity, we have dropped the pairing contribution from the second term in
(9.31) in (9.32).) Now the theory is expressed in terms of pairing amplitudes ∆i j, one
for each link in the lattice. We restrict our attention here to pairing amplitudes that are
translationally invariant, so that

∆i j = ∆ ji = ∆i− j. (9.34)

In this case, the momentum-space representation of (9.33) is

∆i− j = 2∑
k

〈
c−k↓ck↑

〉
eik·(ri−r j) , (9.35)

where ∆i− j is the Fourier transform of the pairing amplitude of Chapter 4, which must
now be k-dependent.

For our model in which the exchange interaction is nearest neighbor, there are only
two indpendent pairing amplitudes ∆x and ∆y. In terms of these parameters, we define

∆k ≡ ∆x cos(kx)+∆y cos(ky) . (9.36)

It is important to note that ∆k is not the Fourier transform of ∆i− j in (9.35). From
(9.33), we see that ∆i j is the pairing amplitude between electrons on sites i and j, and
this is non-zero for a generic pair of sites under the Hamiltonian in (9.32). However,
the ∆i j which appear in the Hamiltonian are only for nearest neighbors, and only these
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are included in (9.36). So ∆k is the Fourier transform of ∑d ∆i− jδri−r j ,d , where d extends
over nearest neighbors.

In terms of ∆k, we can write (9.32) in momentum space as

HtJ,BCS = ∑
k

εkc†
kα ckα − J ∑

k

[
∆kc†

k↑c
†
−k↓+∆∗kc−k↓ck↑−|∆x|2−|∆y|2

]
. (9.37)

Here, the dispersion for nearest-neighbor hopping on the square lattice is

εk =−2t(cos(kx)+ cos(ky))−µ . (9.38)

Following the procedure in Chapter 4, we now have tominimize the free energy implied
by the Bogoliubov Hamiltonian in (9.37), subject to the self-consistency conditions

∆x =−
〈
εαβ ciα ci+x̂,β

〉
= 2∑

k

〈
c−k↓ck↑

〉
cos(kx)

∆y = 2∑
k

〈
c−k↓ck↑

〉
cos(ky). (9.39)

We nowhave two variational parameters, ∆x and ∆y, representing the pairing amplitude
on nearest-neighbor sites oriented along the x and y directions, in contrast to the single
pairing ∆ in Chapter 4. We can now proceed as in Chapter 4, and the analogs of the
self-consistency condition in (4.36) are

∆x =
J
V ∑

k

∆k cos(kx)

2Ek
tanh(Ek/(2T ))

∆y =
J
V ∑

k

∆k cos(ky)

2Ek
tanh(Ek/(2T )) , (9.40)

where now

Ek =
√

ε2
k + |∆k|2. (9.41)

We further restrict attention to solutions of (9.37), (9.40), and (9.41) that preserve
square-lattice rotational symmetry, in which there is no gauge-invariant local observ-
able that can distinguish between the x and y directions. There turn out to be two such
solutions:

∆x = ∆y, extended s wave

∆x =−∆y, d wave. (9.42)

The extended s-wave solution is similar to that discussed in Chapter 4, apart from a
different spatial dependence in ∆i− j. In Chapter 4, ∆i− j was a monotonically decaying
function ri− r j, largest on-site where i = j. In the present case, the largest pairing is
at nearest-neighbor sites. Such extended s-wave pairing is found in certain pnictide
compounds.

However, the lowest-energy solution in the cuprate case turns out to be the d-wave.
In this case, the pairing amplitude changes sign between the x and y directions, and this
has been experimentally detected by suitable interference experiments. Moreover, ∆i− j
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is identically zero when i = j, and this is compatible with the no-double-occupancy
constraint associated with the low-energy subspace, which has a unit eigenvalue under
Pd .

More generally, we can account for the no-double-occupancy constraint in amanner
similar to the theory of the vanilla metal in (9.29). We take the BCS wavefunction in
(4.4), and apply the projection operator which removes doubly occupied states

|Vanilla BCS⟩ ∝ Pd

[∫
d3r1d3r2 ψ†

↑ (r1)ψ
†
↓ (r2)g(r1− r2)

]N/2

|0⟩ . (9.43)

Here g(k) is defined as in (4.9), and the relationship between uk and νk, and ∆k general-
izes (4.31). As was the case for the vanilla metal, the projection operator in (9.43) does
not significantly modify the properties of the BCS state, apart from a renormalization
of the quasiparticle dispersion.

9.4 Paramagnon Theory of Antiferromagnetic Metals

We have so far concentrated on a large-U approach to the electron Hubbard model,
focusing on the left end of Fig. 9.1. We now turn to the right end of Fig. 9.1, and
describe the physics from a small-U perspective. The main ingredient here will be a
bosonic collective mode representing antiferromagnetic spin fluctuations in the metal;
this boson is the “paramagnon.”

Paramagnons can undergo a condensation transition, and this leads to the appear-
ance of a metallic state with spin density wave (SDW) order. We will focus on the
case where the wavevector of the SDW is K = (π,π) on the square lattice, and so the
ordering has the same symmetry as the Néel state of Fig. 9.2 in the antiferromag-
netic insulator at p = 0: that is, a spontaneous spin polarization that has opposite
orientations on the two sublattices. At p ̸= 0, such a state is a metal, with fermionic
quasiparticle excitations, in addition to magnons, descending from paramagnons,
which are analogs of the spin-wave excitations of the insulator that were discussed in
Section 9.2.2. In Section 9.4.3, we will argue that paramagnon exchange between elec-
trons can lead to a Cooper-pairing instability to d-wave pairing, in amanner analogous
to phonon exchange in the BCS theory.

Near the transition from the Fermi liquid to the antiferromagnetic metal, it is possi-
ble to derive a systematic approach to the paramagnon modes of a metal. The method
is very similar to that followed in Chapter 6 for the Landau–Ginzburg theory of super-
conductivity. There, we assumed model with U < 0 in (6.1), and decoupled it via the
Hubbard–Stratonovich transformation in (6.6), using a complex scalar that eventu-
ally became the field for the Cooperpair. Here, we are interested in U > 0, and so the
transformation in (6.6) for decoupling the particle–particle channel does not yield a
convergent integral. However, after using the single-site identity

U
(

ni↑−
1
2

)(
ni↓−

1
2

)
=−2U

3
S2

i +
U
4

(9.44)
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101 9.4 Paramagnon Theory of Antiferromagnetic Metals

(which is easily established from the electron commutation relations) it becomes possi-
ble to decouple the four-fermion term in a particle–hole channel. So, in decoupling the
interaction term in the Hubbard model in (9.1), we replace the Hubbard–Stratonovich
transformation in (6.6) by

exp

(
2U
3 ∑

i

∫
dτS2

i

)
=
∫
DΦΦΦi(τ)exp

(
−∑

i

∫
dτ
[

3
8U

ΦΦΦ2
i −ΦΦΦi · c†

iα
σσσαβ

2
ciβ

])
.

(9.45)

We now have a new field ΦΦΦi(τ), which will play the role of the paramagnon field.
Continuing the strategy of Chapter 6, we can now integrate out the electron field,

and obtain an effective theory for the ΦΦΦ field. In Chapter 6, this required us to be close
to T = Tc, so the magnitude of the Cooper-pair ordering was small. In the present
situation we can follow the same strategy at T = 0 near the transition from a Fermi
liquid to an antiferromagnetic metal. We expect the Fermi liquid to be stable for a
finite range of U > 0 (unless the Fermi surface obeys special nesting conditions), and
sowe canwork near the quantum phase transition for the onset of antiferromagnetism.
The path integral of the Hubbard model can be written exactly as (see Appendix B for
a discussion of the coherent-state path integral for fermions)

Z =
∫
Dciα(τ)DΦΦΦi(τ)exp

(
−
∫

dτ

{
∑
k,α

c†
kα

[
∂

∂τ
+ εk

]
ckα

+∑
i

[
3

8U
ΦΦΦ2

i −ΦΦΦi · c†
iα

σσσαβ

2
ciβ

]})
. (9.46)

We can now formally integrate out the electrons, and then the analog of the path
integral in (6.6) is

Z
Z0

=
∫

∏
i
DΦΦΦi(τ)exp

(
−Sparamagnon [ΦΦΦi(τ)]

)
, (9.47)

where Z0 is the free-electron partition function. Close to the onset of SDW order (but
still on the non-magnetic side), we can expand the action in powers of ΦΦΦ, and the analog
of (6.8) is

Sparamagnon [ΦΦΦi(τ)] =
T
2 ∑
q,ωn

|ΦΦΦ(q,ωn)|2
[

3
4U
− χ0(q, iωn)

2

]
+ · · · , (9.48)

where χ0(q, iωn) is the frequency-dependent Lindhard susceptibility, given by the
particle–hole bubble graph shown in Fig. 9.5:

χ0(q, iωn) =−
T
V ∑

p,εn

1
(iεn− εk)(iεn + iωn− εk+q)

. (9.49)

Performing the sum over frequencies by partial fractions, we obtain

χ0(q, iωn) =
1
V ∑

k

f (εk+q)− f (εk)
iωn + εk− εk+q

. (9.50)
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102 9 Electron Hubbard Model

From the structure of the ΦΦΦ propagator, it is clear that ΦΦΦ will first condense at the
wavevector qmax at which χ0(q, iω = 0) is a maximum, and qmax is then the wavevector
of the SDW. In the mean-field treatment of (9.48), the appearance of this condensate
requires that U is large enough to obey the “Stoner criterion”:

3
4U
− χ0(qmax, iω = 0)

2
< 0 . (9.51)

This wavevector is in turn determined by the dispersion εk of the underlying fermions.
For simplicitly, we only consider the case of a SDW with wavevector K = (π,π) below,
where the spatial pattern of the ΦΦΦ condensate is the same as the Z-Néel state in
Fig. 9.2. The frequency dependence of χ0(q, iω) also has an important influence on
the dynamics of the paramagnon fluctuations. Computation of (9.50) shows that there
is a damping term, similar to the |ωn| term in (6.12). A key difference from Chapter 6
is that such damping is present also at T = 0, and not just near Tc. This damping influ-
ences the nature of the transition between the Fermi liquid and the antiferromagnetic
metal, as has been discussed in some detail in the QPT book [234].

9.4.1 Paramagnon Hamiltonian

For future applications in Section 31.4, it useful to write down the paramagnon theory
inHamiltonian form,without integrating out the low-energy electronmodes (which led
to the |ωn| term noted above). Tomake the Φi field dynamical, we can integrate some of
the high-energy electrons far from the Fermi surface. This will induce additional terms
in a local potentialV (ΦΦΦi), which controls fluctuations in themagnitude of ΦΦΦi. The high-
energy electrons will also induce a dynamical term ω2

n ΦΦΦ2
i in the effective action for ΦΦΦi

(where ωn is a Matsubara frequency) so that the on-site ΦΦΦi paramagnon Lagrangian
on each site is

Li =
1

2g
(∂τ ΦΦΦi)

2 +V (ΦΦΦi). (9.52)

Our main assumption is that V (ΦΦΦi) has a minimum at a non-zero value of |ΦΦΦi| so that
the lowest-energy states correspond to the angularmomentum ℓ= 0,1 . . . from rotation
motion of the ΦΦΦi in a radial state around the |ΦΦΦi| minimum. In the following, we will
only keep the ℓ= 0,1 states.

We can make the analysis more explicit by rescaling |ΦΦΦi|, and replacing V (ΦΦΦi) by a
unit-length constraint on each site:

ΦΦΦ2
i = 1 . (9.53)

With the constraint (9.53), the dynamical term in (9.52) is simply the kinetic energy pro-
portional to L2

i of a particle with angular momentum Li moving on the unit sphere. In
this manner, we obtain a Hamiltonian for electrons coupled to a paramagnon quantum
rotor on each site, illustrated in Fig. 9.6.

Hparamagnon = ∑
p

εpc†
pσ cpσ +

g
2 ∑

i
L2

i +∑
i

(
λΦΦΦi + λ̃Li

)
· c†

iα
σσσαβ

2
ciβ . (9.54)
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103 9.4 Paramagnon Theory of Antiferromagnetic Metals

tFigure 9.5 Feynman diagram leading to (9.49).

tFigure 9.6 Hamiltonian form of the paramagnon theory of magnetism in Fermi liquids: a band of electrons cα , with each site
coupled to a paramagnon quantum rotor. The rotor is a particle of mass 1/g constrained to move on the unit sphere
with coordinateΦΦΦ. The cα andΦΦΦ reside on a d > one-dimensional lattice, although only one dimension is shown.

The Li and ΦΦΦi obey the usual commutation relations of single-particle rotational
quantum mechanics

[La,Lb] = iεabcLc , [La,Φb] = iεabcΦc , [Φa,Φb] = 0 , (9.55)

where a,b,c = x,y,z, we have dropped the site label i, and εabc is the unit antisymmetric
tensor. Now on each site we have a “particle” of mass 1/g moving on a unit sphere
with angular momentum Li; this is the paramagnon rotor, which has couplings λ , λ̃
to the low-energy electrons. The coupling λ̃ was also obtained by integrating out the
high-energy electrons.

To ensure the consistency of our procedure, let us undo the mappings above, and
show how the original Hubbard model can be obtained starting from the rotor–
fermion Hamiltonian in (9.54). At λ = 0, it is a simple matter to diagonalize the rotor
spectrum.

On each site, we have states labeled by the usual angular momentum quantum
numbers ℓ

|ℓ,m⟩i , ℓ= 0,1,2, . . . ;m =−ℓ, . . . , ℓ , Energy =
g
2
ℓ(ℓ+1) . (9.56)

So the ground state has ℓ= 0 on each site, and there is a three-fold degenerate excited
state with ℓ = 1 and energy g. Turning to non-zero λ , but |λ | ≪ g, we can eliminate
the coupling between the electrons and the rotors by a canonical transformation. Note
that the λ coupling is only active when the electronic state on a given site i has spin 1/2;
so the influence of the λ is to lower the energy of this state with respect to the empty
and doubly occupied sites, which have spin 0. To compute this energy shift we need the
matrix elements of ΦΦΦ between the ℓ = 0 ground state and the ℓ = 1 excited states; the
non-zero matrix elements are

https://doi.org/10.1017/9781009212717.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.010


104 9 Electron Hubbard Model

⟨ℓ= 0|Φz |ℓ= 1,m = 0⟩= 1√
3
, ⟨ℓ= 0|Φx± iΦy |ℓ= 1,m =∓1⟩=

√
2
3
. (9.57)

We can now use perturbation theory in λ to compute the energy of the spin-1/2 state;
in this manner, to second order in λ , we obtain an effective model, which is just the
original Hubbard model with

U =
λ 2

4g
. (9.58)

Note that the coupling λ̃ does not appear at this order because Li = 0 when acting on
the rung singlet state.

It is important to note that, so far, all we have done is to cast the paramagnon
theory in (9.46) into a Hamiltonian form. No fundamentally new step has yet been
taken, but we will do so in our consideration of metallic states with fractionalization
in Section 31.4.

9.4.2 Fermi Surface Reconstruction

Let us nowmove into the antiferromagnetic metal phase, where there is a ΦΦΦ condensate
at wavevector K = (π,π):

⟨ΦΦΦi⟩= ηiN ẑ , (9.59)

with N measuring the strength of the Néel ordered moment in (9.15). There is no
ferromagnetic moment, and so we have

⟨Li⟩= 0 . (9.60)

We wish to describe the excitations of this state. One class of excitations are spin waves,
similar to the spin-wave excitations of the insulator that were discussed in Section 9.2.2;
these can be obtained by considering transverse fluctuations of ΦΦΦ about the condensate
in (9.59) using the full action in (9.47). However, there are also low-energy fermionic
excitations in the antiferromagnetic metal, which are gapped in the insulator. We can
determine the spectrum of the fermions by inserting (9.59) into (9.54) ; using ηi = eiK·ri ,
with K = (π,π), we can write the fermion Hamiltonian in momentum space

HAFM = ∑
k

[
εkc†

kα ckα −∆c†
kα σ z

αα ck+K,α

]
+ constant. (9.61)

This is the analog of (4.26), and the analog of the pairing gap is the energy

∆ = λN . (9.62)

But, in general, the spectrum of HAFM does not have a gap, as we will see below. As in
BCS theory, the value ofN has to be determined self-consistently from the mean-field
equations.

To obtain the fermionic excitation spectrum, we have to perform the analog of the
Bogoliubov rotation in (4.28). Here, this is achieved by writing HAFM in a 2×2 matrix
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Square-lattice Hubbard model with no doping

Metal with 
large Fermi 

surface

Metal with 
electron and 
hole pockets

Insulator

and smalland large
∆ = 0 ∆ = 0∆ = 0

tFigure 9.7 Fermi surfaces of the Néel state at p = 0. The pockets intersecting the diagonals of the Brillouin zone have both
bands in (9.64) empty and so form hole pockets, while the remaining pockets have both bands occupied and form
electron pockets. The∆ = 0 Fermi surface is the same as in Fig. 9.12, except it is now centered at k = 0. The dashed
line in the insulator shows the boundary of the Brillouin zone of the Néel state

form by using the fact that 2K is a reciprocal lattice vector, and so εk+2K = εk; corre-
spondingly, the prime over the summation indicates that it only extends over half the
Brillouin zone of the underlying lattice, shown in the left panel of Fig. 9.7, which is the
Brillouin zone of the lattice with Néel order:

HAFM =
′

∑
k
(c†
kα ,c

†
k+K,α)

(
εk −∆σ z

αα
−∆σ z

αα εk+K

)(
ckα

ck+K,α

)
. (9.63)

It is now easy to diagonalize the 2× 2 matrix in (9.63), and we obtain the analog of
(4.33), which is

Ek± =
εk+ εk+K

2
±

[(
εk− εk+K

2

)2

+∆2

]1/2

. (9.64)

Unlike (4.33), the spectrum in (9.64) is not gapped, or even positive definite. Rather, it is
the spectrum of a metal, in which the negative energy states are filled, and bounded by
a Fermi surface. The Fermi surfaces so obtained are shown in Figs. 9.7–9.9 for different
values of p.

We observe that the “large” Fermi surface of the paramagnetic metal has been
“reconstructed” into small pocket Fermi surfaces in the SDW state. The excitations
of the SDW metal are hole-like quasiparticles on the Fermi surfaces surrounding the
hole pockets, and electron-like quasiparticles on the Fermi surfaces surrounding the
electron pockets. The spin-wave excitations interact rather weakly with the fermionic
quasiparticle excitations; this can be see from a somewhat involved computation from
the effective action.

Finally, we discuss the fate of the Luttinger relation in this SDW metal. The Lut-
tinger relation connects the volume enclosed by the Fermi surface to the density of
electrons per unit-cell modulo-2, as we will establish in Section 30.2. It should be
applied in the Brillouin zone of the Néel state, which is half the size of the Brillouin
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Square-lattice Hubbard model with hole doping

Metal with 

surface

Metal with 
electron and 
hole pockets

Metal with 
hole pockets

and smalland large
∆ = 0 ∆ = 0∆ = 0

tFigure 9.8 Fermi surfaces of the Néel state at p > 0. The pockets are as in Fig. 9.7.

Square-lattice Hubbard model with electron doping

Metal with 
large Fermi 

surface

Metal with 
electron and 
hole pockets

Metal with 
electron pockets

and smalland large
∆ = 0 ∆ = 0∆ = 0

tFigure 9.9 Fermi surfaces of the Néel state at p < 0, with pockets as in Figs. 9.7.

zone of the underlying square lattice, as shown in Fig. 9.7. In real space, this corre-
sponds to the fact that the unit cell has doubled, and so the density of electrons per
unit cell is 2(1− p). For spinful electrons, the Luttinger relation measures the elec-
tron density modulo 2, and so the density appearing in the Luttinger relation is −2p.
This has to be equated to twice the volumes enclosed by the electron and hole pockets
within the diamond-shaped Brillouin zone in Fig. 9.7. Let Ah be the area of a single
elliptical hole pocket. There are four such pockets in the complete Brillouin zone of
the square lattice or two pockets in the Brillouiin zone of the Néel state, as is apparent
from Figs. 9.7–9.9. Similarly, let Ae be the area of a single elliptical electron pocket:
there are two such pockets in the complete Brillouin zone of the square lattice or one
pocket in the Brillouin zone of the Néel state. These arguments show that the Luttinger
relation becomes

2× 1
(2π)2/2

× (−2Ah +Ae) =−2p . (9.65)

On the left-hand side, the first factor is the spin degeneracy, and the second factor is
the inverse of the volume of the Brillouin zone of the Néel state. To reiterate, this is the
conventional Luttinger relation applied after accounting for the doubling of the unit
cell, and it determines a linear constraint on the areas of the electron and hole pockets.
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tFigure 9.10 Electron interaction from the exchange of paramagnon,ΦΦΦ, in a metal.

9.4.3 Pairing from Paramagnon Exchange

We discussed the appearance of d-wave pairing in the large-U t–J model in Section 9.3.
Here, we address the pairing instability of the small-U Fermi liquid using the para-
magnon theory [14, 213], as sketched in Fig. 9.1. We assume we are in the Fermi liquid
without long-range antiferromagnetic order, but close to the paramagnon condensa-
tion transition so that the paramagnon fluctuations are strong. In the spirit of the BCS
theory of Chapter 4, we examine the interaction between electrons induced by param-
agnon exchange, and study the resulting superconducting state. The choice of d-wave
pairing above has been presented as a somewhat mysterious feature that arises from a
numerical minimization of (9.37). Clearer insight arises from the present paramagnon-
induced pairing approach, which has its origins in studies of the superfluidity of
3He.

The simplest diagram in the theory (9.46) leading to an electron–electron interaction
from paramagnon exchange is shown in Fig. 9.10. This leads to an effective interaction

HV =
1

2V ∑
q

∑
p,γ,δ

∑
k,α,β

Vαβ ,γδ (q)c
†
k,α ck+q,β c†

p,γ cp−q,δ . (9.66)

We use the renormalized ΦΦΦ propagator from (9.48) to obtain

Vαβ ,γδ (q) = J(q)σσσαβ ·σσσ γδ , (9.67)

where

J(q) =− 1
4 [3/(4U)−χ0(q,0)/2]

. (9.68)

This will lead to a spin-dependent interaction that is peaked at the wavevector q = K
determined by the maximum in χ0(q,0).

We note that a similar interaction appeared in the discussion of the t–J model. A
momentum-space presentation of the nearest-neighbor exchange interaction in HJ in
(9.14) leads to
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t

s

tFigure 9.11 Adapted from Ref. [249]: Singlet (Vs) and triplet (Vt ) interactions between a pair of electrons with total momentum
zero. The dashed line represents the Hubbard interactionU in (9.1).

J(q) =
J
2
[cos(qx)+ cos(qy)] . (9.69)

(Note: we are now including the density–density interaction discarded in (9.32).)
Similar to (9.68), the interaction in (9.69) peaks at a negative value at q= (π,π).

We mention, in passing, another approach to treat the paramagnon-induced inter-
action. In our starting point in (9.45), we made a choice to decouple the Hubbard
interaction in the spin channel only. A more democratic choice is to include all possible
channels by summing “ladder” and “bubble” diagrams to all orders in U . Such a strat-
egy has often been used in the context of 3He and the pnictides. While this approach
appears more complete, it is difficult to use it as a starting point of a theory of the
higher-order effects of the interactions. Summing such diagrams leads to interactions
between electrons that can be decomposed into singlet and triplet components, Vs and
Vt , and these are shown diagrammatically in Fig. 9.11. Evaluations of these diagrams
leads to the interactions [249]

Vs =
U2χ0(p′+p)

1−Uχ0(p′+p)
+

U3χ2
0 (p
′−p)

1−U2χ2
0 (p′−p)

,

Vt =−
U2χ0(p′−p)

1−U2χ2
0 (p′−p)

, (9.70)
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∆
−∆

tFigure 9.12 Pairing around a single large Fermi surface on the square lattice, as found in the cuprates. The Fermi surface has been
centered at K .

These interactions are similar to those in (9.67) and (9.68), but notice the different
numerical factors in front ofUχ0; this is a consequence of the choices of the decoupling
channels.

We now return to the general form of the paramagnon induced interaction in (9.66)
and (9.67), and study the pairing instability, as in Chapter 4. Our only assumption is
that J(q) is peaked at a negative value at q=K ≈ (π,π). We decouple (9.66) and obtain
an equation for the pairing amplitude:

∆k =
1
2

εαβ

〈
c†
kα c†
−kβ

〉
, (9.71)

which obeys

∆p =
3

2V ∑
k

J(p−k) ∆k√
ε2
k +∆2

k

tanh


√

ε2
k +∆2

k

2T

 . (9.72)

This is clearly closely related to (9.40). To optimize the solution, we should have |J(p−
k)| large when k and p are near the Fermi surface. In the cuprates J(q = K) = −2J
is maximal, and from (9.72) this requires ∆k=(π,0) = −∆p=(0,π). This leads to d-wave
pairing ∆x =−∆y for the cuprate Fermi surface, as illustrated in Fig. 9.12.

A summary for the origin of d-wave pairing is presented in Fig. 9.13. Cooper pairs
at points A and B on the Fermi surface are scattered by the exchange interaction J to
points C andD, after an exchange of wavevector K. The negative sign of the interaction
must be compensated by opposites of the pairing amplitude between A,B and C,D.
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A

B

C

DJ
A A

B B

C C

D D

J

tFigure 9.13 Cooper pairing from exchange interactions J at wavevector (π,π). The pairing amplitude is positive (negative) at
the filled (open) circles around the Fermi surface.

Problems

9.1 Spin waves in quantum ferromagnets
Consider the quantum Heisenberg ferromagnet with the Hamiltonian

H =−J ∑
⟨i, j⟩

S⃗i · S⃗ j (J > 0), (9.73)

where the lattice operators S⃗i obey the usual SU(2) commutation algebra[
Sα

i ,S
β
j

]
= iδi jεαβγ Sγ

j , (9.74)

with α,β ,γ = x,y,z.
Additionally, ∑α Sα

i Sα
i = S(S+1), that is, the maximum z component of the spin

is S. We are often be interested in the case of S = 1/2.
Our goal is to find the actual ground state and the nature of the excitations above
the ground state.

(a) As an ansatz for the ground state, consider the state |Ω⟩ =
⊗

i |Si⟩, where |Si⟩
represents a state with maximal spin-z component: Sz

i |Si⟩ = S|Si⟩. Compute
the energy expectation value of the state |Ω⟩. Defining global spin operators
through Sµ = ∑i Sµ

i , consider the state |ζ ⟩= exp(iζ · S⃗)|Ω⟩ and verify that the
state |ζ ⟩ is degenerate with |Ω⟩. Hence, the system possesses a global spin-
rotation symmetry.

(b) How do we know that |Ω⟩ is a true ground state? Obtain a lower bound on
the ground-state energy from (9.73) and compare it to the energy calculated in
part (a).

(c) We now study the excitations above the ground-state. In order to do this, we
use the Holstein–Primakoff transformation and find the spin-wave excitations
in the semiclassical limit of large S. Considering the Heisenberg uncertainty
relation ∆Sα ∆Sβ ∼ |⟨[Sα ,Sβ ]⟩|, obtain an estimate for the relative uncertainty
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∆Sα/S, where ∆Sα is the root mean square of the quantum uncertainty of the
spin component α . Show that quantum fluctuations of the spin become less
important as S≫ 1.

(d) In the Holstein–Primakoff transformation, the spin operators S±, S⃗ are speci-
fied in terms of bosonic creation and annihilation operators a†, a as

S−i = a†
i (2S−a†

i ai)
1/2, S+i = (2S−a†

i ai)
1/2ai, Sz

i = S−a†
i ai. (9.75)

Using the bosonic commutation relations, confirm that the spin operators
satisfy the commutation relations[

Sz
i ,S
±
j

]
=±δi jS

±
i ,

[
S+i ,S

−
j

]
= 2δi jS

z
i . (9.76)

(e) The utility of this representation is clear: when the spin is large, S ≫ 1,
an expansion in powers of 1/S gives Sz

i = S− a†
i ai, S−i ≃ (2S)1/2a†

i , S+i ≃
(2S)1/2ai. In this approximation, show that the one-dimensional Heisenberg
Hamiltonian takes the form

H =−JNS2 +∑
k

h̄ωka†
kak +O(S0). (9.77)

Calculate the dispersion relation of the spin excitations h̄ωk and show that the
energy of the elementary excitations vanishes in the limit k→ 0. Thesemassless
low-energy excitations, known as magnons, describe the elementary spin-wave
excitations of the ferromagnet.

(f) Repeat the calculation above for two dimensions and compute the dispersion
h̄ωk.

9.2 Spin waves in quantum antiferromagnets
Now, we consider the quantum Heisenberg antiferromagnet with the Hamiltonian

H = J ∑
⟨i, j⟩

S⃗i · S⃗ j (J > 0). (9.78)

We will focus on bipartite lattices, that is, lattices for which the sites can be divided
into two sublattices, say, A and B, such that the neighbors of one sublattice A
belong to the other sublattice B.

(a) The classical ground state can be written as

|GS⟩c = ∏
i
|Sz

i = εiS⟩, εi =

{
+1 on A

−1 on B
. (9.79)

Is this a ground state of the Hamiltonian? For simplicity, it is illustrative to
look at the two-site problem H2 = JS⃗1 · S⃗2. What is the true ground state in this
case?

(b) To gain some insight into this problem, let us carry out a 1/S expansion
about |GS⟩c as we did for the ferromagnetic case. Let us define the following
mappings on the two sublattices:

On A: S−i = a†
i (2S−a†

i ai)
1/2, S+i = (2S−a†

i ai)
1/2ai, Sz

i = S−a†
i ai; (9.80)
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112 9 Electron Hubbard Model

On B: S−i = (2S−b†
i bi)

1/2bi, S+i = b†
i (2S−b†

i bi)
1/2, Sz

i =−S+b†
i bi.

(9.81)

In terms of these transformed operators, show that the Hamiltonian is

H = J ∑
⟨i, j⟩

[
−S2 +S

(
a†

i ai +b†
jb j +aib j +a†

i b j

)]
+O(S0). (9.82)

(c) Fourier transforming to momentum space for a d-dimensional hypercubic lat-
tice, diagonalize the quadratic Hamiltonian by a Bogoliubov transformation.
The Hamiltonian is then of the form

H =−JNdS2 +∑
k

E⃗
k

(
A†
kAk+B

†
kBk
)
. (9.83)

What is the dispersion Ek?
(d) For two dimensions, analyze the dispersion in the k→ 0 limit and show that,

once again, we have gapless magnons associated with the broken rotational
symmetry. What is the difference compared to the ferromagnetic case?

(e) What is the zero-temperature value of ⟨Sz⟩ in the ground state? Hint: It might
be easier to evaluate this in terms of the bogoliubons.
Generically, we find that ⟨Sz⟩ ∼ S − (corrections). Show, based on dimen-
sional analysis, that the correction term diverges in one dimension – this is
a manifestation of the Mermin–Wagner theorem.

9.3 The electron spin density σσσ(r) (measured in units of h̄/2) is given by the three
operators:

σx(r) =
[
Ψ†
↑(r)Ψ↓(r)+Ψ†

↓(r)Ψ↑(r)
]

;

σy(r) =
1
i

[
Ψ†
↑(r)Ψ↓(r)−Ψ†

↓(r)Ψ↑(r)
]

;

σz(r) =
[
Ψ†
↑(r)Ψ↑(r)−Ψ†

↓(r)Ψ↓(r)
]
.

(a) Let

σσσ(k) =
∫

d3rσσσ(r)e−ik·r.

Express σx(k), σy(k), and σz(k) in terms of the creation and annihilation
operators c†

pα and cpα (α =↑,↓).
(b) Consider the Hamiltonian

H = ∑
p,α

εpc†
pα cpα −

∫
h(r, t) ·σσσ(r)d3r,

where εp = p2/(2m)− µ includes a chemical potential adjusted so that the
density of electrons is n, and h is an external, time-varying, spatially dependent
magnetic field.We shall consider the situationwhere hz is constant in space and
time, and not necessarily small, while hx and hy are small and depend upon r
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and t. At t→−∞, the system is in thermal equilibrium in the magnetic field hz

at a temperature T . Suppose that hy = 0 and

hx = Re
(

λeik·r−iωteηt
)
, (9.84)

where η is a positive infinitesimal. Write down an expression for the mag-
netization ⟨σz⟩ at t = −∞, without assuming that hz is small. Provided λ is
small, show that we can write the linear response magnetizations in the x and
y directions as

⟨σx(r, t)⟩= λ Re
{

χ0
xx(k,ω)eik·r−iωt

}
,

⟨σy(r, t)⟩= λ Re
{

χ0
yx(k,ω)eik·r−iωt

}
, (9.85)

where

χ0
xx(k,ω) =

1
V ∑

p

{
fp↑− fp+k↓

εp+k↓− εp↑−ω− iη
+

fp↓− fp+k↑
εp+k↑− εp↓−ω− iη

}
, (9.86)

where εp↑ = εp − hz, εp↓ = εp + hz, and fpα ≡ f (εpα) is the Fermi function.
Obtain the corresponding expression for χ0

yx(k,ω).
(c) Specialize the results of (b) to zero temperature. Assume that hz is sufficiently

strong that the electrons are completely polarized at t =−∞ (⟨σz⟩= n). Calcu-
late the response functions, χ0

xx, χ0
yx explicitly in the limit k→ 0 for arbitrary

ω . For what values of ω and k is energy absorbed from the time-varying field
hx ?

(d) Consider now a system of interacting electrons, which we will treat in the local
exchange approximation in a Hartree–Fock theory. Thus, the electrons now
see an effective Hamiltonian

He f f = ∑
p,α

εpc†
pα cpα −

∫
he f f (r, t) ·σσσ(r, t)d3r,

he f f (r, t) = I⟨σσσ(r)⟩t +h(r, t),

where h is the external field and I is the exchange constant. Assume now that
hz = 0, but that I is sufficiently large that the system is ferromagnetic and that
the magnetization points in the z direction at t = −∞. (Assume that T = 0,
and that the system is completely polarized, ⟨σz⟩= n at t =−∞). As in (9.85),
we write linear response expressions for ⟨σx(r, t)⟩ and ⟨σy(r, t)⟩ in terms of
response function χxx and χyx. Show that χxx and χyx can be written in terms of
I and the response functions χ0

xx, χ0
yx computed in (b), with the latter evaluated

in a field hz = In. Evaluate the resulting response functions χxx, χyx when both
k and ω are small, and show that there is a pole at a frequency ωk = Dk2, for
k→ 0; calculate the coefficient D. (The pole corresponds to the excitation of
“spin waves” in this model).
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10 Relativistic Scalar Field: Diagrams

The field theory of a scalar with a quartic self-interaction is used to illustrate pertur-
bation theory with Feynman diagrams.

We encountered a relativistic field theory in Chapter 8 on the boson Hubbard model:
at a fixed integer density, the transition from the Mott insulator to the superfluid is
described by the theory of a complex scalar field in (8.21) at K1 = 0, which is the point
at which all displayed terms in the action have an emergent relativistic invariance.

This chapter focuses on the properties of this relativistic field theory, by examin-
ing the case of an M-component real scalar field with O(M) symmetry; the superfluid
insulator transition corresponds to the case M = 2. We develop the diagrammatic per-
turbation theory of this theory in powers of the quartic interaction, and examine its
structure near the critical point in general D spacetime dimensions. The case D = 3,
with spatial dimension d = 2, will be of particular interest to us.

The partition function of the O(M) relativistic scalar is represented by the functional
integral

Z =
∫
Dϕα(x)exp(−Sϕ ), (10.1)

Sϕ =
∫

dDx
{

1
2
[
(∇xϕα)

2 + rϕ 2
α(x)

]
+

u
4!
(
ϕ 2

α(x)
)2
}
, (10.2)

where Sϕ is an imaginary time action. Here, the symbol
∫
Dϕα(x) represents an infi-

nite dimensional integral over the values of the field ϕα(x) at every spatial point x.
Whenever in doubt, we will interpret this somewhat vague mathematical definition by
discretizing x to a set of lattice points of small spacing ∼ 1/Λ. Equivalently, we will
Fourier transform ϕα(x) to ϕα(k), and impose a cutoff |k| < Λ in the set of allowed
wavevectors.

We have set the coefficient of the gradient term K equal to unity in (10.2). This is to
avoid clutter of notation, and is easily accomplished by an appropriate rescaling of the
field ϕα and the spatial coordinates.

An immediate advantage of the representation in (10.2) is that the Landau theory is
obtained simply by making the saddle-point approximation to the functional integral.
We can also see that, as is described in more detail below, systematic corrections to
the Landau theory appear in an expansion in powers of the quartic coupling u. The
remainder of this chapter is devoted to explaining how to compute the terms in the u

114
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115 10.1 Gaussian Integrals

expansion. Each term has an efficient representation in terms of “Feynman diagrams,”
from which an analytic expression can also be obtained.

10.1 Gaussian Integrals

We introduce the technology of Feynman diagrams in the simplest possible setting.
Let us discretize space, and write the ϕα(xi) variables as yi; we drop the α label to avoid
clutter of indices. Then we consider the multidimensional integral

Z(u) =
∫
Dyexp

(
−1

2 ∑
i j

yiAi jy j−
u
24 ∑

i
y4

i

)
, (10.3)

where the off-diagonal terms in thematrix A arise from the spatial gradient terms in Sϕ .
In this section, we will consider A to be an arbitrary positive definite, symmetric matrix.
The positive definiteness requires that r > 0, that is, K < Kc. Also, we have defined∫

Dy = ∏
i

∫ ∞

−∞

dyi√
2π

, (10.4)

and are interested in the expansion of Z(u) in powers of u. Thinking of (10.3) as a
statistical mechanics ensemble, we are also interested in the power-series expansion of
correlators like

Ci j(u)≡ ⟨yiy j⟩ ≡
1
Z(u)

∫
Dyyiy j exp

(
−1

2 ∑
kℓ

ykAkℓyℓ−
u

24 ∑
k

y4
k

)
. (10.5)

First, we note the exact expressions for these quantities at u = 0. The partition
function is

Z(0) = (detA)−1/2. (10.6)

This result is most easily obtained by performing an orthogonal rotation of the yi to a
basis which diagonalizes the matrix Ai j before performing the integral. Also useful for
the u expansion is the identity∫

Dyexp

(
−1

2 ∑
i j

yiAi jy j−∑
i

Jiyi

)

= (detA)−1/2 exp

(
1
2 ∑

i j
JiA−1

i j J j

)
, (10.7)

which is obtained by shifting the yi variables to complete the square in the argument of
the exponential. By taking derivatives of this identity with respect to the Ji, and then
setting Ji = 0, we can generate expressions of all the correlators at u = 0. In particular,
the two-point correlator is

Ci j(0) = A−1
i j . (10.8)

https://doi.org/10.1017/9781009212717.011 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.011


116 10 Relativistic Scalar Field: Diagrams

tFigure 10.1 Diagrammatic representation of the four-point correlator in (10.10). Each line is factor of the propagator in (10.8).

tFigure 10.2 Diagrams for the partition function to order u2.

For the 2n-point correlator, we have an expression known as Wick’s theorem:

⟨y1y2 . . .y2n⟩= ∑
P
⟨yP1yP2⟩ · · ·

〈
yP(2n−1)yP2n

〉
, (10.9)

where the summation over P represents the sum over all possible products of pairs,
and we reiterate that both sides of the equation are evaluated at u = 0. Thus, for the
four-point correlator, we have〈

yiy jykyℓ
〉
=
〈
yiy j
〉
⟨ykyℓ⟩+ ⟨yiyk⟩

〈
y jyℓ

〉
+ ⟨yiyℓ⟩

〈
y jyk

〉
. (10.10)

There is a natural diagrammatic representation of the right-hand side of (10.10): we
represent each distinct field yi by a dot, and then draw a line between dots i and j to
represent each factor of Ci j(0); see Fig 10.1.

We can now generate the needed expansions ofZ(u) andCi j(u) simply by expanding
the integrands in powers of u, and by evaluating the resulting series term by term using
Wick’s theorem. What follows is simply a set of very useful diagrammatic rules for
efficiently obtaining the answer at each order. However, whenever in doubt on the value
of a diagram, it is often easiest to go back to this primary definition.

For Z(u), expanding to order u2, we obtain the diagrams shown in Fig 10.2, which
evaluate to the expression

Z(u)
Z(0)

= 1− u
8 ∑

i

(
A−1

ii
)2

+
1
2

(
u
8 ∑

i

(
A−1

ii
)2
)2

+
u2

16 ∑
i, j

A−1
ii A−1

j j

(
A−1

i j

)2

+
u2

48 ∑
i, j

(
A−1

i j

)4
+O(u3). (10.11)

We are usually interested in the free energy, which is obtained by taking the logarithm
of the above expression, yielding

ln
Z(u)
Z(0)

=−u
8 ∑

i

(
A−1

ii
)2

+
u2

16 ∑
i, j

A−1
ii A−1

j j

(
A−1

i j

)2
+

u2

48 ∑
i, j

(
A−1

i j

)4
+O(u3). (10.12)
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117 10.1 Gaussian Integrals

tFigure 10.3 Diagrams for the two-point correlation function to order u2.

Now, notice an important feature of (10.12): the terms here correspond precisely to
the subset of the terms in Fig. 10.2 associated with the connected diagrams. These are
diagrams in which all points are connected to each other by at least one line, and this
result is an example of the “linked cluster theorem.” We will not prove this very useful
result here: at all orders in u, we can obtain the perturbation theory for the free energy
by keeping only the connected diagrams in the expansion of the partition function.

Now let us consider the u expansion of the two-point correlator, Ci j(u), in (10.5).
Here, we have to expand the numerator and denominator in (10.5) in powers of u,
evaluate each term using Wick’s theorem, and then divide the result series. Fortunately,
the linked cluster theorem simplifies things a great deal here too. The result of the
division is simply to cancel all the disconnected diagrams. Thus, we need only expand
the numerator, and keep only connected diagrams. The diagrams are shown in Fig. 10.3
to order u2, and they evaluate to

Ci j(u) = A−1
i j −

u
2 ∑

k
A−1

ik A−1
kk A−1

k j +
u2

4 ∑
k,ℓ

A−1
ik A−1

kk A−1
kℓ A−1

ℓℓ A−1
ℓ j

+
u2

4 ∑
k,ℓ

A−1
ik

(
A−1

kℓ

)2
A−1
ℓℓ A−1

k j +
u2

6 ∑
k,ℓ

A−1
ik

(
A−1

kℓ

)3
A−1
ℓ j . (10.13)

We now state the usefulDyson’s theorem. For this, it is useful to consider the expansion
of the inverse of the Ci j matrix, and write it as

C−1
i j = Ai j−Σi j, (10.14)

where the matrix Σi j is called the “self-energy,” for historical reasons not appropriate
here. Using (10.13), some algebra shows that, to order u2,

Σi j(u) =−δi j
u
2

A−1
ii +δi j

u2

4 ∑
k

(
A−1

ik

)2
A−1

kk +
u2

6

(
A−1

i j

)3
, (10.15)

and these are shown graphically in Fig. 10.4. Dyson’s theorem states that we can obtain
the expression for the Σi j directly from the graphs for Ci j in Fig. 10.3 by two modifi-
cations: (i) drop the factors of A−1 associated with external lines, and (ii) keep only
the graphs which are one-particle irreducible (1PI). The latter are graphs that do not
break into disconnected pieces when one internal line is cut; the last graph in Fig. 10.3
is one-particle reducible, and so does not appear in (10.15) and Fig. 10.4.
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118 10 Relativistic Scalar Field: Diagrams

tFigure 10.4 Diagrams for the self-energy to order u2.

10.2 Expansion for Susceptibility

We now apply the results of Section 10.1 to our functional integral representation in
(10.2) for the vicinity of the phase transition.

The problem defined by (10.2) has an important simplifying feature not shared by
our general analysis of (10.3): translational invariance. Thismeans that correlators only
depend upon the differences of spatial coordinates, and that the analog of the matrix
A can be diagonalized by a Fourier tranformation. So now we define the correlator

Cαβ (x− y) =
〈
ϕα(x)ϕβ (y)

〉
−⟨ϕα(x)⟩

〈
ϕβ (y)

〉
, (10.16)

where the subtraction allows generalization to the ferromagnetic phase; we will only
consider the paramagnetic phase here.

The subtraction in (10.16) is also needed for the fluctuation–dissipation theorem.We
discuss the full version of this theorem in Section 11.1.2, but note a simpler version. We
consider the susceptibility, χαβ , the response of the system to an applied “magnetic”
field hα under which the action changes as

Sϕ →Sϕ −
∫

dDxhα(x)ϕα(x). (10.17)

Then

χαβ (x− y) =
δ ⟨ϕα(x)⟩
δhβ (y)

=Cαβ (x− y), (10.18)

where the last equality follows from taking the derivative with respect to the field.
Below we set hα = 0 after taking the derivative. The Fourier transform of the sus-
ceptibility χαβ is

χαβ (k) =
∫

dDxe−ikxχαβ (x). (10.19)

In the paramagnetic phase χαβ (k) ≡ δαβ χ(k), and the susceptibility χ(k) will play a
central role in our analysis.

We can also Fourier transform the field ϕα(x) to ϕα(k), and so obtain the following
representation of the action from (10.2)
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119 10.2 Expansion for Susceptibility

Sϕ =
1
2

∫ dDk
(2π)D |ϕα(k)|2(k2 + r) (10.20)

+
u
4!

∫ dDk
(2π)D

dDq
(2π)D

dD p
(2π)D ϕα(k)ϕα(q)ϕα(p)ϕα(−k− p−q).

In this representation it is clear that the quadratic term in the action is diagonal, and
so the inversion of the matrix A is immediate. In particular, from (10.8) we have the
susceptibility at u = 0

χ0(k) =
1

k2 + r
, (10.21)

where we have defined χ0(k) to be the value of χ(k) at u= 0. Dyson’s theorem in (10.14)
becomes a simple algebraic relation

χ(k) =
1

1/χ0(k)−Σ(k)
=

1
k2 + r−Σ(k)

. (10.22)

We will shortly obtain an explicit expression for Σ(k).
Let us now explore some of the consequences of the u = 0 result in (10.21), which

describes Gaussian fluctuations about mean-field theory in the paramagnetic phase,
r > 0. The zero momentum susceptibility, which we denote simply as χ ≡ χ(k = 0) =
1/r, diverges as we approach the phase transition at K = Kc from the high-temperature
paramagnetic phase. This divergence is a key feature of the phase transition, and its
nature is encoded in the critical exponent γ defined by

χ ∼ (Kc−K)−γ . (10.23)

At this leading order in u we have γ = 1.
We can also examine the spatial correlations in the u = 0 theory. Performing the

inverse Fourier transform to Cαβ (x) = δαβC(x) we find

C(x) =
∫ dDk

(2π)D
eikx

(k2 + r)
=

(2π)−D/2

(xξ )(D−2)/2 K(D−2)/2(x/ξ ), (10.24)

where here K is the modified Bessel function, and we have introduced a characteristic
length scale, ξ , defined by

ξ = 1/
√

r. (10.25)

This is the correlation length, and is a measure of the distance over which fluctuations
of ϕα (or the underlying spins σ z

i ) are correlated. This is evident from the limiting forms
of (10.24) in various asymptotic regimes:

C(x)∼


1

xD−2 , x≪ ξ
e−x/ξ

x(D−1)/2ξ (D−3)/2 , x≫ ξ
. (10.26)

As could be expected of a correlation length, the correlations decay exponentially to
zero at distances larger than ξ .
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An important property of our expression in (10.25) for the correlation length is that
it diverges upon the approach to the critical point. This divergence is also associated
with a critical exponent, ν , defined by

ξ ∼ (Kc−K)−ν , (10.27)

and our present theory yields ν = 1/2. In the vicinity of the phase transition, this large
value of ξ provides an a posteriori justification of our taking a continuum perspective
on the fluctuations.

Let us now move beyond the u = 0 theory, and consider the corrections at order u.
After mapping to Fourier space, the result in (10.15) for the self-energy yields

Σ(k) =−u
(M+2)

6

∫ dD p
(2π)D

1
p2 + r

. (10.28)

Here, and below, there is an implicit upper bound of k < Λ needed to obtain finite
answers for the wavevector integrals. The M dependence comes from keeping track of
the spin index α along each line of the Feynman diagram, and allowing for the different
possible contractions of such indices at each u interaction point. We then have from
(10.22) our main result for the correction in the susceptibility

1
χ(k)

= k2 + r+u
(M+2)

6

∫ dD p
(2π)D

1
p2 + r

+O(u2). (10.29)

The first consequence of (10.29) is a shift in the position of the critical point. From
(10.23), a natural way to define the position of the phase transition is by the zero of 1/χ .
The order u correction in (10.29) shows that the critical point is no longer at r = rc = 0,
but at

rc =−u
(M+2)

6

∫ dD p
(2π)D

1
p2 +O(u2). (10.30)

Now, let us combine Eqs. (10.29) and (10.30) to determine the behavior of χ as r↘ rc.
We introduce the coupling s defined by

s≡ r− rc, (10.31)

which measures the deviation of the system from the critical point. Rewriting (10.29)
in terms of s rather than r (we will always use s in favor or r in all subsequent analysis),
we have

1
χ
= s+u

(
M+2

6

)∫ Λ dD p
(2π)D

(
1

p2 + s
− 1

p2

)
. (10.32)

We are interested in the vicinity of the critical point, at which s→ 0.
A crucial point is that the nature of this limit depends sensitively on whether D is

greater than or less than four. For D> 4, we can simply expand the integrand in (10.32)
in powers of s and obtain

1
χ
= s(1− c1uΛD−4), (10.33)
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where c1 is a non-universal constant dependent upon the nature of the cutoff. Thus,
the effects of interactions appear to be relatively innocuous; the static susceptibility
still diverges with the mean-field form χ(0) ∼ 1/s as s→ 0, with the critical exponent
γ = 1. This is in fact the generic behavior to all orders in u, and all themean-field critical
exponents apply for D > 4.

For D < 4, we notice that the integrand in (10.32) is convergent at high momenta,
and so it is permissible to send Λ→ ∞. We then find that the correction to first order
in u has a universal form

1
χ
= s
[

1−
(

M+2
6

)
2Γ((4−D)/2)
(D−2)(4π)D/2

u
s(4−D)/2

]
. (10.34)

Notice that no matter how small u is, the correction term eventually becomes impor-
tant for a sufficiently small s, and indeed it diverges as s→ 0. So, for sufficiently large
ξ , the mean-field behavior cannot be correct, and a resummation of the perturbation
expansion in u is necessary.

The situtation becomes worse at higher orders in u. As suggested by (10.34), the
perturbation series for 1/(sχ) is actually in powers of u/s(4−D)/2, and so each succes-
sive term diverges more strongly as s→ 0. Thus, the present perturbative analysis is
unable to describe the vicinity of the critical point for D < 4. This problem is cured by
a renormalization group treatment which the reader can find in the QPT book.

Problems

10.1 Use Wick’s theorem to obtain (10.29) from the first term in (10.15). Also, obtain
the terms to u2 for the M-component ϕ 4 field theory from the last two terms in
(10.15).
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11 Relativistic Scalar Field: Correlation Functions

The connection between correlation functions in imaginary and real time is devel-
oped using spectral representations and the fluctuation–dissipation theorem. The
linear response to external perturbations is described by the Kubo formula. These
general methods are illustrated by an application to the ordering quantum phase
transition of a scalar field in two spatial dimensions. Quasiparticles are argued to be
absent at the quantum critical point.

The relativistic scalar field theory was treated in Chapter 10 in imaginary time in D
spacetime dimensions. There was complete isotropy between space and time, and the
field theory examined was effectively a classical statistical mechanics problem in D
dimensions.

In this chapter we examine some of the consequences of this imaginary time theory
for the real-time and frequency correlation functions of a quantum system in d = D−1
spatial dimensions. This quantum system has a continuum Hamiltonian H, and the
field ϕα(x,τ) corresponds to an operator ϕα(x), which acts on the Hilbert space of the
Hamiltonian; this connection has been explored in much detail in the QPT book [233].
In particular, the two-point correlator of ϕα in D classical dimensions maps onto the
time-ordered correlation function

Cαβ (x,τ1;y,τ2) =

{ 1
ZTr

(
e−H/T ϕ̂α(x,τ1)ϕ̂β (y,τ2)

)
for τ1 > τ2,

1
ZTr

(
e−H/T ϕ̂β (y,τ2)ϕ̂α(x,τ1)

)
for τ1 < τ2,

(11.1)

where ϕ̂α(x,τ) is defined by imaginary-time evolution under theH:

ϕ̂α(x,τ)≡ eHτ ϕα(x)e−Hτ . (11.2)

This chapter describes the consequences of this mapping for the correlations of the
quantum system.

11.1 Spectral Representation

The first step in our analysis is to express C in (11.1) in the so-called spectral
representation.

122
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123 11.1 Spectral Representation

To clean up the notation, we will drop the spin components in (11.1) because they
play no essential role, and consider the case M = 1. Because the correlator in (11.1)
is periodic in time with period 1/T , it is useful to define its Fourier transform at the
“Matsubara” frequency ωn, which must be an integer multiple of 2πT , ωn = 2πnT , by

χ(x,ωn)≡
∫ 1/T

0
dτeiωnτC(x,τ;0,0)

=
1
Z

∫ 1/T

0
dτeiωnτTr

(
e−H/T ϕ̂(x,τ)ϕ̂(0,0)

)
,

(11.3)

where we have used spatial and temporal translation invariance to set the arguments
of the second ϕ̂ at the origin of spacetime.

Now imagine we know all the eigenstates and eigenenergies of the continuum quan-
tum Hamiltonian H. In general, these states occupy a continuum of energies, but by
placing the field theory in a d-dimensional cubic box of size L (we will eventually take
L→ ∞) we can obtain a discrete spectrum in which the exact eigenstates are labeled
by the index m. Thus, a complete set of orthonormal eigenstates is |m⟩, and their
eigenenergies are m. These eigenstates satisfy the completeness identity:

∑
m
|m⟩⟨m|= 1̂, (11.4)

where 1̂ is the identity operator. We now insert this identity before and after the first ϕ̂
operator to obtain

χ(x,ωn) = ∑
m,m′

⟨m′|ϕ(x)|m⟩⟨m|ϕ(0)|m′⟩
Z

∫ 1/T

0
dτe(iωn−Em+Em′ )τ−Em′/T

=
1
Z ∑

m,m′
⟨m′|ϕ(x)|m⟩⟨m|ϕ(0)|m′⟩

(
e−Em/T − e−Em′/T

)
(iωn−Em +Em′)

; (11.5)

in the last step we used the fact that eiωn/T = 1 at all Matsubara frequencies. We can
now write this in its final form, known as the spectral representation:

χ(x,ωn) =
∫ ∞

−∞

dΩ
π

ρ(x,Ω)

Ω− iωn
, (11.6)

where the spectral density ρ(x,Ω) is given by (see also (2.25) for the Fermi liquid)

ρ(x,Ω)≡ π
Z ∑

m,m′
⟨m′|ϕ(x)|m⟩⟨m|ϕ(0)|m′⟩

× (e−Em′/T − e−Em/T )δ (Ω−Em +Em′). (11.7)

This spectral density is the key quantity connecting various correlation functions both
in real and imaginary time. Indeed once we know the spectral density, we can eas-
ily obtain all needed correlation functions. In particular, from (11.6) we immediately
obtain the correlation function at the Matsubara frequencies of imaginary time. The
inverse problem is much more difficult: from a knowledge of χ(x,ωn) at all ωn, it is not
easy to find ρ(x,Ω). Indeed, this problem is ill-posed: very small errors in the values of
χ(x,ωn) lead to large errors in ρ(x,Ω). However, when exact analytic expressions for
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124 11 Relativistic Scalar Field: Correlation Functions

χ(x,ωn) are available, it is possible to determine ρ(x,Ω); we will use this method on a
number of occasions.

11.1.1 Structure Factor

Let us now turn to correlation functions in real time, t, which are directly observable
in the laboratory. We define time evolution of operators in the Heisenberg picture by
(compare (11.2))

ϕ̂α(x, t)≡ eiHtϕα(x)e−iHt . (11.8)

Then the real-time analog of (11.1) is the correlation function

C̃αβ (x, t;x′, t ′) =
1
Z

Tr
(

e−H/T ϕ̂α(x, t)ϕ̂β (x
′, t ′)

)
, (11.9)

As above, we drop the indices α,β below, and deal only with the case M = 1.
The dynamic structure factor S(k,ω) is defined by a Fourier transform of the real-

time correlation (compare (11.3):

S(k,ω) =
∫

ddx
∫ ∞

−∞
dtC̃(x, t;x′, t ′)e−ik·(x−x′)+iω(t−t ′). (11.10)

Notice that the time integration extends over all real values of t, unlike the limited
domain between 0 and 1/T for imaginary time. Also, there is no time-ordering above,
unlike in (11.1).

The dynamic structure factor is the quantity naturally measured in scattering exper-
iments, such as neutron, X-ray, or light scattering of solid-state systems. This becomes
clear from the spectral representation. Proceeding as in (11.5) by repeated insertions
of the identity (11.4), it is easy to show that

S(k,ω) =
2π
ZV ∑

m,m′
e−Em′/T |⟨m′|ϕ(k)|m⟩|2δ (ω−Em +Em′), (11.11)

where V is the volume of the system and ϕ(k) is the spatial Fourier transform of the
operator ϕ(x). The expression (11.11) has the structure of a transition rate computed
using Fermi’s golden rule. The system is initially in the state |m′⟩with the thermal prob-
ability e−Em′/T/Z; an external perturbation (the incoming photon or neutron) couples
linearly to the operator ϕ(k), and (11.11) computes the transition probability per unit
time to the final state |m⟩. The result is clearly proportional to the Born scattering
cross section of the photon or neutron with momentum transfer k and energy transfer
ω . Note that we are only making the Born approximation on the coupling between
the probe and the system; in principle, (11.11) treats all interactions within the system
exactly.

Comparing the expression (11.11) with the spectral density (11.7), we obtain the
exact identity

S(k,ω) =
2

1− e−ω/T ρ(k,ω), (11.12)
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125 11.1 Spectral Representation

where ρ(k,ω) is the spatial Fourier transform of ρ(x,ω). This is the first of our needed
connections between real and imaginary time correlations, relating the dynamic struc-
ture factor to the spectral density, which in turn determines the correlator at the
imaginary Matsubara frequencies by (11.6). The identity (11.12) is one statement of
the “fluctuation–dissipation” theorem, and the reason for this terminologywill become
clearer in the following subsection.

11.1.2 Linear Response

Nowwe consider another experimentally useful quantity: the time-dependent response
to an external perturbation. For simplicity, we consider an external time- and space-
dependent “field” hα(x, t) that couples linearly to the field operator ϕ(x), and so
changes the Hamiltonian by

H→H−
∫

ddxϕα(x)hα(x, t). (11.13)

Because of the presence of hα(x, t), all observables will now have space and time
dependence, and the system will no longer be in thermal equilibrium. We would like
to compute the change in the observables from equilibrium to linear order in hα(x, t).
This is given by a very general expression known as the Kubo formula. Without any
specific knowledge ofH, we can write the shift away from equilibrium for an arbitrary
observable O(x) in the following form:

δ ⟨O(x)⟩(t) =
∫

ddx′
∫ ∞

−∞
dt ′χOα(x− x′, t− t ′)hα(x′, t ′), (11.14)

where the initial δ indicates “change due to an external field,” and the expectation value
on the left-hand side is evaluated in the densitymatrix describing the state of the system
in the presence of h. The coefficient on the right-hand-side is the dynamic susceptibility
χ ; it is a characteristic of H in the absence of h, and so it is invariant under time and
space translations. Finally, the expression (11.14) must obey the important constraint
of causality:

χ(x, t) = 0 for t < 0 (11.15)

because the response can only depend upon the values of h at earlier times. This
identifies χ as the so-called “retarded” response function.

The Kubo formula is a general result for the susceptibility χ . Its derivation involves
a simple exercise in first-order time-dependent perturbation theory. We start from an
initial thermal state described by a density matrix exp(−H/T )/Z, and compute its
evolution under the change (11.13) by integrating the equations of motion to first order
in h. Such a computation leads to the main result:

χOα(x− x′, t− t ′) = iθ(t− t ′)
1
Z

Tr
(

e−H/T [Ô(x, t), ϕ̂α(x′, t ′)]
)
, (11.16)

where θ(t) is the unit step function,H is the Hamiltonian in the absence of h, and the
time evolution of the operators is specified as in (11.8).
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126 11 Relativistic Scalar Field: Correlation Functions

For our subsequent analysis we focus on the observableO= ϕ , and drop the α index
by considering M = 1. Then the susceptibility of interest is

χ(x− x′, t− t ′) = iθ(t− t ′)
1
Z

Tr
(

e−H/T [ϕ̂(x, t), ϕ̂(x′, t ′)]
)
. (11.17)

It is useful to consider this susceptibility inmomentum and frequency space by defining

χ(k,ω) =
∫

ddx
∫ ∞

0
dt χ(x, t)e−ik·x+iωt . (11.18)

Note the limits on the time integration, which are a consequence of (11.16). Because
of these limits, if we consider ω as a complex number, the integral in (11.18) is well
defined for ω in the upper half-plane. The oscillatory factor eiωt becomes a decaying
exponential for ω in the upper half-plane, and so the integral (11.18) converges. The
function χ(k,ω) is therefore an analytic function of ω in the upper half-plane, and
we define its value on the real ω axis by analytic continuation from the upper half-
plane. Alternatively stated, we map ω → ω + iη , where η is a small positive number,
at intermediate stages of the computation, and take the limit η → 0 at the end; this
procedure leads to convergent results at all stages.

Let us nowobtain a spectral representation of (11.17) and (11.18) as before.We insert
(11.4) around the ϕ operators, and perform the Fourier transform to obtain

χ(k,ω) =
1
ZV ∑

m,m′
|⟨m′|ϕ(k)|m⟩|2

(
e−Em′/T − e−Em/T

)
ω + iη−Em +Em′

(11.19)

in the limit η → 0+. Now comparing (11.19) with (11.7), we obtain our main result:

χ(k,ω) =
∫ ∞

−∞

dΩ
π

ρ(k,Ω)

Ω−ω− iη
, (11.20)

connecting the retarded response function to the spectral density. The relations (11.6),
(11.12), and (11.20) are the key results of this section, connecting the spectral density
to the imaginary-time correlations, the real-time dynamic structure factor and retarded
susceptibility. Also note that χ(k,ω = 0)≡ χ(k) is the static susceptibility.

A key feature of our results is the close similarity between (11.6) and (11.20).
They show that the imaginary-time susceptibility χ(k, iωn) and the retarded response
function χ(k,ω) are part of the same analytic function χ(k,z) defined by

χ(k,z) =
∫ ∞

−∞

dΩ
π

ρ(k,Ω)

Ω− z
(11.21)

for a general complex frequency z. For z = iωn on the imaginary axis, χ(k,z) is the
imaginary-time correlation at the Matsubara frequencies. And for z = ω + iη , just
above the real axis, we obtain the retarded response functions of the Kubo formula.
Thus, we can map the imaginary-time correlation to the retarded response function
by analytic continuation. Also, our notation for the frequency argument of χ , ωn

vs. ω , will implicitly determine whether we are considering response functions on the
imaginary or real axis.

https://doi.org/10.1017/9781009212717.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.012


127 11.2 Correlations across the Quantum Critical Point

For the case where theKubo formula like (11.17) involving the commutator of a field
with its Hermitian conjugate, the associated spectral density ρ(x,Ω) in (11.7) is real.
Then we can write (11.20) as

ρ(k,ω) = Imχ(k,ω) =
(1− e−ω/T )

2
S(k,ω), (11.22)

where we used (11.12). The structure factor on the right-hand side is a measure of
fluctuations of the field ϕ , while Imχ(k,ω) measures the response of ϕ which is out of
phase with the applied field (from (11.14)). As in the damped harmonic oscillator, it
is the out-of-phase component that measures the energy absorbed by the system from
the external field, thus justifying the name “fluctuation–dissipation” theorem.

11.2 Correlations across the Quantum Critical Point

Let us recall the field theory

Sϕ =

∫
dDx

{
1
2

[
(∇xϕα)

2 + rϕ 2
α(x)

]
+

u
4!
(
ϕ 2

α(x)
)2
}
, (11.23)

where D = d + 1 is the number of spacetime dimensions, and α = 1, . . . ,M. The
superfluid–insulator transition in (8.21) at K1 = 0 corresponds to the case M = 2, and
the superfluid order parameter is ΨB ∼ ϕ1 + iϕ2 We are interested in the nature of
the spectrum as the field theory is tuned from the superfluid to the insulator with r
increasing across the quantum critical point at r = rc. The M = 3 case of this theory
describes the pressure-induced quantum phase transition in TlCuCl3 that we discussed
in Section 1.2.

11.2.1 Insulator

The insulator is present for large and positive r, and here we just use a perturbation
theory in u. We compute the correlation function

χ(k) =
∫

dDx⟨ϕα(x)ϕα(0)⟩e−ikx. (11.24)

At leading order in u, this is simply χ(k) = 1/(k2 + r). Analytically continuing this
to the quantum theory in d dimensions, we map k2 → c2k2−ω2, and so obtain the
retarded response function

χ(k,ω) =
1

c2k2 + r− (ω + iη)2 . (11.25)

Taking its imaginary part, we have the spectral density

ρ(k,ω) =
A

2εk
[δ (ω− εk)−δ (ω + εk)] , (11.26)
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128 11 Relativistic Scalar Field: Correlation Functions

where

εk = (c2k2 + r)1/2 (11.27)

is the dispersion, and we have introduced a “quasiparticle residue” A = 1. Thus, the
spectrum consists of M = 2 “particles,” and these correspond to the particle and hole
excitations of the Mott insulator.

Now let us move beyond the Gaussian theory, and look at perturbative correc-
tions in u. This is represented by the self-energy diagrams in Fig. 10.4. After analytic
continuation, we can write the susceptibility in the form

χ(k,ω) =
1

c2k2 + r− (ω + iη)2−Σ(k,ω)
. (11.28)

We continue to identify the position of the pole of χ(k,ω) (if present) as a function of
ω as a determinant of the spectrum of the quasiparticle, and the residue of the pole as
the quasiparticle residueA. The real part of the self-energy Σ(k,ω)will serve to modify
the quasiparticle dispersion relation, and the value of A, but will not remove the pole
from real ω axis. To understand the possible decay of the quasiparticle, we need to
consider the imaginary part of the self-energy.

From rather general arguments (in the next paragraph), it is possible to see that

ImΣ(k,ω = εk) = 0 (11.29)

at T = 0. Compare this to the result (2.38), which holds only in the limit of vanishing
frequency; here it holds for a finite range of momentum and frequency. This can be
explicitly verified by a somewhat lengthy evaluation of the diagrams in Fig. 10.4, and
an analytic continuation of the result. An immediate consequence is that the dynamic
susceptibility has a delta-function contribution, which is given exactly by (11.26). All
the higher-order corrections only serve to renormalize r, and reduce the quasiparticle
residue A from unity; the dispersion relation continues to retain the form in (11.27)
by relativistic invariance. The stability of the delta function reflects the stability of the
single quasiparticle excitations; a quasiparticle with momentum k not too large cannot
decay into any other quasiparticle state and still conserve energy and momentum.

However, Σ(k,ω) does have somemore interesting consequences at higher ω . We can
view ω as the energy inserted by ϕ into the ground state, and so far we have assumed
that this energy can only create a quasiparticle with energy εk, which has a minimum
energy of r. Only for ω > pr, with p an integer, can we expect the creation of p particle
states. The global O(M) symmetry actually restricts p to be odd, and so the lowest-
energy multi-particle states that will appear in χ are at ω = 3r. Consonant with this,
we find that the self-energy acquires a non-zero imaginary part at zeromomentum only
for ω > 3r, which means there is a threshold for three-particle creation at ω = 3r. The
form of ImΣ(0,ω) at the threshold runs out to

ImΣ(0,ω) ∝ sgn(ω)θ(|ω|−3r)(|ω|−3r)(d−1) (11.30)

for ω around 3r. Taking the imaginary part of (11.28), we obtain the generic form of
the spectral density shown in Fig. 11.1.
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129 11.2 Correlations across the Quantum Critical Point

tFigure 11.1 The spectral density in the paramagnetic phase atT = 0 and a small k. Shown are a quasiparticle delta function at
ω = εk and a three-particle continuum at higher frequencies. There are additional n-particle continua (n≥ 5 and
odd) at higher energies, which are not shown.

We now present a simple physical argument for the nature of the threshold singu-
larity in Eq. (11.30). Just above threshold, we have a particle with energy 3r+δω that
decays into three particles with energies just above r. The particles in the final state will
also have a small momentum, and so we can make a non-relativistic approximation for
their dispersion: r + c2k2/(2r). Because the rest mass contributions, r, add up to the
energy of the initial state, we can neglect from now. The decay rate, by Fermi’s golden
rule is proportional to the density of final states, which yields

ImΣ(0,3r+δω) ∝

∫ δω

0

dΩ1dΩ2

∫
dd p
(2π)d

ddq
(2π)d δ

(
Ω1−

c2 p2

2
√

r

)
×δ

(
Ω2−

c2q2

2
√

r

)
δ
(

δω−Ω1−Ω2−
c2(p+q)2

2
√

r

)
∼ (δω)(d−1), (11.31)

in agreement with (11.30). We expect this perturbative estimate of the threshold
singularity to be exact in all d ≥ 2.

11.2.2 Quantum Critical Point

Evaluation of the susceptibility of the classical field theory (11.23) at its critical point
r = rc requires a sophisticated resummation of perturbation theory in u using the renor-
malization group (RG). To order u2, at the renormalized critical point, perturbation
theory in dimension D = 4 shows that

χ(k) =
1
k2

(
1−C1u2 ln

(
Λ
k

)
+ · · ·

)
(11.32)

where Λ is a high momentum cutoff, and C1 is a positive numerical constant. The RG
shows that for D < 4 we should exponentiate this series to

χ(k)∼ 1
k2−η , (11.33)
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130 11 Relativistic Scalar Field: Correlation Functions

tFigure 11.2 The spectral density at the quantum critical point. Note the absence of a quasiparticle pole, like that in Fig. 11.1.

where η > 0 is the so-called universal anomalous dimension. Precise computations of
the value of η are now available for many critical points, including the M = 2 case of
the field theory (11.23).

For the quantum critical point, we analytically continue the classical critical-point
result in (11.33) to obtain the dynamic susceptibility at the quantum critical point at
T = 0:

χ(k,ω)∼ 1
(c2k2−ω2)1−η/2 . (11.34)

The key feature contrasting this result from (11.25) is that this susceptibility does not
have poles on the real frequency axis. Rather, there are branch cuts going out from
ω =±ck to infinity. Taking the imaginary part, we obtain a continuous spectral weight
at |ω|> ck:

Imχ(k,ω)∼ sgn(ω)θ(|ω|− ck)
(ω2− c2k2)1−η/2 ; (11.35)

see Fig 11.2. The absence of a pole indicates that there are no well-defined quasipar-
ticle excitations. Instead, we have a dissipative continuum of critical excitations at all
|ω|> ck; any perturbation will not create a particle-like pulse, but decay into a broad
continuum. This is a generic property of a strongly coupled quantum critical point.
Further discussion of the physics of quantum states of matter without quasiparticle
excitations appears in Chapters 32 and 34.

More generally, we can use scaling to describe the evolution of the spectrum as r
approaches the critical point at r = rc from the insulating phase at T = 0. Because of the
relativistic invariance, the energy gap ∆∼ ξ−z with z = 1, where the correlation length
ξ diverges as in the classical model ξ ∼ (r− rc)

−ν (these are definitions of the criti-
cal exponents z and ν). In terms of ∆, scaling arguments imply that the susceptibility
obeys

χ(k,ω) =
1

∆2−η F̃
(

ck
∆
,

ω
∆

)
(11.36)

for some scaling function F̃ . In the insulating phase, the M quasiparticles have
dispersion εk = (c2k2 + ∆2)1/2 (the momentum dependence follows from relativistic
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131 11.2 Correlations across the Quantum Critical Point

invariance). Comparing (11.36) with (11.26), we see that the two expressions are
compatible if the quasiparticle residue scales as

A∼ ∆η ; (11.37)

so the quasiparticle residue vanishes as we approach the quantum critical point. Above
the quasiparticle pole, the susceptibility of the paramagnetic phase also has p-particle
continua having thresholds at ω = (c2k2 + p2∆2)1/2, with p ≥ 3 and p odd. As ∆→ 0
upon approaching the quantum critical point, these multi-particle continua merge to
a common threshold at ω = ck to yield the quantum critical spectrum in (11.35).

11.2.3 Superfluid State

Now r < rc, and we have to expand about the ordered saddle point with ϕα = N0δα,1,
where

N0 =

√
−6r

u
. (11.38)

So we write

ϕα(x) = N0δα,1 + ϕ̃α(x) (11.39)

and expand the action in powers of ϕ̃α .
The first important consequence of the superfluid order is that the dynamic structure

factor

S(k,ω) = N2
0 (2π)d+1δ (ω)δ d(k)+ · · · , (11.40)

where the ellipsis represents contributions at non-zero ω . This delta function is related
to that in (3.22), and is easily detectable in elastic neutron scattering as a clear signature
of the presence of superfluid long-range order.

We nowdiscuss the finite ω contributions to (11.40).We assume the orderedmoment
is oriented along the α = 1 direction. From Gaussian fluctuations about the saddle
point of (11.23) we obtain susceptibilities that are diagonal in the spin index, with the
longitudinal susceptibility (see Fig. 11.3)

χ11(k,ω) =
1

c2k2− (ω + iη)2 +2|r|
, (11.41)

and the transverse susceptibility

χαα(k,ω) =
1

c2k2− (ω + iη)2 , α > 1. (11.42)

The pole in the transverse susceptibility is the gapless “spin-wave” excitation, corre-
sponding to the phonon excitation of the Bose gas in (3.16). The pole in the longtudinal
susceptibility yields a gapped massive particle with mass-squared equal to 2|r|; this
is an analog of the Higgs particle of particle physics. However, this massive particle
can decay into multiple spin-wave excitations, and ultimately the Higgs excitation is
overdamped [206].
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Spin wave

Amplitude
or “Higgs”tFigure 11.3 Energy as a function of the ϕα field forM = 2. The filled circle indicates one possible ground state. The transverse

susceptibility yields a gapless spin-wave mode, while the longitudinal susceptibility is associated with amplitude or
“Higgs” excitations.

Problem

11.1 Obtain a more precise version of (11.31) from the order u2 expression for Σ
which follows from (10.15). Write each propagator using a spectral representation,
perform the frequency integrals, and then take the imaginary part.
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12 Fermions and Bosons in One Spatial Dimension

The theory of weakly interacting Fermi and Bose gases in one dimension is pre-
sented. Gapless phases are described by the Tomonaga–Luttinger liquid theory of
a gapless scalar, and its instabilities are obtained via a sine-Gordon field theory. The
bosonization relations between relativistic fermions andbosons in one dimension are
obtained.

The theory of the weakly interacting Fermi gas in Chapter 2 and the theory of the
weakly interacting Bose gas in Chapter 3 are faithful representations of the low-energy
quantum physics only in spatial dimensions d ≥ 2. These theories fail for arbitrary
weak interactions in the special case of d = 1, as described in this chapter. This one-
dimensional failure was long considered of academic interest only, but has since found
numerous important experimental applications with the advances in nano-scale exper-
iments. Moreover, as we will see in Parts II and IV, the one-dimensional theory also
applies to the edges of numerous interesting two-dimensional systems.

Remarkably, weakly interacting bosons and fermions realize essentially the same
phase of quantum matter [165], often called the Luttinger liquid (or the Tomonaga–
Luttinger liquid). This is a gapless state of matter, described at the lowest energies by
a simple theory: massless, free, relativistic, scalar fields representing density or phase
fluctuations. The physical Fermi and bose field operators can be written as exponential
“vertex” operators in terms of these massless scalar fields, and this non-trivial con-
nection leads to novel structures in the observable correlation function. Formally, the
spectral functions of many observable operators turn out to have a structure similar to
that we encountered at the superfluid–insulator quantum critical point in d = 2 in Sec-
tion 11.2.2. However, this superficial similarity should not obscure a crucial physical
difference: the d = 2 superfluid–insulator quantum critical point has no quasiparti-
cle excitations, whereas all low–energy states of a Luttinger liquid can be described
in terms of the free quasiparticle excitations of the massless scalar field. The novel
behavior of a Luttinger liquid arises entirely from the non-trivial connection between
the physical observables and the quasiparticle operators, and not from the absence of
quasiparticles.

We begin in Section 12.1 by considering free fermions in one dimension, and describe
their mapping to the theory of relativistic free scalars. We turn to the theory of inter-
acting fermions in Section 12.2, and that of interacting bosons in Section 12.3. In
both cases, we find situations in which a finite interaction strength can lead to a phase
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134 12 Fermions and Bosons in One Spatial Dimension

transition to a gapped insulating phase, with similarities to the superfluid–insulator
transition on bosons studied in Chapter 8.

12.1 Non-interacting Fermions

We start with a continuum Fermi field, ΨF(x), and expand it in terms of its right- and
left-moving components near the two Fermi points:

ΨF(x) = eikF xΨR(x)+ e−ikF xΨL(x). (12.1)

The Fermi wavevector, kF , is related to the fermion density, ρ0, by kF = πρ0. We lin-
earize the fermion dispersion about the Fermi points in terms of a Fermi velocity νF ,
and then the dynamics of ΨR,L is described by the simple Hamiltonian

HFL =−iνF

∫
dx
(

Ψ†
R

∂ΨR

∂x
−Ψ†

L
∂ΨL

∂x

)
, (12.2)

which corresponds to the imaginary-time Lagrangian LFL

LFL = Ψ†
R

(
∂

∂τ
− iνF

∂
∂x

)
ΨR +Ψ†

L

(
∂

∂τ
+ iνF

∂
∂x

)
ΨL. (12.3)

We will examine LFL a bit more carefully and show, somewhat surprisingly, that it can
also be interpreted as a theory of free relativistic bosons. The mapping can be rather
precisely demonstrated by placing LFL on a system of finite length L. We choose to
place antiperiodic boundary conditions of the Fermi fields ΨL,R(x+ L) = −ΨL,R(x);
this arbitrary choice will not affect the thermodynamic limit L→∞, which is ultimately
all we are interested in. We can expand ΨL,R in Fourier modes

ΨR(x) =
1√
L

∞

∑
n=−∞

ΨRnei(2n−1)πx/L, (12.4)

and similarly for ΨL. The Fourier components obey canonical Fermi commutation
relations {ΨRn,Ψ†

Rn′}= δnn′ and are described by the simple Hamiltonian

H̃R =
πνF

L

∞

∑
n=−∞

(2n−1)Ψ†
RnΨRn−E0, (12.5)

where E0 is an arbitrary constant setting the zero of energy, whichwe adjust tomake the
ground-state energy of H̃R exactly equal to 0; very similar manipulations apply to the
left-movers ΨL. The ground state of H̃R has all fermions states with n > 0 empty, while
those with n≤ 0 are occupied. We also define the total fermion number (“charge”), QR,
of any state by the expression as

QR = ∑
n

: Ψ†
RnΨRn :, (12.6)

and similarly for QL. The colons are the so-called normal-ordering symbol – they
simply indicate that the operator enclosed between them should include a c-number
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135 12.1 Non-interacting Fermions

subtraction of its expectation value in the ground state of H̃R, which of course ensures
that QR = 0 in the ground state. Note that QR commutes with H̃R and so we need only
consider states with definite QR, which allows us to treat QR as simply an integer. The
partition function, ZR, of H̃R at a temperature T is then easily computed to be

ZR =
∞

∏
n=1

(1+q2n−1)2, (12.7)

where

q≡ e−πνF/T L. (12.8)

The square in (12.7) arises from the precisely equal contributions from the states with
n and −n+1 in (12.5) after the ground-state energy E0 has been subtracted out.

We provide an entirely different interpretation of the partition function ZR. Instead
of thinking in terms of occupation numbers of individual fermion states, let us focus
instead on particle–hole excitations. We create a particle–hole excitation of “momen-
tum” n > 0 above any fermion state by taking a fermion in an occupied state n′ and
moving it to the unoccupied fermion state n′+n. Clearly, the energy change in such a
transformation is 2nπνF/L and is independent of the value of n′. This independence on
n′ is a crucial property and is largely responsible for the results that follow. It is a con-
sequence of the linear fermion dispersion in (12.3), and of being in d = 1. We interpret
the creation of such a particle–hole excitation as being equivalent to the occupation
of a state with energy 2nπνF/L created by the canonical boson operator b†

Rn. We can
place an arbitrary number of bosons in this state, and we now show how this is com-
patible with the multiplicity of the particle–hole excitations that can be created in the
fermionic language.

The key observation is that there is a precise one-to-one mapping between the
fermionic labeling of the states and those specified by the bosons creating particle–hole
excitations. Take any fermion state, |F⟩, with an arbitrary set of fermion occupation
numbers and charge QR. We uniquely associate this state with a set of particle–hole
excitations above a particular fermion state that we label |QR⟩; this is the state with
the lowest possible energy in the sector of states with charge QR, that is, |QR⟩ has all
fermion states with n≤ QR occupied and all others unoccupied. The energy of |QR⟩ is

πνF

L

|QR|

∑
n=1

(2n−1) =
πνF Q2

R
L

. (12.9)

To obtain the arbitrary fermion state, |F⟩, with charge QR, we first take the fermion in
the “topmost” occupied state in |QR⟩, (i.e., the state with n = QR) and move it to the
topmost occupied state in |F⟩ (see Fig. 12.1). We perform the same operation on the
fermion in n = QR− 1 by moving it to the next lowest occupied state in |F⟩. Finally,
we repeat until the state |F⟩ is obtained. This order of occupying the boson particle–
hole excitations ensures that the b†

Rn act in descending order in n. Such an ordering
allows one to easily show that the mapping is invertible and one to one. Given any set
of occupied boson states {n} and a charge QR, we start with the state |QR⟩ and act on
it with the set of Bose operators in the same descending order; their ordering ensures
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136 12 Fermions and Bosons in One Spatial Dimension

tFigure 12.1 Sequence of particle–hole excitations (bosons bRn) by which one can obtain an arbitrary fermion state |F⟩ from the
state |QR⟩, which is the lowest energy state with chargeQR. The filled (open) circles represent occupied
(unoccupied) fermion states with energies that increase in units of 2πνF/L to the right. The arrows represent
bosonic excitations, bRn, with the integer representing the value of n. Note that the bosons act in descending order in
energy upon the descending sequence of occupied states in |QR⟩.

that it is always possible to create such particle–hole excitations from the fermionic
state, and one is never removing a fermion from an unoccupied state or adding it to
an occupied state. The gist of these simple arguments is that the states of the many-
fermion Hamiltonian H̃R in (12.5) are in one-to-one correspondence with the many-
boson Hamiltonian

H̃ ′R =
πνF Q2

R
L

+
2πνF

L

∞

∑
n=1

nb†
RnbRn, (12.10)

where QR can take an arbitrary integer value. It is straightforward to compute the
partition function of H̃ ′R and we find

Z′R =

[
∞

∏
n=1

1
(1−q2n)

][
∞

∑
QR=−∞

qQ2
R

]
. (12.11)

Our pictorial arguments above prove that we must have ZR = Z′R. That this is the case
is an identity from the theory of elliptic functions. (The reader is invited to verify that
the expressions (12.7) and (12.11) generate identical power-series expansions in q.)

12.1.1 Tomonaga−Luttinger Liquid Theory

The above gives an appealing picture of bosonization at the level of states and energy
levels, but we want to extend it to include operators, and obtain expressions for
the bosonized Hamiltonian in a continuum formulation. From the action of the bRn

operator on the fermion states, we can anticipate that it may be proportional to the
Fourier components of the fermion density operator. So we consider the operator
ρR(x) representing the normal-ordered fermion density:

ρR(x) =: Ψ†
R(x)ΨR(x) :=

QR

L
+

1
L ∑

n̸=0
ρRnei2nπx/L, (12.12)

where the last step is a Fourier expansion of ρR(x); the zero wavevector component
is QR/L, while non-zero wavevector terms have coefficient ρRn. The commutation
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137 12.1 Non-interacting Fermions

relations of the ρRn are central to our subsequent considerations and require careful
evaluation; we have

[ρRn,ρR−n′ ] = ∑
n1,n2

[
Ψ†

Rn1
ΨRn1+n,Ψ†

Rn2
ΨRn2−n′

]
= ∑

n2

(
Ψ†

Rn2−nΨRn2−n′ −Ψ†
Rn2

ΨRn2+n−n′
)
. (12.13)

It may appear that a simple change of variables in the summation over the second term
in (12.13) (n2→ n2 − n) shows that it equals the first, and so the combined expression
vanishes. However, this is incorrect because it is dangerous to change variables on
expressions that involve the summation over all integer values of n2 and are therefore
individually divergent; rather, we should first decide upon a physically motivated large-
momentum cutoff that will make each term finite and then perform the subtraction.
We know that the linear spectrum in (12.5) holds only for a limited range of momenta
and, for sufficiently large |n|, lattice corrections to the dispersion will become impor-
tant. However, in the low-energy limit of interest here, the high fermionic states at
such momenta will be rarely, if ever, excited from their ground-state configurations.
We can use this fact to our advantage by explicitly subtracting the ground-state expec-
tation value (“normal-order”) from every fermionic bilinear operator we consider; the
fluctuations will then be practically zero for the high-energy states in both the linear
spectrum model (12.5) and the actual physical systems, and only the low-energy states,
where (12.5) is actually a good model, will matter. After such normal ordering, the
summation over both terms in (12.12) is well defined and we are free to change the
summation variable. As a result, the normal-ordered terms then do indeed cancel, and
the expression (12.13) reduces to the subtraction needed to normal order the terms

[ρRn,ρR−n′ ] = δnn′∑
n2

(〈
Ψ†

Rn2−nΨRn2−n
〉
−
〈
Ψ†

Rn2
ΨRn2

〉)
= δnn′n. (12.14)

This key result shows that the only non-zero commutator is between ρRn and ρR−n and
that it is simply the number n. By a suitable rescaling of the ρRn it should be evident
that we can associate themwith canonical bosonic creation and annihilation operators.
We do no do this explicitly but simply work directly with the ρRn as a set of operators
obeying the defining commutation relation (12.14), without making explicit reference
to the fermionic relation (12.12).We assert that theHamiltonians H̃R, H̃ ′R are equivalent
to

H̃ ′′R =
πνF Q2

R
L

+
2πνF

L

∞

∑
n=1

ρR−nρRn. (12.15)

This assertion is simple to prove. First, it is clear from the commutation relations
(12.14) that the eigenvalues and degeneracies of (12.15) are the same as those of (12.10).
Second, the definition (12.15) and the commutation relations (12.14) imply that

[H̃ ′′R ,ρR−n] =
2πνF n

L
ρR−n. (12.16)
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138 12 Fermions and Bosons in One Spatial Dimension

Precisely the same commutation relation follows from the fermionic form (12.5) and
the definition (12.12).

We can now perform the same analysis on the left-moving fermions. The expressions
corresponding to (12.4), (12.5), (12.12), (12.14), and (12.15) are

ΨL(x) =
1√
L

∞

∑
n=−∞

ΨLnei(2n−1)πx/L, (12.17)

H̃L =−πνF

L

∞

∑
n=−∞

(2n−1)Ψ†
LnΨLn−E0, (12.18)

ρL(x) =: Ψ†
L(x)ΨL(x) :=

QL

L
+

1
L ∑

n̸=0
ρLnei2nπx/L, (12.19)

[ρLn,ρL−n′ ] =−δnn′n. (12.20)

H̃ ′′L =
πνF Q2

L
L
− 2πνF

L

∞

∑
n=1

ρLnρL−n. (12.21)

We have now completed a significant part of the bosonization program. We have the
“bosonic” Hamiltonian in (12.15) in terms of the operators ρRn, which obey (12.14),
and we also have the simple explicit relation (12.12) to the fermionic fields (along with
the corresponding expressions for the left-movers above). Before proceeding further,
we introduce some notation that will allow us to recast the results obtained so far in
a compact, local, and physically transparent notation. We combine the operators ρRn

and ρLn (the Fourier components of the left-moving fermions ΨL) into two local fields
ϕ(x) and θ(x), defined by

ϕ(x) = −ϕ0 +
πQx

L
− i

2 ∑
n̸=0

ei2nπx/L

n
[ρRn +ρLn] ,

θ(x) = −θ0 +
πJx

L
− i

2 ∑
n̸=0

ei2nπx/L

n
[ρRn−ρLn] ,

(12.22)

where Q=QR+QL is the total charge, J=QR−QL, and ϕ0 and θ0 are a pair of angu-
lar variables that are canonically conjugate to J and Q, respectively; that is, the only
non-vanishing commutation relations between the operators on the right-hand sides
of (12.22) are (12.14), [ϕ0,J] = i, and [θ0,Q] = i. For future use, it is also useful define

φR(x)≡ ϕ(x)+θ(x) , φL(x)≡ ϕ(x)−θ(x). (12.23)

From (12.22) it is clear that φR and φL are “chiral” fields, as they only involve operators
associated with the right- and left-moving fermions, respectively.

Our objective in introducing these operators is to produce a number of simple and
elegant results. First, using (12.22), and the commutators just noted, we have

[ϕ(x),∇θ(y)] = [θ(x),∇ϕ(y)] =−iπδ (x− y), (12.24)

https://doi.org/10.1017/9781009212717.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.013


139 12.1 Non-interacting Fermions

implying that −∇θ/π is canonically conjugate to ϕ , and −∇ϕ/π is canonically
conjugate to θ ; alternatively, we can write the unified form

[ϕ(x),θ(y)] = i
π
2
sgn(x− y). (12.25)

In terms of the chiral fields, the non-zero commutation relations are

[φR(x),φR(y)] = iπ sgn(x− y) , [φL(x),φL(y)] =−iπ sgn(x− y), (12.26)

whereas φR and φL commute with each other. For future applications, it is also useful
to express these commutation relations in terms of exponentials of the fields

eiαϕ(x)eiβθ(y) = eiβθ(y)eiαϕ(x) e−iαβ (π/2)sgn(x−y).

eiαφR(x)eiβφR(y) = eiβφR(y)eiαφR(x) e−iαβπsgn(x−y),

eiαφL(x)eiβφL(y) = eiβφL(y)eiαφL(x) eiαβπsgn(x−y). (12.27)

Second, (12.15) can now be written in the compact, local form

H̃ ′′R + H̃ ′′L =
νF

2π

∫ L

0
dx
[

1
K
(∇ϕ)2 +K(∇θ)2

]
, (12.28)

where the dimensionless coupling K has been introduced for future convenience; in the
present situation K=1, but we will see later that interactions lead to other values of K.
The expressions (12.28) and (12.24) can be taken as defining relations, and we could
have derived all the properties of the ρRn, ρLn, θ0, ϕ0 as consequences of the mode
expansions (12.22), which follow after imposition of the periodic boundary conditions

ϕ(x+L) = ϕ(x)+πQ, θ(x+L) = θ(x)+πJ. (12.29)

These conditions show that ϕ(x) and θ(x) are to be interpreted as angular variables
of period π. Our final version of the bosonic form of H̃R + H̃L in (12.5) is contained
in Eqns. (12.24), (12.28), and (12.29), and the two formulations are logically exactly
equivalent. The Hilbert space splits apart into sectors defined by the integers Q = QR+

QL, J =QR−QL, whichmeasure the total charge of the left- and right-moving fermions.
Note that

(−1)Q = (−1)J (12.30)

and so the periods of ϕ and θ are together even or odd multiples of π. In terms of
the chiral fields, this condition translates into φR and φL being angular variables with
period 2π. All fluctuations in each charge sector are defined by the fluctuations of the
local angular bosonic fields ϕ(x) and θ(x), or equivalently by the fermionic fields ΨR(x)
and ΨL(x).

We close this subsection by giving the general form of the effective action for a
Tomonaga–Luttinger liquid. The derivation above was limited to the case K = 1, but
we will see later that the generalization to K ̸= 1 describes a wide class of interacting,
compressible, quantum systems in one dimension. From the Hamiltonian (12.28) and
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the commutation relations (12.24) we can use the standard path-integral approach to
write down the imaginary-time action

ST L =
νF

2π

∫
dxdτ

[
(∇ϕ)2

K
+K(∇θ)2

]
− i

π

∫
dxdτ∇θ∂τ ϕ . (12.31)

From this action, we can integrate out θ to obtain an action for the ϕ field alone:

ST L =
1

2πKνF

∫
dxdτ

[
(∂τ ϕ)2 +ν2

F(∇ϕ)2]. (12.32)

This is just the action of a free, massless, relativistic scalar field. Conversely, we also
have a “dual” formulation of ST L in which we integrate out ϕ , and obtain the same
action for θ but with K→ 1/K

ST L =
K

2πνF

∫
dxdτ

[
(∂τ θ)2 +ν2

F(∇θ)2]. (12.33)

Finally, it is useful to express (12.31) in terms of the chiral fields φR and φL using (12.23)

ST L =
νF

8π

∫
dxdτ

[(
1
K
+K

)(
(∇φR)

2 +(∇φL)
2)

+ 2
(

1
K
−K

)
∇φR∇φL

]
− i

4π

∫
dxdτ [∇φR∂τ φR−∇φL∂τ φL] . (12.34)

The last kinematic “Berry phase” term reflects the commutation relations in (12.26).
Note that the left- and right-movers decouple only at K = 1, and that is the only case
with conformal invariance.

12.1.2 Operator Mappings

We are going to make extensive use of the fields ϕ(x), θ(x) in the following, and so their
physical interpretation will be useful. The meaning of ϕ follows from the derivative of
(12.22), which with (12.12) gives

∇ϕ(x) = πρ(x)≡ π(ρR(x)+ρL(x)). (12.35)

So the gradient of ϕ measures the total density of particles, and ϕ(x) increases by π
each time x passes through a particle. The expression (12.35) also shows that we can
interpret ϕ(x) as the displacement of the particle at position x from a reference state in
which the particles are equally spaced as in a crystal; that is, ϕ(x) is something like a
phonon displacement operator whose divergence is equal to the local change in density.
Turning to θ(x), one interpretation follows from (12.24), which shows that Πϕ (x) ≡
−∇θ(x)/π is the canonically conjugate momentum variable to the field ϕ(x). So Π2

ϕ
in the Hamiltonian is the kinetic energy associated with the “phonon” displacement
ϕ(x).
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A physical interpretation of θ is obtained by taking the gradient of (12.22), and we
obtain the analog of (12.35):

∇θ(x) = π(ρR(x)−ρL(x)); (12.36)

hence, gradients of θ measure the difference in density of right- and left-moving par-
ticles, that is, the current. Of course, we can combine (12.35) and (12.36) to obtain
expressions for the chiral fields separately:

∇φR(x) = 2πρR(x) , ∇φL(x) = 2πρL(x). (12.37)

Finally, to complete the connection between the fermionic and bosonic theories, we
need expressions for the single fermion annihilation and creation operators in terms of
the bosons. Here, the precise expressions are dependent upon the short-distance reg-
ularization, but these fortunately only affect overall renormalization factors. With the
limited aim of neglecting these non-universal renormalizations, the basic result can be
obtained by some simple general arguments. First, note that if we annihilate a particle
at the position x, from (12.35) the value of ϕ(y) at all y< x has to be shifted by π. Such a
shift is produced by the exponential of the canonically conjugate momentum operator
Πϕ :

exp
(
−iπ

∫ x

−∞
Πϕ (y)dy

)
= exp(iθ(x)) . (12.38)

However, it is not sufficient to merely create a particle. We are creating a fermion, and
the fermionic antisymmetry of the wavefunction can be accounted for if we pick up a
minus sign for every particle to the left of x, that is, with a Jordan–Wigner–like factor

exp
(

imπ
∫ x

−∞
Ψ†

F(y)ΨF(y)dy
)
= exp(imkF x+ imϕ(x)) , (12.39)

where m is any odd integer, and Ψ†
F ΨF measures the total density of fermions (see

(12.1)), including the contributions well away from the Fermi points. In the sec-
ond expression in (12.39), the term proportional to kF represents the density in the
ground state, while ϕ(x) is the integral of the density fluctuation above that. Com-
bining the arguments leading to (12.38) and (12.39) we can assert the basic operator
correspondence

ΨF(x) = ∑
m odd

AmeimkF x+imϕ(x)+iθ(x), (12.40)

where the Am are a series of unknown constants, which depend upon microscopic
details. We will see shortly that the leading contribution to (12.40) comes from the
terms with m =±1, and the remaining terms are subdominant at long distances. Com-
parison with (12.1) shows clearly that we may make the operator identifications for the
right- and left- moving continuum fermion fields

ΨR ∼ eiθ+iϕ , ΨL ∼ eiθ−iϕ . (12.41)

The other terms in (12.40) arise when these basic fermionic excitations are combined
with particle–hole excitations at wavevectors that are integer multiples of 2kF .
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In terms of the chiral fields, the operator correspondences separate simply into left-
and right-moving sectors, as they must:

ΨR ∼ eiφR , ΨL ∼ e−iφL . (12.42)

As an alternative to the above derivation, we can also obtain (12.42) by using the
commutation relations

[ρR(x),ΨR(y)] =−δ (x− y)ΨR(y),

[ρL(x),ΨL(y)] =−δ (x− y)ΨL(y). (12.43)

It can now be verified that (12.37) and (12.42), combined with the commutation
relations (12.26), are consistent with (12.43).

Actually, (12.42) is not precisely correct, but this will not be an issue in our subse-
quent discussion. From the commutation relations in (12.27) we can verify that ΨR(x)
and ΨR(x′) anti-commute with each other for x ̸= x′, which is precisely the relationship
expected for fermion operators (and similarly for ΨL). However, upon using (12.42)
with (12.27) we find that ΨR(x) commutes with ΨL(x′). This problem can be addressed
by introducing the so-called Klein factors

ΨR ∼ F1eiφR , ΨL ∼ F2e−iφL , (12.44)

which obey the anti-commutation relations FiFj =−FjFi for i ̸= j.
It is useful to recall here all the properties of the chiral theory, with only right-moving

fermions. Such a theory is “anomalous,” and cannot be realized in a one-dimensional
system on its own. However, it can be realized on the edge of a two-dimensional sys-
tem, as we will see in Chapter 19 on the integer quantum Hall effect, where we have
the “chiral Luttinger” theory described by the following expressions for right-moving
fermions and bosons

HCL =−iνF

∫ L

0
dxΨ†

R
∂ΨR

∂x

LCL = Ψ†
R

(
∂

∂τ
− iνF

∂
∂x

)
ΨR

∇φR(x) = 2πρR(x) = 2π : Ψ†
R(x)ΨR(x) :

[φR(x),φR(y)] = iπ sgn(x− y)

HCL =
νF

4π

∫ L

0
dx(∇φR)

2

LCL =
1

4π
[
νF(∇φR)

2− i∇φR∂τ φR
]
.

[ρR(x),ΨR(y)] =−δ (x− y)ΨR(y)

ΨR ∼ eiφR . (12.45)
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12.2 Interacting Fermions

We now add two-body interactions between the ΨF fermions. For generic values of the
wavevector kF , the only momentum-conserving interaction for spinless fermions near
the Fermi points is

HU =
U
2

∫
dx [(ρR(x)+ρL(x))(ρR(x)+ρL(x))] . (12.46)

For special commensurate densities, there can be additional “umklapp” terms, but
we defer consideration of such terms to the following section. Using the bosonization
formula (12.35), we can write HU as

HU =
U

2π2

∫
dx(∇ϕ)2. (12.47)

This can easily be absorbed into the bosonized version of HFL in (12.28) by a redef-
inition of νF and K. In this way we have shown that the Hamiltonian HFL +H12 is
equivalent to (12.28) but with the parameters

νF → νF

[
1+

UνF

π

]1/2

,

K =

[
1+

UνF

π

]−1/2

.

(12.48)

The values of the parameters only hold for small U ; however, the general result of
a renormalization of νF and K, but with no other change, is expected to hold more
generally. Notice that now K ̸= 1, as promised earlier.

We can now evaluate the correlators of the interacting fermion field using the
operator mapping in (12.42). These can be obtained by use of the basic identity

⟨eiO⟩= e−⟨O
2⟩/2, (12.49)

where O is an arbitrary linear combination of ϕ and θ fields at different space-
time points; this identity is a simple consequence of the free-field (Gaussian) nature
of (12.28). In particular, all results can be reconstructed by combining (12.49) with
repeated application of some elementary correlators. The first of these is the two-point
correlator of ϕ :

1
2
⟨(ϕ(x,τ)−ϕ(0,0))2⟩= πνF K

∫ dk
2π

T ∑
ωn

1− ei(kx−ωnτ)

ω2
n +νF k2

=
K
4

ln
[

cosh(2πT x/νF)− cos(2πT τ)
(2πT/νF Λ)2

]
, (12.50)

where Λ is a large-momentum cutoff. Similarly, we have for θ , the correlator
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144 12 Fermions and Bosons in One Spatial Dimension

1
2
⟨(θ(x,τ)−θ(0,0))2⟩

=
1

4K
ln
[

cosh(2πT x/νF)− cos(2πT τ)
(2πT/νF Λ)2

]
. (12.51)

To obtain the θ , ϕ correlator we use the relation Πϕ = −∇θ/π and the equation of
motion iΠϕ = ∂τ ϕ/(πνF K) that follows from the Hamiltonian (12.28); then, by an
integration and differentiation of (12.50) we can obtain

⟨θ(x,τ)ϕ(0,0)⟩=− i
2

arctan
[

tan(πT τ)
tanh(πT x/νF)

]
. (12.52)

This expression can also be obtained directly from (12.31). Finally, we can combine
these expressions to obtain the fermion correlator (in imaginary time)〈

Ψ†
R(x,τ)ΨR(0,0)

〉
∼

exp

[
−1

4
(K +1/K) ln

[
cosh(2πT x/νF)− cos(2πT τ)

(2πT/νF Λ)2

]

− iarctan
[

tan(πT τ)
tanh(πT x/νF)

]]
. (12.53)

In general, this is a complicated function, but it does have some useful limiting values.
At K = 1 it takes the simple form〈

Ψ†
R(x,τ)ΨR(0,0)

〉
∼ 1

sin(πT (νF τ− ix))
(12.54)

expected for free fermions. Taking the Fourier transform of (12.53) for general K, and
analytically continuing the resulting expressions to real frequencies is, in general, a
complicated mathematical challenge; details can be obtained from Refs. [291, 292]. We
quote some important results in the limit of T = 0. The fermion spectral function has
the following singularity at small frequencies near ω = νF k

−ImGR
R(k,ω)∼ θ(ω−νF k)(ω−νF k)(K+1/K)/2−2

ω > 0,k > 0. (12.55)

At K = 1, the spectrum function is a delta function∼ δ (ω−νF k) and that is indicative
of the presence of quasiparticles in the free-fermionmodel. However, a key observation
is that for K ̸= 1 the delta function transforms into a branch-cut in the frequency com-
plex plane, and this indicates the absence of fermionic quasiparticles.We can obtain the
equal-time fermion Green’s function of the original fermion field ΨF in (12.1) directly
from (12.53):

⟨Ψ†
F(x)ΨF(0)⟩ ∼

sin(kF |x|)
|x|(K+1/K)/2 . (12.56)

Taking the Fourier transform of this, we conclude that the momentum distribution
function of the fermions, n(k), does indeed have a singularity at the Fermi wavevector
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145 12.2 Interacting Fermions

k = kF , but that this singularity is not generally a step discontinuity (as it is in Fermi
liquids):

n(k)∼−sgn(k− kF)|k− kF |(K+1/K)/2−1. (12.57)

Thus, interacting fermions in one dimension realize a new non-Fermi liquid phase, the
Tomonaga–Luttinger liquid, whose momentum distribution function has a singularity
at the Fermi surface, but the singularity is not the step discontinuity of a Fermi liquid
in (2.34), and is instead given by (12.57).

12.2.1 Commensurate Densities

There are conditions under which the Luttinger liquid state is unstable to be a gapped
insulator: this requires that the fermion density, ρ0 is a rational number. The simplest
example is when the spinless Fermi gas of Section 12.1 is at half-filling. Then ρ0 = 1/2
and kF = π/2. This special value of kF allows an Umklapp process, when two right-
moving fermions scatter to become two left-moving fermions: the total momentum
transfer is 2π, and this is allowed by the unit periodicity of the underlying lattice. In
the continuum formulation, this term is

HU = ν
∫

dx
[
Ψ†

R∇Ψ†
RΨL∇ΨL +Ψ†

L∇Ψ†
LΨR∇ΨR

]
. (12.58)

We can now bosonize this using (12.41), and we obtain the sine-Gordon theory for the
Luttinger liquid in the presence of periodic potential:

SsG = ST L−λ
∫

dxdτ cos(4ϕ). (12.59)

We discuss the properties of such a sine-Gordon theory in some detail in Section 25.2.3,
in the context of a more general theory with the action

SsG = ST L−λ
∫

dxdτ cos(pϕ). (12.60)

Here, we need the renormalization group (RG) equation for the coupling λ , which
follows from (25.44):

dλ
dℓ

= (2− p2K/4)λ . (12.61)

For the p = 4 case of interest to us, there is a critical point at K = 1/2, and for K < 1/2
there is a flow towards large |λ |, and we have an instability to a strongly coupled phase.
(The full RG flow, shown in Fig. 25.1, has additional complexity which is discussed
in Section 25.2.3). This strongly coupled state is expected to be an insulator, but the
insulator breaks translational symmetry (so strictly speaking, it is not a Mott insu-
lator). The breaking of translational symmetry can be understood from the fact that
cos(2ϕ) and sin(2ϕ) are observables that break translational symmetry. This follows
from (12.41),

Ψ†
RΨL ∼ e−2iϕ , (12.62)
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and the fact that

Ψ†
RΨL→ (−1)nΨ†

RΨL (12.63)

under translation by n lattice spacings, for kF = π/2. When λ flows to +∞ (say), then
the values of ϕ will be pinned at π p/2, where p is an integer. Consequently cos(2ϕ)
takes the two possible values (−1)p, and this implies a two-fold breaking of transla-
tional symmetry. A possible state is a charge-density wave of fermions with period
2. Similarly, when λ flow to −∞, there are two possible values of sin(2ϕ), and this
corresponds to a “valence-bond solid,” or a dimerization of the lattice with period 2.

12.3 Bosons in One Dimension

Next, we apply the formalism developed so far to a model of interacting bosons in one
dimension

HB =− h̄2

2m

∫
dxΨ†

B∇2ΨB

+
1
2

∫
dxdx′Ψ†

B(x)ΨB(x)V (x− x′)Ψ†
B(x
′)ΨB(x′), (12.64)

with a two-body interaction V (x).
For the case of a delta-function interaction,

V (x) =V0δ (x), (12.65)

we can show that, in the limit V0→∞, the Bose gas is exactly equivalent to a free Fermi
gas. This follows from the exact solution of the N-particle Schrödinger equation with
the wavefunction

Ψ̃B(x1,x2, . . .N) =

[
∏
i< j

sgn(xi− x j)

]
Ψ̃F(x1,x2, . . .N), (12.66)

where Ψ̃F is the free-fermion Slater determinant, and Ψ̃B is the boson wavefunction.
The equality (12.66) can be established by examining the nature of the wavefunction
as any pair of particles (say x1 and x2) approach each other. Then, the fermionic two-
particle wavefunction is

Ψ̃F(x1,x2) = eiK(x1+x2) sin(k(x1− x2)), (12.67)

where K and k are the center of mass and relative momenta. It is then easy to check
that the boson wavefunction

Ψ̃B(x1,x2) = eiK(x1+x2) |sin(k(x1− x2))| (12.68)

satisfies the Schrödinger equation in the limit V0 → ∞. This mapping implies that the
Bose and Fermi field operators are related by the Jordan–Wigner transformation we
met earlier in (12.39)
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147 12.3 Bosons in One Dimension

ΨB(x) = ΨF(x)exp
(

iπ
∫ x

−∞
Ψ†

F(y)ΨF(y)dy
)
. (12.69)

We will now exploit this mapping, and assume that the effects of moving away from
the V0 = ∞ limit, or of having non-delta function interaction, can be absorbed in the
resulting Tomonoga–Luttinger liquid theory simply by allowing K ̸= 1, just as was the
case for the Fermi gas (this can be shown more explicitly by regularizing the boson
theory on a lattice, and performing a canonical transformation to eliminate all high-
energy states that violate the boson hard-core constraint). We can now use (12.69) to
express ΨB in terms of the continuum fields, ϕ , θ of the Tomonaga–Luttinger theory;
using (12.40) we obtain

ΨB(x) = eiθ [B0 +B2ei2πρ0xe2iϕ +B−2e−i2πρ0xe−2iϕ + · · ·
]

(12.70)

for some constants B0, B±2. In (12.70), we have replaced kF = πρ0, where ρ0 is the
boson density, because kF does not have a direct physical interpretation in the Bose
gas theory.

Much useful information can now be obtained from (12.70) combined with the cor-
relators of the Tomonaga–Luttinger theory. First we note that (12.70) identifies θ as
the phase of the Bose–Einstein condensate, and the quantum phase fluctuations are
controlled by the simple harmonic theory (12.33). Indeed, up to oscillatory terms asso-
ciated with the higher-order terms in (12.70), we can compute the two-point equal-time
Bose field correlator from (12.51) and obtain〈

Ψ†
B(x)ΨB(0)

〉
∼ 1
|x|1/2K . (12.71)

So there is a power-law decay in the superfluid correlations, and no true long-range
order. The phase fluctuations have destroyed the Bose–Einstein condensate, but the
superfluid stiffness (associated with spatial gradient term in (12.33)) remains finite.

Let us now examine the response of the Bose gas to an external periodic potential
under which

HB→ HB−VG

∫
dx cos(Gx)Ψ†

BΨB, (12.72)

where 2π/G is the spatial period of the potential. Inserting the expansion (12.70) into
(12.72), and assuming that all important fluctuations of the θ and ϕ fields occur at
wavelengths much larger than 2π/G, we find that the spatial integral averages to zero
unless 2πρ0 =G. This translates into the condition that theremust be exactly one boson
per unit cell of the periodic potential. If we allow for omitted higher-order terms in
(12.70), we find that a non-zero spatial average is allowed only if there is one boson for
an integer number of unit cells. Restricting ourselves to the simplest case of one boson
per unit cell, we find that there is modification to the low-energy theory given by

SsG = ST L−λ
∫

dxdτ cos(2ϕ) (12.73)

where λ ∝ VG. This is the sine-Gordon field theory.
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148 12 Fermions and Bosons in One Spatial Dimension

Before analyzing the sine-Gordon theory, let us note an alternative interpretation
of the e2iϕ operator: this operator creates a 2π vortex (in spacetime) in the phase
of the Bose–Einstein condensate, analogous the spatial vortex considered in Sec-
tion 7.1. We can conclude this by an argument very similar to that above (12.38).
The operator e2iϕ shifts the phase θ by 2π along the spatial line y < x, which means
it induces a 2π branch-cut in the spacetime configuration of θ . What we also con-
clude from (12.70) and (12.73) is that each such vortex (which is a tunneling event
in spacetime) is accompanied by an oscillating Berry phase factor of e±i2πρ0x. Thus,
the background density of bosons endows the vortex with a quantum-mechanical
phase factor. This oscillatory Berry phase implies that a spatial average suppresses
the matrix element for vortex-tunneling events. So the Tomonaga–Luttinger liquid is
generically stable against vortex proliferation. The only exceptions arise for the cases
when there is background potential which is commensurate with the boson density, and
then there can be a net vortex-tunneling matrix element, as we have illustrated above
in SsG.

(Parenthetically, we note that this argument also shows that we can consider the
fermion theory at filling ρ0 = 1/2 in (12.59) as a theory of the consequences of double
vortices in θ , which are the smallest vortices in that case without oscillatory phase
factors.)

Finally, let us note the properties of SsG under a renormalization group analysis.
From (12.49) and (12.50), we can compute the equal-time two-point correlator

〈
e2iϕ(x)e−2iϕ(0)

〉
∼ 1
|x|2K (12.74)

and so conclude that

dim[e2iϕ ] = K (12.75)

at the Tomonaga–Luttinger liquid fixed point (λ = 0). So then, for small λ , we have
the renormalization group equation

dλ
dℓ

= (2−K)λ . (12.76)

For K > 2, the λ = 0 fixed point, and so the gapless Tomonaga–Luttinger liquid phase,
is stable to the introduction of a periodic potential with one boson per unit cell. On
the other hand, for K < 2, there is a flow towards large |λ |, and we have an instability
to a strongly coupled phase. We cannot predict the strongly coupled quantum state
by the present methods, but it is not difficult to make a reasonable surmise. At large
|λ |, the values of ϕ lock to the minima of the cos(2ϕ) term, and hence the fluctuations
of the conjugate θ fields are strongly enhanced. So we are then in a gapped phase in
which the phase of the Bose–Einstein condensate is ill-defined. This is easy to iden-
tify as the Mott insulator of Chapter 8, in which each unit cell has trapped a single
boson.
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Problems

12.1 Consider a gas of free S = 1/2 electrons in one dimension with dispersion εk =

k2/(2m) and density n. Compute the region in the ω , k, plane over which the
density–density correlation function (defined as in (9.49)) ImχR

0 (k,ω) is non-zero.
Show that in the limit k→ 0 we have the simple result

ImχR
0 (k,ω) =C(k) [δ (ω−νF k)−δ (ω +νF k)] . (12.77)

Thus, there is no particle–hole continuum in the density spectrum in one dimen-
sion, only coherent excitations that propagate with a velocity νF . Compute
C(k).

12.2 Impurity in a Luttinger liquid. Consider a single impurity at x = 0 in a Luttinger
liquid. Its strong effect is back scattering, that is, converting left-moving fermions
to right-moving fermions. The impurity action is therefore

Simp = λ
∫

dτ
[
Ψ†

R(x = 0,τ)ΨL(x = 0,τ)+H.c.
]
. (12.78)

Obtain the RG equation for λ . For what values of K is the impurity scattering
irrelevant?

12.3 Consider a dilute gas of bosons bi moving on the sites, i of a chain described by
the Hamiltonian

H =−w∑
i

(
b†

i bi+1 +b†
i+1bi−2b†

i bi

)
+∑

i
(V ni(ni−1)−µni) , (12.79)

where ni = b†
i bi is the number operator, w is the hopping matrix element, and V is

the on-site repulsion between the bosons. In the limit of large V , states with more
than one boson on a site will only occur rarely, and it should pay to restrict the
Hilbert space by projecting out such states. However, the elimination will generate
a residual interaction of order w2/V between the states on the restricted space. This
interaction can be determined by the effective Hamiltonian method (described in
Problem 16.1). Show that, to second order in w, the effective Hamiltonian is

He f f =−w∑
i

(
b†

i bi+1 +b†
i+1bi−2b†

i bi

)
−µ ∑

i
ni

− 2w2

V ∑
i

(
2b†

i b†
i+1bi+1bi +b†

i b†
i−1bi+1bi +b†

i b†
i+1bi−1bi

)
, (12.80)

where now the bosons are “hard core”, which means that ni = 0,1 are the only
allowed values. Notice now that this reduced Hilbert space is identical to that
of spinless fermions. The transformation between the bi and the spinless fermion
operators fi is the Jordan–Wigner mapping

bi = ∏
j<i

(1−2 f †
j f j) fi. (12.81)
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Verify that (12.81) produces Bose operators that commute between different sites.
Insert (12.81) in (12.80) and take the continuum limit with fi =

√
aΨF(x = ia),

w = h̄2/(2ma2) (a is the lattice spacing) and obtain

HF =
∫

dx

[
Ψ†

F

(
− h̄2

2m
d2

dx2 −µ
)

ΨF −
8w2a3

V
dΨ†

F
dx

Ψ†
F ΨF

dΨF

dx

]
. (12.82)

Finally, decompose the fermion field into left- (ΨL) and right- (ΨR) moving
excitations with a linear dispersion, and obtain the long-wavelength Hamiltonian

HL =
∫

dx
[

h̄c
(

Ψ†
R

dΨR

dx
−Ψ†

L
dΨL

dx

)
− 32w2a3k2

F
V

Ψ†
RΨ†

LΨLΨR

]
, (12.83)

where c = h̄kF/m and the Fermi wavevector kF is given by h̄2k2
F/(2m) = µ . This is

a weakly interacting model of spinless fermions, to which we can apply Luttinger
liquid methods.
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13 Introduction to Gapped Spin Liquids

An intuitive introduction to theory of spin liquids is presented, using the resonating-
valence-bond wavefunction. The wavefunctions of the excited spinon and vison
states are described, and used to obtain their anyonic properties. An introductory
discussion of topological order is also presented.

Part I described quantum phases of matter that were ultimately connected to the free-
particle description in a relatively straightforward manner. We began with weakly
interacting Fermi gases in Chapter 2, and Bose gases in Chapter 3. For the case of
the Bose gas, we introduced the concepts of broken symmetry and long-range order,
applied to the U(1) particle number conservation symmetry. These concepts were also
useful in the discussion of superconductivity of the Fermi gas in Chapter 4. The sub-
sequent chapters then examined the consequences of fluctuating order, as described
by the Landau–Ginzburg theory for a thermally fluctuating superconductor in Chap-
ter 6, and the quantum field theory of a relativistic scalar for the superfluid–insulator
quantum phase transition in Chapter 8. Eventually, we didmeet situations in which the
free-particle description no longer applied: (i) at the superfluid–insulator quantum crit-
ical point in 2+1 dimensions in Section 11.2.2, which has no quasiparticle excitations,
and (ii) in one spatial dimension in Chapter 12, where the order was only quasi-long
range, and the quasiparticles were free phase or density fluctuations.

Parts II and IV will turn to a more radical departure from the free-particle descrip-
tion. The key new idea here will be one of fractionalization, in which the lattice fermion
or boson turns into a composite of new emergent particles. There is no local oper-
ator that can create a single fractionalized particle; consequently, the fractionalized
particles must be charged under an emergent gauge field.

Part II will consider fractionalization in a “pure” form, where there are no further
topological considerations apart from those arising from the fractionalization of the
lattice degrees of freedom. The simplest case of this is the Z2 spin liquid, which we con-
sider in some detail. Part IV turns to a more intricate realization of fractionalization,
where the fractionalized particles (“partons”) also have a topological band structure.
So, before we can consider these cases, we describe band topology on its own, for
unfractionalized particles, in Part III. We survey the many ways band topology can
be combined with fractionalization in Chapter 21, and describe them in more detail in
the remainder of Part IV. One of the earliest realizations of fractionalization, the frac-
tional quantum Hall effect, does have partons in a non-trivial band topology, and the
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154 13 Introduction to Gapped Spin Liquids

tFigure 13.1 (a) The insulating antiferromagnetic (AF) state at p = 0. (b) Component of a “resonating-valence-bond (RVB)”
wavefunction for the antiferromagnet which preserves spin rotation symmetry; all the |Di⟩ in Eq. (13.1) have similar
pairings of electrons on nearby sites (not necessarily nearest-neighbor).

distinction between the two effects is often obscured in the literature. Our presentation
does not describe the fractional quantum Hall effect until Chapter 24.

Much of Parts II and IV focuses on quantum phases associated with the electron
Hubbard model in Chapter 9. We restrict our attention to insulating phases here, at
doping p = 0, where the low-energy degrees of freedom are just spins, described by an
effective Hamiltonian such as (9.14). We turn to conducting phases in Part V.

One possible phase on the insulating square lattice is theNéel state in Fig. 9.2, shown
here as the antiferromagnet in Fig. 13.1a. The spins are arranged in a checkerboard pat-
tern, so that all the spins in one sublattice are parallel to each other, and anti-parallel to
spins on the other sublattice. Two key features of this antiferromagnetic state deserve
attention here. Firstly the state breaks a global spin-rotation symmetry, and essentially
all of its low-energy properties can be described by well-known quantum field the-
ory methods associated with spontaneously broken symmetries, some of which were
described in Chapter 5, Section 9.2.2 and Section 11.2.3. Secondly the wavefunction
does not have long-range entanglement, and the exact many-electron wavefunction can
be obtained by a series of local unitary transformations on the simple product state
sketched in Fig. 13.1a.

Our interest in Parts II and IV is primarily on quantum phases that preserve the
symmetries of the underlying Hamiltonian. We can restore the broken spin-rotation
symmetry of the antiferromagnetic state by having pairs of spins forming spin singlets,
and this led us to the valence-bond solid (VBS) state in Fig. 9.2. However, the VBS state
breaks lattice symmetries. To restore lattice symmetries we need a “second level” of
entanglement, and take superpositions of the valence-bond configurations themselves.
This leads to states with long-range entanglement, as described qualitatively below,
and in move detail in Parts II and IV.

Much of Parts II and IV can be interpreted as an answer to a question we posed in
Section 8.4: what are the possible ground states of lattice bosons at density 1/2 per site?
In Section 16.3 we discuss some general reasons why it is not possible for any ground
state to be trivial. One possibility is that it can break a translational symmetry so that
there is an integer density per unit cell: we have already seen examples of this possibility.
Another possibility is that the U(1) boson number symmetry is broken, so that the
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155 13.2 Topological Properties

ground state is a compressible superfluid. The remaining possibility is the focus of our
discussion now: there is long-range entanglement, with fractionalized excitations and
emergent gauge fields. We study several examples of this alternative.

13.1 The RVB State

We begin with the “resonating-valence-bond” (RVB) state

|Ψ⟩= ∑
i

di |Di⟩ , (13.1)

where i extends over all possible pairings of electrons on nearby sites, and a state |Di⟩
associated with one such pairing is shown in Fig. 13.1b; the di are complex coefficients
we will leave unspecified here. Note that the electrons in a valence bond need not be
nearest neighbors. Each |Di⟩ is a spin singlet, and so spin-rotation invariance is pre-
served; the antiferromagnetic exchange interaction is optimized between the electrons
within a single valence bond, but not between electrons in separate valence bonds. We
also assume that the di respect the translational and other symmetries of the square lat-
tice. Such a state was first proposed by Pauling [201] as a description of a simple metal
like lithium. We now know that Pauling’s proposal is incorrect for such metals. But we
will return to a variant of the RVB state in Chapter 29, which does indeed describe a
metal. Anderson revived the RVB state many years later [8] as a description of Mott
insulators. These are materials with a density of one electron per site, which are driven
to be insulators by the Coulomb repulsion between the electrons (contrary to the Bloch
theorem for free electrons, which requires metallic behavior at this density).

In a modern theoretical framework, we now realize that the true significance of the
Pauling–Anderson RVB proposal was that it was the first ansatz to realize long-range
quantum entanglement. Similar entanglement appeared subsequently in Laughlin’s
wavefunction for the fractional quantum Hall state [151], and for RVB states in
the absence of time-reversal symmetry [123]. The long-range nature of the entangle-
ment can be made precise by computation of the “topological entanglement entropy”
[132, 156, 309]. But here we will be satisfied by a qualitative description of the sensi-
tivity of the spectrum of states to the topology of the manifold on which the square
lattice resides. The sensitivity is present irrespective of the size of the manifold (pro-
vided it is much larger than the lattice spacing), and so indicates that the information
on the quantum entanglement between the electrons is truly long-ranged. A wavefunc-
tion that is a product of localized single-particle states would not care about the global
topology of the manifold.

13.2 Topological Properties

The basic argument on the long-range quantum information contained in the RVB
state is summarized in Fig. 13.2. We place the square lattice on a very large torus (i.e.
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156 13 Introduction to Gapped Spin Liquids

tFigure 13.2 Sensitivity of the RVB state to the torus geometry: the number of valence bonds crossing the cut (thick horizontal line)
can only differ by an even integer between any two configurations (like those shown), which differ by an arbitrary
local arrangement of valence bonds.

impose periodic boundary conditions in both directions), draw an arbitrary imaginary
cut across the lattice, indicated by the thick horizontal line, and count the number
of valence bonds crossing the cut. It is not difficult to see that any local rearrange-
ment of the valence bonds will preserve the number of valence bonds crossing the cut
modulo 2. Only very non-local processes can change the parity of the valence bonds
crossing the cut; one such process involves breaking a valence bond across the cut into
its constituent electrons, and moving the electrons separately around a cycle of the
torus crossing the cut, so that they meet on the other side and form a new valence
bond that no longer crosses the cut – see Fig. 13.3. Ignoring this very non-local pro-
cess, we see that the Hilbert space splits into disjoint sectors, containing states with
an even or odd number of valence bonds across the cut [140, 277]. Locally, the two
sectors are identical, and so we expect them to have ground states (and also excited
states) of nearly the same energy for a large-enough torus. The presence of these near-
degenerate states is dependent on the global spatial topology, which means it requires
periodic boundary conditions around the cycles of the torus, and so can be viewed as
a signature of long-range quantum entanglement.

13.3 Emergent Gauge Fields

The above description of topological degeneracy and entanglement relies on a
somewhat arbitrary and imprecise trial wavefunction. A precise understanding is
provided by a formulation of the physics of the RVB state in terms of an emergent
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157 13.3 Emergent Gauge Fields

(a) (b)

(c) (d)tFigure 13.3 Non-local process which changes the parity of the number of valence bonds crossing the cut. A valence bond splits into
two spins, which pair up again after going around the torus.

tFigure 13.4 (a) Nearest-neighbor valence-bond number operators, proportional to the electric field of a compact U(1) gauge
theory. (b) Model with valence bonds connecting the same sublattice; now the constraint on the number operators is
modified, and the spin liquid is described by aZ2 gauge theory.

gauge theory, the first example of which was introduced by Baskaran and Anderson
[22]. Such a formulation provides another way to view the nearly degenerate states
obtained above on a torus: they are linear combinations of states obtained by inserting
fluxes of the emergent gauge fields through the cycles of the torus.

The formulation as a gauge theory [22, 86] becomes evident upon considering a sim-
plified model with valence bonds only between nearest-neighbor sites on the square
lattice. We introduce valence-bond number operators n̂ on every nearest-neighbor link,
and then there is a crucial constraint that there is exactly one valence bond emerging
from every site, as illustrated in Fig. 13.4a. After introducing oriented “electric-field”
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Im[Ψvbs]

Re[Ψvbs]

(a) (b)tFigure 13.5 (a) The 4 VBS states which break square lattice rotational symmetry. (b) Distribution of the complex VBS order
parameterΨvbs in the quantumMonte Carlo study by Sandvik [247]; the real and imaginary parts of this order
measure the probability of the VBS states in the first and second columns. The near-circular distribution ofΨvbs

reflects an emergent symmetry that is a signature of the existence of a photon. Reprinted with permission from APS.

operators êiµ = (−1)ix+iy n̂iµ (here i labels the sites of the square lattice, and µ = x,y is
a spatial index labeling the two directions), this local constraint can be written in the
very suggestive form [86]

∆µ êiµ = ρi, (13.2)

where ∆µ is a discrete lattice derivative, and ρi ≡ (−1)ix+iy is a background “charge”
density. The equation (13.2) is analogous to Gauss’s law in electrodynamics, and a
key indication that the physics of resonating valence bonds is described by an emer-
gent gauge theory. An important difference from Maxwell’s U(1) electrodynamics is
that the eigenvalues of the electric-field operator êiµ must be integers. In terms of the
canonically conjugate gauge field âiµ ,

[âiµ , ê jν ] = ih̄δi jδµν , (13.3)

the integral constraint translates into the requirement that âiµ is a compact angular
variable on a unit circle, and that âiµ and âiµ +2π are equivalent. So there is an equiv-
alence between the quantum theory of nearest-neighbor resonating valence bonds on a
square lattice, and compact U(1) electrodynamics in the presence of fixed background
charges ρi [86]. A non-perturbative analysis of such a theory shows [216, 218] that
ultimately there is no gapless “photon” associated with the emergent gauge field â:
compact U(1) electrodynamics is confining in two spatial dimensions, and in the pres-
ence of the background charges the confinement leads to the VBS order illustrated
in Fig. 13.5. The VBS state breaks square lattice rotation symmetry, and all exci-
tations of the antiferromagnet, including the incipient photon, have an energy gap.
In subsequent work, it was realized that the gapless photon can re-emerge at special
“deconfined” critical points [84, 261, 290] or phases [108], even in two spatial dimen-
sions. In particular, in certain models with a quantum phase transition between a
VBS state and the ordered antiferromagnet in Fig. 13.1a [216, 218, 261], the quan-
tum critical point supports a gapless photon (along with gapless-matter fields). This is
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159 13.4 Excitations of theZ2 Spin Liquid

illustrated in Fig. 13.5b by numerical results of Sandvik [247]; the circular distribution
of valence bonds is evidence for an emergent continuous lattice rotation symmetry,
and the associated Goldstone mode is the dual of the photon.

The properties ofU(1) gauge theories summarized above are described inmore detail
in Chapters 25, 26, and 28.

Although U(1) gauge theory does realize spin liquids with long-range entanglement
and emergent photons, the gaplessness and “criticality” of the spin liquids indicates the
presence of long-range valence bonds, and the Pauling–Anderson trial wavefunctions
are poor descriptions of such states. A stable, gapped quantum state with time-reversal
symmetry, long-range entanglement and emergent gauge fields was first established in
Refs. [119, 219, 230, 231, 303] using a model with short-range valence bonds that also
connect sites on the same sublattice (Fig. 13.4b). It was shown [119, 219, 230, 231, 303]
that the same-sublattice bonds act like charge ±2 Higgs fields in the compact U(1)
gauge theory, and in such gauge theories there can be [17, 87] a “Higgs” phase. Such
a phase realizes a stable, gapped, RVB state preserving all symmetries of the Hamil-
tonian, including time-reversal symmetry, and is described by an emergent Z2 gauge
theory [119, 230]. The Z2 gauge theory can be viewed as a discrete analog of the com-
pact U(1) theory in which the gauge field takes only two possible values âiµ = 0,π.
The intimate connection between a spin liquid with a deconfined Z2 gauge field, and
a non-bipartite RVB trial wavefunction like (13.1), was shown convincingly by Wilde-
boer et al. [309]. Upon varying parameters in the underlying Hamiltonian, the Z2 spin
liquid can undergo a confinement transition to a VBS phase, which is described by
a dual frustrated Ising model [119, 230]. Since these early works, the Z2 spin liquid
has appeared in a number of other models [88, 101, 133, 180, 257, 304], including the
exactly solvable “toric code” [133].

13.4 Excitations of theZ2 Spin Liquid

Acomplete study of theZ2 spin liquidwill occupyChapters 15 and 16 and Section 26.2.
Here, we present a simple overview of the structure of its ground state and excitations.

A theory for a stable RVB state with time-reversal symmetry and a gap to all excita-
tions first appeared in Refs. [119, 219, 231, 303], which described a state now called a
Z2 spin liquid. It is helpful to describe the structure of the Z2 spin liquid in terms of a
mean-field ansatz. We write the spin operators on each site, Siℓ (ℓ= x,y,z), in terms of
Schwinger bosons siα (α =↑,↓) [13]

Siℓ =
1
2

s†
iα σ ℓ

αβ siβ , (13.4)

where σ ℓ are the Pauli matrices, and the bosons obey the local constraint

∑
α

s†
iα siα = 2S (13.5)
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on every site i. It is now easy to show that the spin operators obey the required
commutation relations, and the 2S+1 states defined by (13.5) yield the correct matrix
elements of all spin operators. Here, we are primarily interested in the case of spin
S = 1/2, but it is useful to also consider the case of general S. Schwinger fermions can
also be used instead, but the description of the S > 1/2 cases is more cumbersome with
them.

At this point, the expression of the spin operators in terms of the S = 1/2 bosons
appears as a formal mathematical trick. However, expressing the spins in terms of spin-
1/2 particles naturally predisposes to phases in which these boson are deconfined at
long distances, leading to fractionalization. Contrast this with the hard-core boson rep-
resentation in (9.18), where the hard-core bosons carry an integer spin, and we did not
obtain any fractionalized state.

The deconfined boson state corresponding to the Z2 spin liquid is described by an
effective Schwinger-boson Hamiltonian [13, 219]

Hb =−∑
i< j

[
Pi js

†
iα s jα +Qi jεαβ s†

iα s†
jβ +H.c.

]
+λ ∑

i
s†

iα siα , (13.6)

where εαβ is the antisymmetric unit tensor, λ is chosen to satisfy the constraint in
Eq. (13.5) on average, and the Qi j = −Q ji and Pi j = P∗ji are a set of variational para-
meters chosen to optimize the energy of the spin liquid state. Generally, the Qi j and
Pi j are chosen to be non-zero only between nearby sites, and the “Z2” character of
the spin liquid requires that the links with non-zero Qi j can form closed loops with an
odd number of links. The Schwinger-boson parameterization (13.4) is invariant under
the U(1) gauge transformation, siα → eiϕisiα , and odd loops imply that the U(1) is
Higgsed down to a Z2 gauge theory [119, 219, 230, 231, 303]. This Hamiltonian yields
a mean-field wavefunction for the spin liquid

|Ψ⟩= P2S exp

(
∑
i< j

fi j εαβ s†
iα s†

jβ

)
|0⟩, (13.7)

where |0⟩ is the boson vaccum,P2S is a projection operator that selects only states which
obey (13.5), and the boson-pair wavefunction fi j =− f ji is determined by diagonalizing
(13.6) by a Bogoliubov transformation. This is closely connected to the Bogoliubov
transformation in (3.11) and the wavefunction in (4.7).

Moving to the gapped excited states of the Z2 spin liquid, we find two distinct types
of quasiparticles, illustrated in Fig. 13.6b–d:

(i) A “spinon,” shown in Fig. 13.6b, has one unpaired spin and so carries spin
S = 1/2; more specifically, the spinon is the Bogoliubov quasiparticle obtained
by diagonalizingHb in terms of canonical bosons.

(ii) The second quasiparticle, the “vison,” shown in Fig. 13.6c,d, is spinless and
it has a more subtle topological character of a vortex in an Ising-like system
(hence its name [257]). The vison state is the ground state of aHamiltonian,Hν

b ,
obtained fromH by mapping Qi j→Qν

i j, Pi j→ Pν
i j ; then the vison state |Ψν⟩ has

a wavefunction as in (13.7), but with fi j→ f ν
i j . Far from the center of the vison,
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161 13.4 Excitations of theZ2 Spin Liquid

tFigure 13.6 (a) Illustration of a component, |Di⟩, of the RVB wavefunction in (13.1). (b) A pair of S = 1/2 spinon excitations.
(c) The vison excitation of theZ2 spin liquid. In terms of (13.1), the co-efficients di are modified so that each singlet
bond crossing the ‘branch-cut’ (dashed line) picks up a factor of−1. A similar modification applies to (13.7), and is
described in the text. (d) A vison on the triangular lattice for the case ofQi j andPi j non-zero only between
nearest-neighbor sites: the wavy lines indicate theQi j andPi j with a change in their sign in the presence of a vison.

we have |Qν
i j| = |Qi j|, |Pν

i j | = |Pi j|, while closer to the center there are differ-
ences in the magnitudes. However, the key difference is in the signs of the link
variables, as illustrated in Fig. 13.6c,d: there is a “branch-cut” emerging from
the vison core along which sgn(Qν

i j) = −sgn(Qi j) and sgn(Pν
i j) = −sgn(Pi j).

This branch-cut ensures that the Z2 magnetic flux equals −1 on all loops that
encircle the vison core, while other loops do not have non-trivial Z2 flux.

The spinons and visons have two crucial topological properties:

(i) A spinon and a vison are mutual semions [215]. In other words, adiabatically
moving a spinon around a vison (or vice versa) yields a Berry phase of π. This
is evident from the structure of the branch-cut in Qν

i j and Pν
i j : these Qν

i j and Pν
i j

are the hopping amplitudes for the spinon, and they yield an additional phase
of π (beyond those provided by Pi j and Qi j) every time a spinon crosses the
branch-cut.

(ii) A less-well-known and distinct property involves the motion of a single vison
without any spinons present; adiabatic motion of a vison around a single
lattice site yields a Berry phase of 2πS [119, 230, 257], as described in Sec-
tions 15.4.2 and 16.5.2. The background Berry phase of 2πS per site for
vison motion implies that there are two distinct types of Z2 spin liquids
[119, 183, 186, 230, 257, 258], when there is well-defined spin quantum number,
that is, a globally conserved U(1) quantum number. As was first pointed out
in Refs. [119, 230], these are “odd-Z2 spin liquids,” which are realized in the
present model by half-integer S antiferromagnets, and “even-Z2 spin liquids,”
realized here by integer S antiferromagnets. In the Z2 gauge theory framework
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162 13 Introduction to Gapped Spin Liquids

(or the related “toric code” [133]), there is a unit-Z2 electric charge on each lat-
tice site of an odd-Z2 gauge theory. Further details on the differences between
even- and odd-Z2 spin liquids appear in Chapter 16 and Section 26.2. The RVB
state, originally proposed for S = 1/2 spins, is an odd-Z2 spin liquid [119].

The modern theory of topological phases focuses on the robust properties of the
quantum numbers of the fractionalized excitations (the “anyons”), the Berry phases
associated with the motion of these excitations around each other, and the sensitivity
to the topological properties of the spatial manifold on which the Hamiltonian resides.
We close this chapter by cataloging the properties of Z2 spin liquid in this language.
Many details are described in the following chapters.

• Anyons: 1, e, m, ε . The e, m, ε anyons cannot be created from the ground state (1)
by any local operator.

• The e and ε are spinons, the m is the ‘vison’. The spinons carry spin 1/2, or hard-core
boson number B†B = 1/2 (Section 9.2). So the spin symmetry is fractionalized.

• Self-statistics: e and m are bosons, while ε is a fermion.
• Mutual statistics: Any pair of e, m, ε are mutual semions, which means one anyon

picks up a (−1) upon encircling any other type of anyon.
• Fusion rules: e×m = ε , e× ε = m, m× ε = e, e× e = ε × ε = m×m = 1. These

describe the possible outcomes when two anyons are brought close to each other.
• Four-fold ground-state degeneracy on a torus.
• Emergent, deconfined Z2 gauge field.
• No protected edge states in general, but could appear with special symmetries.
• Topological entanglement entropy = ln2.
• For spin-S antiferromagnets on the square lattice, the single vison states described

exhibit “translational symmetry fractionalization” with

TxTy = TyTxe2πiS, (13.8)

where Tx, Ty are translation operators by one lattice spacing in the x and y directions.
• Therefore, the RVB state which motivated the discussion of this chapter is an odd-Z2

spin liquid with TxTy =−TyTx when acting on vison states.
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14 Fractionalization in the XY Model in 2+1
Dimensions

Anextension of the familiar classical XYmodel in three dimenions is used to introduce
basic concepts in the theory of fractionalized phases. The phases of the extended XY
model are accessedby a representation in termsof an emergentU(1)gaugefield, and
the Higgs and confining phases of such a gauge theory allow an efficient description
of the possible phases, and their anyonic excitations.

This chapter pauses our discussion of two-dimensional antiferromagnets, and intro-
duces many of the key ideas on fractionalization in what I believe is the simplest
possible context: the statistical mechanics of the classical XY model on the three-
dimensional cubic lattice. We have already met a continuum version of this model in
the context of a quantum theory in 2+1 spacetime dimensions – this is the relativis-
tic quantum field theory of a complex scalar ΨB in (8.21) with K1 = 0, describing the
Mott insulator to superfluid transition in the boson Hubbard model at integer filling.
The field ΨB (Ψ∗B) annihilates (creates) excitations in the Mott insulator with boson
number −1 (+1). After discretizing (8.21) without the K1 term on a lattice in three-
dimensional spacetime lattice, and making a unit magnitude constraint ΨB = eiθ , we
obtain the partition function of the XY model

ZXY = ∏
i

∫ 2π

0

dθi

2π
exp(−HXY ) ,

HXY =−J ∑
⟨i j⟩

cos(θi−θ j), (14.1)

where the sites i, j reside on the vertices of a cubic lattice with coordinates ri,r j. As writ-
ten in (14.1), the statistical mechanics of ZXY has been thoroughly studied, and is very
well understood, and is reviewed in this chapter. There is a large −J “ordered” phase
in which the θi align in a common direction, corresponding to the superfluid phase of
the boson Hubbard model. At small J, we have the “disordered” phase, corresponding
to the Mott insulator at integer filling. In the context of ZXY , we refer to the conserved
boson-number “charge” asQ. So the disordered phase of (14.1) has gapped excitations
with boson numberQ=±1. The phase transition between the ordered and disordered
phases was described briefly in Chapter 11, and in more detail in the QPT book.

We are interested in this chapter in extensions of the XY model in (14.1), in which
the Hamiltonian HXY contains additional short-range interactions consistent with the
basic symmetries (described below). I show that it is possible to formulate extensions

163
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164 14 Fractionalization in theXY Model in 2+1 Dimensions

that feature another “disordered” phase, which has fractionalized excitations withQ=

±1/2. A convenientway to obtain such extensions is to formulate the partition function
ZXY using the variables of a compact U(1) gauge theory. Finally, I show that the basic
phases of the compact U(1) gauge theory are more conveniently realized in a Z2 gauge
theory.

The fractionalized phase realized in this manner in the present chapter has the basic
characteristics of a Z2 spin liquid, outlined in Chapter 13, including excitations with
fractionalized charges Q = ±1/2 and vortex-like vison excitations. It will, however,
be an even-Z2 spin liquid, which obeys the relation (13.8) for antiferromagnets with
integer spin S, or bosons at integer filling. Strictly speaking, because we are consider-
ing an XY order parameter here, the antiferromagnets have to be of the “easy-plane”
variety, with spin-anisotropy terms that prefer spin orientation in the XY plane, but
this symmetry constraint has no influence on the structure of the spin-liquid phase. We
discuss extensions of the Z2 gauge theory realizing an odd-Z2 spin liquid relevant for
S = 1/2 easy-plane antiferromagnets and bosons at half-integer filling towards the end
of Section 14.2.3, and in Chapter 16. This extension requires the introduction of an
intrinsically quantum Berry phase term in (14.1), so that the weights in the partition
function are not all positive.

14.1 The Conventional XY Model

Let us begin by reviewing the basic characteristics of the XY model in (14.1) in
three dimensions. The model is defined in terms of periodic variables θi, and so the
Hamiltonian is invariant under

θi→ θi +2πni, (14.2)

where the ni are integers, which can depend upon the sites of index i. There is also a
global U(1) symmetry, which requires invariance under

θi→ θi + c, (14.3)

where c is an arbitrary real number, but independent of i. We discuss extensions of
(14.1) below, and these are constrained to also obey (14.2) and (14.3).

The phase diagram of (14.1) is sketched in Fig. 14.1.

tFigure 14.1 The phases of (14.1) inD = 3.
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165 14.2 The Extended XY Model

At large J, we have phase with long-range order, characterized by the long-range
correlation

lim
|ri−r j |→∞

〈
ΨiΨ∗j

〉
= |Ψ0|2 ̸= 0 , (14.4)

where we have defined the complex number

Ψi ≡ eiθi . (14.5)

The U(1) symmetry is spontaneously broken, and we can work in an ensemble by
choosing an overall phase, so that

⟨Ψi⟩= Ψ0 ̸= 0. (14.6)

We are not be particularly interested in this ordered phase in the present chapter.
The small-J phase of Fig. 14.1 has no long-range order, and the correlations of Ψi

decay exponentially. We will often refer to this phase as the “trivial” phase, because of
the absence of fractionalization. It will be important for us to also keep track of the
power-law prefactor of the exponential decay, which has the form

lim
|ri−r j |→∞

〈
ΨiΨ∗j

〉
∼

exp(−|ri− r j|/ξ )
|ri− r j|(D−1)/2 , trivial phase (14.7)

in D dimensions with a finite correlation length ξ (we are interested here in D = 3).
We have written the Ornstein–Zernike form of the decay of two-point correlations in
(14.7): this can be obtained most simply from the Fourier transform∫ dDk

(2π)D
eik·r

k2 +ξ−2 ∼
e−r/ξ

r(D−1)/2 , (14.8)

but is also known to hold rigorously for small J [35, 42]. An important feature of
this “disordered” phase becomes apparent when we view the XY model as a quan-
tum model in 2+1 dimensions (as discussed in the QPT book). This requires analytic
continuation to real time and frequency, and we discussed such a continuation in Sec-
tion 11.2.1. In particular, (11.25) and (11.26) show that the correlator in (14.8) implies
the existence of a relativistic particle with mass ∆ = ξ−1, with dynamic susceptibility

Imχ(k,ω > 0)∼ δ
(

ω−
√

∆2 + k2
)
. (14.9)

This is the Ψ particle, which carries U(1) charge Q=±1. An important point for our
considerations below is that the existence of this particle withQ=±1 is closely tied to
the Ornstein–Zernike form of the imaginary-time correlator in (14.8).

14.2 The Extended XY Model

The discussion above allows us to outline how we may obtain a distinct disordered
phase with fractionalization in an extended XY model. Suppose we can find a model
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in which the field Ψ fractionalizes into a pair of ϕ particles carrying charge Q = 1/2.
Then we can write

Ψ∼ ϕ 2 . (14.10)

We imagine that the ϕ particles are nearly free in the fractionalized phase, and so the
ϕ correlator can have the Ornstein–Zernike form of (14.7) with correlation length 2ξ .
Then, from (14.10), we can conclude that the physically observable Ψ correlator will
be the square of the ϕ correlator, and hence, in the fractionalized disordered phase, we
have

lim
|ri−r j |→∞

〈
ΨiΨ∗j

〉
∼

exp(−|ri− r j|/ξ )
|ri− r j|(D−1) , fractionalized phase. (14.11)

The difference between (14.7) and (14.11) is subtle, and present only in the power-
law prefactor. Nevertheless, this difference is sufficient to imply that the fractionalized
phase is not smoothly connected to the trivial phase, and there must be a phase transi-
tion between them. The difference between the two phases becomes much clearer when
we analytically continue (14.11) to the dynamic spin susceptibility χ(k,ω). The imag-
inary part of this susceptibility now does not have a delta function as in (14.9), but a
threshold to a continuum for the creation of the two particles each of mass ∆/2. The
spectral density above the threshold is controlled by the conservation of energy and
momentum to obey

Imχ(k,ω > 0)∼
∫

dD−1 pδ
(

ω− ∆
2
− (k/2+p)2

2(∆/2)
− ∆

2
− (k/2−p)2

2(∆/2)

)
∼
(

ω−∆− k2

2∆

)(D−3)/2

, (14.12)

where the last line is non-zero only when it is real, and yields a step function at ∆+

k2/(2∆) in the D = 3 of interest here. The difference between the trivial result (14.9)
and the fractionalized result (14.12) is the difference between a delta function and a
threshold to a continuum, and is easily observable in neutron scattering.

14.2.1 Partition Function

In the remainder of this chapter I will argue that a fractionalized phase with the
above structure can indeed be obtained in an extended XY model. We have to move
beyond the XY model in (14.1), and consider an extended model with additional terms
that obey the symmetries in (14.2) and (14.3). Such extended XY models have been
numerically studied in Refs. [186, 258], and here we write models in the general form

Z̃XY = ∏
i

∫ 2π

0

dθi

2π
exp
(
−H̃XY [θ ]

)
H̃XY [θ ] =−∑

i j
Ji j cos(θi−θ j)+ ∑

i jkℓ
Ki jkℓ cos(θi +θ j−θk−θℓ)+ · · · . (14.13)
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167 14.2 The Extended XY Model

Table 14.1 Symmetry charges

Symmetry Ψ = eiθ H = eiϑ ϕ = eiφ

U(1) 1 1 0
U(1)gauge 0 −2 1
U(1)diag 1 0 1/2

We now make a change of variables that will help us expose the possible fractional-
ization and emergent gauge fields in the large class of models realized by (14.13). We
write

Ψi ≡ Hiϕ 2
i , (14.14)

where

Hi ≡ eiϑi and ϕi ≡ eiφi , (14.15)

so

θi = ϑi +2φi mod(2π) . (14.16)

The decomposition in (14.14) may seem somewhat arbitrary here, but we have chosen
it because it is a simpler version of a procedure that appears more naturally when we
consider quantum spin systems in Chapter 15.Wewill later simplify the decomposition
(14.14) to one closer to (14.10) in (14.34), and this simplification also anticipates the
analyses in Chapter 15.

Clearly, the decomposition (14.14) and (14.15) is highly redundant. The values
of ϑi and φi are not uniquely fixed by θi, and we can we can perform the gauge
transformation

ϑi→ ϑi +2αi , φi→ φi−αi , (14.17)

where αi are arbitrary site-dependent real numbers, without changing θi. We refer to
the transformation (14.17) as U(1)gauge, and we are only interested in models that are
invariant under U(1)gauge. It is convenient to make a table of the charges, which is
shown in Table 14.1. We have some freedom on how to assign the global U(1) charge
between H and ϕ , and we have chosen to assign the charge to H; this choice will not
modify any gauge-invariant observables. Note that we also have the distinct periodicity
constraints analogous to (14.2):

ϑi→ ϑi +2πmi , φi→ φi +2πm′i , (14.18)

where mi,m′i are arbitrary integers.
We now want to write down Z̃XY using the ϑi and φi variables, while respecting

U(1)gauge. A convenient way to do this is to introduce one more auxilliary variable,
the emergent gauge field, aiµ . This is a real number that resides on the links of the
cubic lattice, with aiµ on the link between sites at ri and ri + êµ , where êµ is a unit
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168 14 Fractionalization in theXY Model in 2+1 Dimensions

vector in the µ = x,y,z direction. Under the U(1) gauge transformation in (14.17), aiµ
transforms as

aiµ → aiµ −∆µ αi, (14.19)

where ∆µ denotes a discrete lattice derivative in the µ direction, with ∆µ fi ≡ fi+µ − fi

and i+ µ denoting the site at ri + êµ . It is also important to recognize that the gauge
field aµ is “compact”: the action and all observables are periodic functions of aµ , and
invariant under

aiµ → aiµ +2πniµ , (14.20)

where niµ are integers.We nowwrite down aU(1) gauge theory,ZU consistent theU(1)
gauge invariance and the global symmetry

ZU = ∏
i

∫ 2π

0

dϑi

2π
dφi

2π ∏
µ

daiµ

2π
exp
(
−HU [ϑ ,φ,aµ ]

)
,

HU [ϑ ,φ,aµ ] =−J1 ∑
i,µ

cos(∆µ ϑi +2aiµ)− J2 ∑
i,µ

cos(∆µ φi−aiµ)

−K ∑
□

cos(εµνλ ∆ν aiλ ) , (14.21)

where the last term is a summation over plaquettes of the cubic lattice, and εµνλ ∆ν aiλ
is the flux though a plaquette. Our claim is that ZU is in the class of theories in (14.13),
with

∏
i,µ

∫ 2π

0

daiµ

2π
exp
(
−HU [ϑ ,φ,aµ ]

)
≈ exp(−H̃XY [ϑ +2φ]). (14.22)

This result follows directly from the requirements of gauge invariance and the global
U(1) symmetry. We can make an explicit mapping between the couplings in ZU and
ZXY by expanding (14.21) in powers of K, and performing the integrals over aiµ on
each link of the lattice: gauge invariance requires that the results be periodic functions
only of θi = ϑi +2φi. To zeroth order in K we have the following integral on each link∫ 2π

0

daiµ

2π
exp
(
J1 cos(∆µ ϑi +2aiµ)+ J2 cos(∆µ φi−aiµ)

)
, (14.23)

which is easily seen to be a function only of ∆µ ϑi +2∆µ φi = ∆µ θi; this feature applies
to all terms in the K expansion. The remainder of this chapter describes features of the
phase diagram of ZU .

We note the early work of Fradkin and Shenker [87], who studied a model which
corresponds to the J2 = 0 limit of (14.21), when φi can be dropped and there is no global
U(1) symmetry, and some of their results are used below. There are also similarities of
the above mappings to early work [25, 58, 311] on emergent U(1) gauge theories for
σ -models (see Appendix C).

14.2.2 Phase Diagram

We follow the approach used to successfully analyze the conventional XY model (14.1);
we write down a continuum Landau–Ginzburg mean-field theory for the Ψ, and then
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169 14.2 The Extended XY Model

tFigure 14.2 The mean-field phase diagram of (14.24) describing bosons at integer filling, and easy-plane antiferromagnets with
integer spin S. The dashed line indicates the absence of a phase transition between phases C and B, both of which are
trivial, and only contain excitations with integerQ charges; this is an example of “Higgs-confinement” continuity.
Excitations with half-integerQ charges are present only in phase D. The full lines indicate phase transitions. The phase
transition from A to B is in theXY universality class, as in Fig. 14.1. The transition from A to D is in theXY *
universality class discussed in Section 16.5.2. The transition from D to C is in the Ising* universality class described in
Section 16.5.1.

analyze fluctuations about the saddle points of the mean-field theory. For ZU , we
have the continuum fields H, ϕ , and aµ , and symmetry and gauge invariance yield
the following Lagrangian density for the action

LU = |(∂µ +2iaµ)H|2 + s1|H|2 +u1|H|4 + |(∂µ − iaµ)ϕ |2 + s2|ϕ |2 +u2|ϕ |4

+ν |H|2|ϕ |2 +K(εµνλ ∂ν aλ )
2 +Lmonopole. (14.24)

The last termLmonopole denotes Diracmonopole configurations of theU(1) gauge field,
which require a lattice to properly define at the core of the monopoles; we will not
describe this term further here, and defer a full analysis to Section 25.3. Below, we
use other arguments to understand the effects of monopoles qualitatively. The anal-
ysis is a generalization of that in Chapters 5–7 on the Landau–Ginzburg theory of
superconductivity.

Let us obtain the mean-field phase diagram of LU , ignoring the effects of aµ . For
simplicity, we take ν = 0; the resulting phase diagram is shown in Fig. 14.2. We discuss
the nature of the phases, and of the aµ fluctuations in turn.

A. ⟨H⟩ ̸= 0, ⟨ϕ⟩ ̸= 0
It is simplest to begin in the phase with both H and ϕ condensed, in which the effects
of aµ are controlled, and can be analyzed by a direct generalization of the analysis in
Chapter 7. Clearly this phase has ⟨Ψ⟩ ̸= 0, and we can therefore identify it with the
phase with long-range order in Fig. 14.1. We now see that the properties are nearly
identical to the corresponding phase in the conventional XY model, except that the
vortices can have somewhat different energetics.

First, we note that condensation of H and/or ϕ makes the aµ photon massive via the
Higgs mechanism; this is closely related to the Meissner effect discussed in Section 5.4.
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170 14 Fractionalization in theXY Model in 2+1 Dimensions

We can see this from the effective theory for aµ , once H and/or ϕ are condensed; from
(14.24) we obtain a Higgs “mass” term for aµ :

LA = a2
µ
[
|⟨ϕ⟩|2 + |⟨H⟩|2

]
+K(εµνλ ∂ν aλ )

2 +Lmonopole . (14.25)

So we can safely ignore the fluctuations of aµ (and the aµ monopoles) in considering
the long-distance properties of phase A.

To analyze the vortices, as in Chapter 7, let us also allow an external gauge field Aµ ,
which couples to the global U(1) symmetry of the XY model; from Table 14.1, this will
change the spatial gradient term for H in (14.24) to

|(∂µ +2iaµ − iAµ)H|2 . (14.26)

Now, consider a vortex in which the phase of H winds by 2πnH , and the phase of ϕ
winds by 2πnϕ , with nH and nϕ integers. In terms of the gauge-invariant XY order
parameter, by (14.14), this is a vortex with phase winding 2πnΨ with

nΨ = nH +2nϕ . (14.27)

Let us denote the total Aµ flux in this vortex by ΦA, and similarly the aµ flux by Φa.
Then, generalizing the arguments in Chapter 7, finiteness of the vortex energy in (14.24)
modified by (14.26) requires that

Φa = 2πnϕ , ΦA−2ϕa = 2πnH . (14.28)

Adding these expressions, we obtain ΦA = 2πnΨ, which is exactly the correct expression
for the long-range-ordered phase of the conventional XY model. The elementary vortex
nΨ = 1 is obtained by nH = 1, nϕ = 0, Φa = 0. However, the double vortex nΨ = 2 has
two possible configurations: nH = 2, nϕ = 0, Φa = 0 and nH = 0, nϕ = 1, Φa = 2π.
These two vortex configurations differ by an aµ flux of 2π, and so a Dirac monopole in
Lmonopole can induce tunneling between them, and we need only keep the lower energy
combination. In a parameter regime with |s1| ≫ |s2|, phase winding with nH non-zero
can become expensive; so the extended XY model can lead to a novel situation where a
double vortex with nΨ = 2, nϕ = 1 can become less expensive than a vortex with nΨ = 1.
But the physical quantum numbers of all the allowed vortices remain identical to those
of the conventional XY model.

B. ⟨H⟩= 0, ⟨ϕ⟩ ̸= 0
Here, ϕ is condensed, and so let us set ϕ = ϕ0, with a gauge chosen so that ϕ0 is real.
This condensation of ϕ makes the aµ photon massive via the Higgs mechanism, as in
(14.25). Moreover, with ϕ condensed, then we can reduce (14.14) to

Ψ∼ H in phase B. (14.29)

With this identification, and the suppression of aµ , the remaining theory for H is just
the XY model for Ψ, and so ⟨H⟩ = 0 implies that we are in the trivial phase of the
XY model, as indicated in Fig. 14.2. The massive H excitations have integer charges
Q=±1.
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171 14.2 The Extended XY Model

With ϕ condensed in phase B, the theory LU does have vortex saddle points, and
the reader may wonder why this does not make a difference to the identification as a
trivial phase. Because H is not condensed, it is not sensible to consider the winding nH ,
and also not the winding in the XY order parameter nΨ. However, the winding nϕ is
well defined. A vortex with nϕ = 1 has Φa = 2π. But the monopoles render such a flux
invisible, given the periodicity property of aµ discussed near (14.20), that is, monopoles
are tunneling events that change global flux by 2π, and this is possible because the
associated Dirac string is invisible due to (14.20) these issues will be discussed in more
detail in Section 25.3.

C. ⟨H⟩= 0, ⟨ϕ⟩= 0
At large positive s1 and s2, both H and ϕ are restricted to very small magnitudes, and so
we can initially set them to zero. Then the remaining term inLU describes the statistical
mechanics of a gapless photon aµ in three spacetime dimensions. Such a gauge theory
is confining, which means no free gauge-charged particles are allowed. Here, this is
easy to see in the small-K expansion noted above (14.23); we argued there that such an
expansion generates the XY model for Ψ ∼ Hϕ 2, and so only the Ψ particle survives
as a free excitation. The confining property also holds for large K, but establishing
this is more subtle: we have to couple the gapless photon to monopole configurations
decribed by Lmonopole. We discuss the large-K confining phase of the U(1) gauge theory
using a duality transformation in Section 25.3. The resulting magnitude for Ψ is small
in the confining phase, and so we conclude that phase C coincides with the trivial phase
in Fig. 14.1. This is confirmed by the fact that the only gauge-neutral combinations of
H and ϕ have integer values of global U(1) charge Q.

Phase B is fundamentally the same as phase C, and there is no phase transition
between them: this is an example of “Higgs-confinement continuity,” and is linked to
the fact that ϕ carries a unit gauge charge, as we shall see shortly.

D. ⟨H⟩ ̸= 0, ⟨ϕ⟩= 0
Finally, we turn to the novel fractionalized phase of interest, whose creation has been
the objective of our model building. The analysis of fluctuations about the mean field
in phase D is similar to that of phase B, except that it is H that is condensed, and
not ϕ . As in phase B, let us now set H = H0, with a gauge chosen so that H0 is real.
However, there is the crucial difference that H carries gauge charge 2, while ϕ carries
gauge charge 1. Related to this is the fact that (14.29) is now replaced by

Ψ∼ ϕ 2 in phase D, (14.30)

coinciding with our fractionalization ansatz (14.10). Because of the Higgs mass for aµ ,
the ϕ excitations behave like nearly free massive particles, and so the gauge fluctuations
won’t modify the long-range part of the Ψ correlator obtained from (14.30), and it will
have the needed fractionalized form in (14.11).
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In our charge assignments in Table 14.1, we defined the field H to be charged both
under U(1) and U(1)gauge. It is now convenient to redefine the U(1)gauge symmetry
so that the H field is neutral under the global charge, and we can work with a global
symmetry that has not been broken. To this end, we shift aµ → aµ +Aµ/2, and then the
global charge associated with Aµ is U(1)diag = U(1)+U(1)gauge/2. We now see from
Table 14.1 that the ϕ excitations indeed have a global U(1) charge Q= 1/2.

We now note a crucial emergent property of phase D, which was not on our mind
when we designed ZU . With the condensation of H, we can consider saddle points
of LU that are nH = ±1 vortices in H with winding 2πnH . The winding numbers nϕ
and nΨ are not meaningful in phase D, but the second relation in (14.28) implies that
Φa = ±π (after the shift in aµ noted above). Such an aµ flux is physically observable,
and so this vortex is a physical object. Note that because of the periodicity (14.20),
the flux of π coincides with the flux of −π. So this vortex line can be interpreted as
the wordline of a real emergent particle present in the fractionalized phase, which is
its own anti-particle: this is nothing but the vison of Section 13.4. Moreover, the ϕ
excitations in phase D are the analog of the spinon of Section 13.4: the ϕ field picks
up an Aharonov–Bohm phase factor of −1 when encircling the ±π flux of this vortex.
Thus, phase D has essentially all of the structure of the Z2 spin liquid presented at the
end of Section 13.4. One important point is that phase D here realizes the “even”-Z2

spin liquid, with S an integer in (13.8). The more interesting, and physically relevant,
case of the odd-Z2 gauge theory is discussed in Chapter 16.

A key point worth noting here is that the distinction between the fractionalized phase
D and the remaining phases in Fig. 14.2 is “topological” and robust, and does not
rely upon the presence of the global U(1) symmetry in the extended XY model. The
distinction remains even when there are terms in the action that explicitly break the
globalU(1) symmetry, so that the chargeQ is not defined: then the distinction between
phases A, B, and C disappears, but phase D remains distinct. This topological distinc-
tion relies upon the existence of the stable vison excitations in phase D, which survive
the breaking of the global U(1) symmetry, and are not present in the other phases of
Fig. 14.2. We will see in Section 14.2.3 that the spinons carry Z2 gauge charges, and in
Section 16.3 that the existence of the visons translates into a topological degeneracy of
ground states on a torus, which is only present in phase D; both are robust features of
phase D, which are independent of the presence or not of the global U(1) symmetry.

14.2.3 Emergent Z2 Gauge Theory

While the theory of the phases of Fig. 14.2 in terms of the compact U(1) gauge theory
in ZU is internally consistent and satisfactory, it is possible to obtain the same phases
in a simpler theory. An important point is that the gapless photon aµ does not make
an appearance in any of the phases, which is an indication that we could rewrite the
theory without a U(1) gauge field.

The reuqired theory is obtained by taking the large J1 limit of ZU in (14.21). We
choose a gauge in which ϑi = 0. Then we see that the J1 is optimized when

https://doi.org/10.1017/9781009212717.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.015


173 14.2 The Extended XY Model

tFigure 14.3 Schematic phase diagram of theZ2 gauge theoryZZ2 in (14.32) inD = 3 describing bosons at integer filling and
easy-plane antiferromagnets with integer spin S in d = 2. The labels of the phases are the same as those in Fig. 14.2
forZU .

aiµ = 0,π , eiaiµ ≡ Zi,i+µ =±1 , (14.31)

and we therefore restrict aµ to these discrete values. This has effectively eliminated the
H field, and reduced the U(1) gauge field aiµ to a Z2 gauge field Zi,i+µ . The partition
function (14.21) now becomes

ZZ2 = ∑
Zi j=±1

∏
i

∫ 2π

0

dφi

2π
exp
(
−HZ2 [φ,Z]

)
,

HZ2 [φ,Z] =−J2 ∑
⟨i j⟩

Zi j cos(φi−φ j)−K ∑
□

∏
i j∈□

Zi j. (14.32)

The action of this partition function is not invariant under a U(1) gauge transforma-
tion, but is invariant under a remnant Z2 gauge transformation

eiφi → ηieiφi , Zi j→ ηiZi jη j, (14.33)

where ηi = ±1 is the Z2 gauge remnant of αi in (14.17) and (14.19). The partition
function (14.32) describes an extended XY model, with the identification of the gauge-
invariant order parameter

Ψi = ϕ 2
i = e2iφi (14.34)

obtained from (14.14), and so (14.10) has now become an equality. It is now much eas-
ier, than for ZU , to perform the summation over Zi j in a small-K expansion of (14.32),
and hence obtain the terms of the extended XY model in (14.13). So ZZ2 is a better
minimal choice for a theory of the extended XY model, involving only the field ϕ = eiφ

with charge Q= 1/2, and a Z2 gauge field. We note that a Z2 gauge theory similar to
(14.32) was used by Lammert et al. [149, 150, 281] to propose fractionalized phases in
the classical phase diagram of a nematic liquid crystal.

The phases ofZZ2 can be analyzed in a manner similar toZU and a schematic phase
diagram is shown in Fig. 14.3. The analysis requires some knowledge of the structure
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of theZ2 gauge theory, which we turn to in Chapter 16. The phases in Fig. 14.3 have the
same basic structure as the correspondingly labeled phases in Fig. 14.2, and the frac-
tionalized ϕ excitations with Q = ±1/2 are deconfined only in phase D, where they
carry a Z2 gauge charge (by (14.33)). The vison excitations of phase D are now sim-
pler: they correspond to configurations over Zi j with ∏i j∈□ Zi j =−1, in a background
of ∏i j∈□ Zi j = 1, as illustrated in Fig. 16.2. The presence of the visons, and spinon exci-
tations with Z2 charges, are robust features of phase D, which survive even when the
global U(1) symmetry is explicitly broken.

As was the case for ZU , the partition function ZZ2 in (14.32) describes the even-
Z2 spin liquid case, corresponding to integer spin-S antiferromagnets, or bosons at
integer filling. The extension of the Z2 gauge theory to the odd case corresponding
to half-integer spin-S antiferromagnets, or bosons at half-integer filling is considered
in Chapter 16. In the spacetime lattice discretization being considered in the present
chapter, this odd extension corresponds to adding an additional Berry phase term to
(14.32), which depends on the Z2 gauge field on the temporal links:

HZ2 [φ,σ ]→ HZ2 [φ,σ ]− iπS∑
i
(1−Zi,i+τ) . (14.35)

In terms of the partition function in (14.32), the additional term in (14.35) corresponds
to an overall factor so that (14.32) is modified to

ZZ2 = ∑
Zi j=±1

∏
i

∫ 2π

0

dφi

2π

[
∏

i
Zi,i+τ

]2S

exp
(
−HZ2 [φ,Z]

)
, (14.36)

where HZ2 is as in (14.32); the factor in square brackets is gauge invariant after we
impose periodic boundary conditions in the temporal direction. Such a factor corre-
sponds to including “Polyakov loops” on each spatial site of the lattice. A derivation
[229, 239, 257] of (14.35) from spin Berry phases in the U(1) gauge theory parent is
presented in Appendix C and (26.4), and its consequence in the Z2 gauge theory below
(26.37). See also Problem 16.2 connecting (14.35) to the corresponding Z2 gauge the-
ory Hamiltonian formulation in Chapter 16, from which we will see that the Berry
phase in (14.35) and (14.36) is intimately connected to the phase factor in (13.8) on the
action of translations on visons.

A numerical study of the odd extension of (14.32) in (14.35) was performed in
Ref. [198], and the phase diagram shown in Fig. 14.4 was obtained. Because the Berry
phase factor in (14.36) can be either positive or negative for half-integer S, direct sim-
ulation of the partition function (14.36) is not possible; instead, the simulation was
performed after a duality mapping [198] similar to those discussed in Chapters 25 and
26. The main change from Fig. 14.3 is that the “trivial” phase has been replaced by a
valence-bond solid (shown in Fig. 9.2), a phenomenon which is treated theoretically in
Section 16.5.2. Indeed, a notable feature of Fig 14.4 is that there is no completely trivial
phase: every phase has either a broken symmetry or fractionalization. We will see in
Chapter 16 that this is a fundamental feature of the odd case, describing half-integer
spin-S antiferromagnets, or bosons at half-integer filling. The absence of a trivial phase
implies that fractionalized phases aremore likely in quantum systemswithBerry phases
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tFigure 14.4 Numerical phase diagram of a Villain formulation of the “odd”-extension of (14.32), applying to half-integer spin-S
easy-plane antiferromagnets or bosons at half-integer filling inD = 3, d = 2, obtained in Ref. [198]. The coupling
Kd is related toK via tanh(Kd) = e−2K , and J2 = 4/g. The valence-bond solid has the same order as in
Fig. 9.2. The ordered phase at small g has long-range order inΨ. The phases could not be precisely identified within
the dashed region. Note the similarity of these phases to those in the experimental survey in Chapter 1 in Fig. 1.8.
Reprinted with permission from APS.

(as in (14.35) and (14.36)) than in classical systems with only positive weights in the
partition function. We will see another example of Berry phase induced deconfinement
in the discussion of deconfined quantum critical points in Section 28.1.

Problems

14.1 Compute the two-point correlator of ϕ 2 using the relativistic field theory (10.2) in
its gapped and symmetric phase, at order u0. Take the imaginary part, and obtain
a more precise version of (14.12). Argue that the form of the threshold singularity
is not modified at higher orders in u.

14.2 Expand (14.32) to order K4, and sum over the Zi j. So obtain an explicit form of
the extended XY model (14.13).
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15 Theory of GappedZ2 Spin Liquids

A large-N expansion of square- and triangular-lattice antiferromagnets is obtained
using a representation of the spins in terms of Schwinger bosons. This yields magnet-
ically ordered phases, Z2 spin liquids, and theories for the transitions between these
phases. Topological excitations of theZ2 spin liquid are used to systematically obtain
the properties of visons.

This chapter moves from the classical XY models of Chapter 14 to realistic quantum
spin models, which realize phases with fractionalization. We begin our formal study of
spin-liquid phases of the Hamiltonian in (9.14), which we write in a more general form

H= ∑
i, j

Ji jSi ·S j . (15.1)

We consider the general case of Si being spin-S quantum spin operators on the sites,
i, of a two-dimensional lattice. The Ji j are short-ranged antiferromagnetic exchange
interactions. We will mainly consider here the square and triangular lattices with
nearest-neighbor interactions, but the methods generalize to a wide class of lattices
and interaction ranges. The results on the triangular lattice obtained in this chapter
apply to observations on the insulator KYbSe2 [250].

As discussed in Section 9.2, for spin S = 1/2, such models can be mapped onto
theories of hard-core bosons Bi, with the operator correspondence

Bi = Si− , B†
i Bi−1/2 = Siz , (15.2)

so that an occupied (empty) boson state is a spin-up (-down) state. In this chapter we
study quantum states in which the hard-core boson number is fractionalized, and we
have excitations with B†B =±1/2. As discussed briefly in Chapter 13, this is achieved
most naturally in a formalism that uses a “parton” construction, in which the spin
operators are expressed in terms of half-charged particles at the outset. Such construc-
tions invariably lead to emergent gauge symmetries, and analyzing the structure of
such emergent gauge theories is a major objective of Parts II and IV.

As in the classical XY analysis of Chapter 14, we find that our analysis initially leads
to a compact U(1) gauge theory, which can be simplified to a Z2 gauge theory under
suitable conditions.

176
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177 15.1 Parton Formulation

15.1 Parton Formulation

A careful examination of the non-magnetic “spin-liquid” phases requires an approach
that is designed explicitly to be valid in a region well separated from Néel long-range
order, and preserves SU(2) symmetry at all stages. It should also be designed to nat-
urally allow for neutral S = 1/2 excitations. To this end, we introduce the Schwinger
boson description [13], in terms of elementary S = 1/2 bosons. For the group SU(2)
the complete set of (2S+1) states on site i are represented as follows

|S,m⟩ ≡ 1√
(S+m)!(S−m)!

(s†
i↑)

S+m(s†
i↓)

S−m|0⟩, (15.3)

where m = −S, . . . ,S is the z component of the spin (2m is an integer). We have intro-
duced two flavors of Schwinger bosons on each site, created by the canonical operator
s†

iα , with α =↑,↓, and |0⟩ is the vacuum with no Schwinger bosons. The total number
of Schwinger bosons, ns, is the same for all the states; therefore

s†
iα sα

i = ns (15.4)

with

ns = 2S (15.5)

(we will henceforth assume an implied summation over repeated upper and lower
indices). It is not difficult to see that the above representation of the states is com-
pletely equivalent to the operator identity in (13.4) between the spin and Schwinger
boson operators

Si =
1
2

s†
iα σσσα

β sβ
i , (15.6)

where ℓ = x,y,z and the σ ℓ are the usual 2× 2 Pauli matrices. In the present chapter,
we distinguish between upper and lower spin indices α,β , . . . because this clarifies the
large M limit to be discussed shortly.

Note that the Schwinger bosons sα are (roughly) the “square root” of the hard-core
boson B noted above. In particular, for S = 1/2, S+ = s†

↑s↓ ∼ B†. So the Schwinger
boson s↑ (s↓) carries boson number 1/2 (−1/2).

The spin states on the two sites i, j can combine to form a singlet in a unique manner
– the wavefunction of the singlet state is particularly simple in the boson formulation:(

εαβ s†
iα s†

jβ

)2S
|0⟩. (15.7)

Finally we note that, using the constraint (15.4), the following Fierz-type identity
generalizing (9.30) can be established(

εαβ s†
iα s†

jβ

)(
εγδ sγ

i sδ
j

)
=−2Si ·S j +n2

s/2+δi jns, (15.8)
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178 15 Theory of GappedZ2 Spin Liquids

where ε is the totally antisymmetric 2×2 tensor

ε =

(
0 1
−1 0

)
. (15.9)

This implies thatH can be rewritten in the form (apart from an additive constant)

H=−1
2 ∑
<i j>

Ji j

(
εαβ s†

iα s†
jβ

)(
εγδ sγ

i sδ
j

)
. (15.10)

This form makes it clear thatH counts the number of singlet bonds.
We have so far defined a one-parameter (ns) family ofmodelsH for a fixed realization

of the Ji j. Increasing ns makes the system more classical and a large-ns expansion is
therefore not suitable for studying the quantum-disordered phase. For this reason we
introduce a second parameter – the flavor index α on the bosons is allowed to run from
1, . . . ,2M with M an arbitrary integer. This therefore allows the bosons to transform
under SU(2M) rotations. However the SU(2M) symmetry turns out to be too large. We
want to impose the additional restriction that the spins on a pair of sites are able to
combine to form a singlet state, thus generalizing the valence-bond structure of SU(2)
– this valence-bond formation is clearly a crucial feature determining the structure
of the states that do not have long-range magnetic order. It is well known that this
is impossible for SU(2M) for M > 1 – there is no generalization of the second-rank,
antisymmetric, invariant tensor ε to general SU(2M).

The proper generalization turns out to be the group USp(2M) [219]. This group is
defined by the set of 2M×2M unitary matrices U such that

UTJU = J (15.11)

where

Jαβ = J αβ =



1
−1

1
−1

. . .
. . .


(15.12)

is the generalization of the ε tensor to M > 1. It is clear that USp(2M) ⊂ SU(2M) for
M > 1, whileUSp(2)∼= SU(2). The sα

i bosons transform as the fundamental representa-
tion of USp(2M); the “spins” on the lattice therefore belong to the symmetric product
of ns fundamentals, which is also an irreducible representation. Valence bonds

J αβ s†
iα s†

jα (15.13)

can be formed between any two sites; this operator is a singlet under USp(2M) because
of (15.11). The form (15.10) ofH has a natural generalization to general USp(2M):

H=−∑
i> j

Ji j

2M

(
J αβ s†

iα s†
j,β

)(
Jγδ sγ

i sδ
j

)
, (15.14)
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179 15.1 Parton Formulation

tFigure 15.1 Phase diagram of the two-dimensional USp(2M) antiferromagnetH as a function of the “spin” ns. The
“quantum-disordered” region preserves Sp(M) spin-rotation invariance, and there is no magnetic long-range order;
however, the ground states here have new types of emergent order (VBS, orZ2 topological order), that are described
in the text.

where the indices α,β ,γ,δ now run over 1, . . . ,2M. We recall also that the constraint
(15.4) must be imposed on every site of the lattice.

We now have a two-parameter (ns,M) family of models H for a fixed realization of
the Ji j. It is very instructive to consider the phase diagram of H as a function of these
two parameters (Fig. 15.1).

The limit of large ns, with M fixed leads to the semi-classical theory. For the special
case of SU(2) antiferromagnets with a two-sublattice collinear Néel ground state, the
semi-classical fluctuations are described by the O(3) non-linear sigma model, which is
clearly related to the O(3) relativistic scalar field theory discussed in Chapter 10. For
other models, the structure of the non-linear sigma models is rather more complicated
and will not be considered here.

A second limit in which the problem simplifies is M large at fixed ns [4, 216], which
is taken using the Schwinger fermion representation. It can be shown that in this limit
the ground state is “quantum disordered.” Further, the low-energy dynamics of H is
described by an effective quantum dimer model [216, 222], with each dimer config-
uration representing a particular pairing of the sites into valence bonds. There have
been extensive studies of such quantum dimer models, and we note some of them later
in Sections 16.4.2 and 26.1.2. Such quantum dimer model studies in the “quantum-
disordered” region of Fig. 15.1 have yielded phases that were obtained earlier [219] by
the methods described below.

The most interesting solvable limit, studied in the present chapter, is obtained by
fixing the ratio of ns and M

κ =
ns

M
(15.15)
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180 15 Theory of GappedZ2 Spin Liquids

and subsequently taking the limit of large M. The implementation of H in terms of
bosonic operators also turns out to be naturally suited for studying this limit. The
parameter κ is arbitrary; tuning κ modifies the slope of the line in Fig. 15.1 alongwhich
the large M limit is taken. From the previous limits discussed above, one might expect
that the ground state of H has magnetic long-range order for large κ and is quantum
disordered for small κ . Indeed, we find below that for any set of Ji j there is a critical
value of κ = κc that separates the magnetically ordered and the quantum-disordered
phase.

15.2 Mean-Field Theory

Webegin by analyzingH at M =∞ with ns = κM. As noted above, this limit is most con-
veniently taken using the bosonic operators. We may represent the partition function
ofH by

Z =
∫
DQDsDλ exp

(
−
∫ β

0
Ldτ

)
, (15.16)

where

L= ∑
i

[
s†

iα

(
d

dτ
+ iλi

)
sα

i − iλins

]

+ ∑
<i, j>

[
M

Ji j|Qi, j|2

2
−

Ji jQ∗i, j
2
Jαβ sα

i sβ
j +H.c.

]
. (15.17)

Here, the λi fix the boson number of ns at each site; τ-dependence of all fields is implicit;
Q was introduced by a Hubbard–Stratonovich decoupling ofH. Notice the close simi-
larity of this procedure to the transformations needed for the Landau–Ginzburg theory
of superconductivity in Chapter 6.

However, the present theory has a crucial additional feature that was not present in
Chapter 6. The Lagrangian L has a U(1) gauge invariance under which

s†
iα → s†

iα exp(iρi(τ)) ,
Qi j→Qi j exp(−iρi(τ)− iρ j(τ)) ,

λi→ λi +
∂ρi

∂τ
(τ) , (15.18)

which is the analog of (14.17) and (14.19) in the classical XY model: we will see below
that theQ play the role of the H field on the triangular lattice, while sα play the role of
ϕ . The functional integral over L faithfully represents the partition function, but does
require gauge fixing. This gauge invariance leads to emergent gauge-field degrees of
freedom, as we see below.

The 1/M expansion of the free energy can be obtained by integrating out ofL the 2M-
component s,s̄ fields to leave an effective action forQ, λ having coefficient M (because
ns ∝ M). Thus, the M→∞ limit is given by minimizing the effective action with respect
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181 15.2 Mean-Field Theory

to “mean-field” values of Q= Q̄, iλ = λ̄ (we are ignoring here the possibility of mag-
netic long-range order, which requires an additional condensate xα = ⟨bα⟩). This is in
turn equivalent to solving the mean-field Hamiltonian

HMF = ∑
<i, j>

(
M

Ji j|Q̄i j|2

2
−

Ji jQ̄∗i, j
2
Jαβ sα

i sβ
j +H.c.

)
+∑

i
λ̄i(s

†
iα sα

i −ns) , (15.19)

a more general version of which appeared in (13.6). This Hamiltonian is quadratic in
the boson operators and all its eigenvalues can be determined by a Bogoluibov trans-
formation, closely connected to that in (3.11). This leads in general to an expression of
the form

HMF = EMF [Q̄, λ̄ ]+∑
µ

ωµ [Q̄, λ̄ ]γ†
µα γα

µ . (15.20)

The eigenstates are labeled by the index µ , and the number of eigenstates equals the
number of sites in the system. EMF is the ground-state energy and is a functional of
Q̄, λ̄ ; ωµ is the eigenspectrum of excitation energies, which is also a function of Q̄, λ̄ ;
and the γα

µ represent the bosonic eigenoperators. The excitation spectrum thus consists
of non-interacting spinor bosons. The ground state is determined by minimizing EMF

with respect to the Q̄i j subject to the constraints

∂EMF

∂ λ̄i
= 0. (15.21)

The saddle-point value of the Q̄ satisfies

Q̄i j = ⟨Jαβ sα
i sβ

j ⟩. (15.22)

Note that Q̄i j =−Q̄ ji, indicating that Q̄i j is a directed field – an orientation has to be
chosen on every link.

These saddle-point equations have been solved for the square and triangular lattices
with nearest-neighbor exchange J, and they lead to stable and translationally invariant
solutions for λ̄i and Q̄i j. The only saddle-point quantity that does not have the full
symmetry of the lattice is the orientation of the Q̄i j. Note that although it appears
that such a choice of orientation appears to break inversion or reflection symmetries,
such symmetries are actually preserved: the Q̄i j are not gauge-invariant, and all gauge-
invariant observables do preserve all symmetries of the underlying Hamiltonian. For
the square lattice, we have λ̄i = λ̄ , Q̄i,i+x̂ = Q̄i,i+ŷ = Q̄. Similarly, on the triangular
lattice we have Q̄i,i+êp = Q̄ for p = 1,2,3, where the unit vectors

ê1 = (1/2,
√

3/2),

ê2 = (1/2,−
√

3/2),

ê3 = (−1,0), (15.23)

point between nearest-neighbor sites of the triangular lattice. The orientation of the
Q̄i j on the triangular lattice is sketched in Fig. 15.2.
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182 15 Theory of GappedZ2 Spin Liquids

tFigure 15.2 Orientation of the nearest neighbor Q̄i j on the triangular lattice. Also shown are the labels of the three sublattices.

tFigure 15.3 Spinon dispersion on the triangular lattice [231]. Reprinted with permission from APS.

We can also compute the dispersion ωk of the γk excitations. These are bosonic parti-
cles that carry spin S= 1/2 (“spinons”), and so they carry fractionalized boson-number
charge Q =±1/2. The dispersion on the square lattice is

ωk =
(
λ̄ 2− J2Q̄2(sinkx + sinky)

2)1/2
(15.24)

while that on the triangular lattice is [231]

ωk =
(
λ̄ 2− J2Q̄2(sink1 + sink2 + sink3)

2)1/2
, (15.25)

with kp = k · êp. These are the spinons, and the spinon dispersion on the triangular
lattice is plotted in Fig. 15.3.

Notice that the spinons have minima at two degenerate points in the Brillouin zone
for both lattices. For the square lattice, the minima are at k = ±(π/2,π/2), while for
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183 15.3 Excitation Spectrum

the triangular lattice they are at k = ±(4π/3,0) (and at wavevectors separated from
these by reciprocal lattice vectors). So there are a total of four spinon excitations in
both cases: two associated with the spin degeneracy of Sz =±1/2, and two associated
with the degeneracy in the Brillouin-zone spectrum.

15.3 Excitation Spectrum

We have already described the four-fold degenerate low-energy spinon excitations
above. Here, we address the nature of the spin-singlet excitations.

In the context of the large-M expansion, this question reduces to understanding
the nature of the spectrum of the Qi j and λi fluctuations about the large-M saddle
point described above. At the outset, we can view such fluctuations as composites of
two-spinon excitations, as both Qi j and λi couple to spinon-pair operators, and so
conclude that such excitations should not be viewed as the “elementary” excitations
of the quantum state found so far. Furthermore, the saddle point has not broken any
global symmetries of the Hamiltonian, and so it would appear that no such composite
excitation has any reason to be low energy without fine-tuning.

However, it does turn out that there are separate elementary excitations in the sin-
glet sector, and these arise from two distinct causes: (i) the gauge invariance in (15.18)
leads to a gapless “photon” excitation; and (ii) there are topologically non-trivial con-
figurations of Qi j, which lead to excitations that would be not be evident in a naive
1/M expansion. Excitations in the class (i) arise in the square-lattice case, while those
in class (ii) appear on the triangular lattice, and these will be considered separately in
the following subsections.

15.3.1 Gauge Excitations

The gauge transformations in (15.18) act on the phases of the Qi j, and so it is appro-
priate to just focus on the fluctuations of the phases of theQi j that are non-zero in the
large-M limit. We will separate the discussions for the square and triangular lattices,
because the results are very different.

Square Lattice
We define

Qi,i+x̂ = Q̄exp(iΘix) ,

Qi,i+ŷ = Q̄exp(iΘiy) . (15.26)

Then, the gauge transformations in (15.18) can be written as

Θix(τ)→Θix(τ)−ρi(τ)−ρi+x(τ),
Θiy(τ)→Θiy(τ)−ρi(τ)−ρi+y(τ),

λi→ λi +
∂ρi

∂τ
(τ). (15.27)
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184 15 Theory of GappedZ2 Spin Liquids

The question before us is whether (15.18) imposes on us the presence of a gapless pho-
ton in the low-energy and long-wavelength limit. The answer is affirmative, and the
required result is obtained by parameterizing such fluctuations as follows

Θix(τ) = ηiax(r,τ),
Θiy(τ) = ηiay(r,τ),

λi =−iλ̄ −ηiaτ(r,τ), (15.28)

where the aµ are assumed to be smooth functions of spacetime parameterized by the
continuum spatial coordinate r, and imaginary time τ ; the factor ηi = ±1 on the two
checkerboard sublattices of the square lattice, so that ηi has opposite signs on any pair
of nearest-neighbor sites. Then, taking the continuum limit of (15.27) with ρi(τ) =
ηiρ(r,τ), we deduce from (15.28) that

ax→ ax−∂xρ,
ay→ ay−∂yρ,
aτ → aτ −∂τ ρ. (15.29)

So we reach the very important conclusion that aµ transforms just like a continuum
U(1) gauge field! This aµ gauge field is essentially the same as the aµ gauge field dis-
cussed in Section 13.3, and which we introduced in (14.21) for the classical XY model
of Chapter 14. Note that the factor ηi in this U(1) gauge transformation implies from
(15.18) that the spinons si carry opposite gauge charges on the two sublattices – these
spinons are the analog of ϕ in the classical XY model of Chapter 14.

As in traditional field-theoretic analyses, (15.29) imposes the requirement that the
long-wavelength action of the aµ fluctuations must have the form

Sb =
∫

d3x
1

2K′
(εµνλ ∂ν aλ )

2, (15.30)

and this describes a gapless aµ photon excitation, with a suitable velocity of “light.” So,
on the square lattice, the spectrum of spin-singlet states includes a linearly dispersing
photon mode. Such a state is a U(1) spin liquid, and not a Z2 spin liquid. Actually, the
gapless photon of this U(1) spin liquid is ultimately not stable because of monopole
tunneling events, just as in phase A of Fig. 14.2; this involves a long and interesting
story [217, 218, 256, 261], which we will turn to in Chapter 28. The remainder of the
discussion in this chapter is restricted to the triangular lattice where, as we show below,
the U(1) photon is gapped by the Higgs mechanism, just as in phase D of Fig. 14.2.

Triangular Lattice
Now we have to consider three separate values ofQi j per site, and so we replace (15.26)
by

Qi,i+êp = Q̄exp(iΘp,i) , (15.31)
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185 15.3 Excitation Spectrum

where p = 1,2,3, the vectors êp were defined (15.23), Q̄ is the mean-field value, and Θp

is a real phase. The effective action for the Θp,i must be invariant under

Θp,i→Θp,i−ρi−ρi+êp . (15.32)

Upon performing a Fourier transform, with the link variables Θp placed on the center
of the links, the gauge invariance takes the form

Θp(k)→Θp(k)−2ρ(k)cos(kp/2). (15.33)

The momentum k takes values in the first Brillouin zone of the triangular lattice. This
invariance implies that the effective action for the Θp can only be a function of the
following gauge-invariant combinations:

Ipq(k) = 2cos(kq/2)Θp(k)−2cos(kp/2)Θq(k). (15.34)

We now wish to take the continuum limit at points in the Brillouin zone where the
action involves only gradients of the Θp fields and thus has the possibility of gapless
excitations. The same analysis could have been applied to the square lattice, in which
case there is only one invariant Ixy. In this case, we choose k = g+ q, with g = (π,π)
(this corresponds to the choice of ηi above) and q small; then Ixy = qxΘy−qyΘx, which
is clearly the U(1) flux invariant under (15.29).

The situation is more complex for the case of the triangular lattice [231]. Now there
are three independent Ipq invariants, and it is not difficult to see that only two of the
three values of cos(kp/2) can vanish at any point of the Brillouin zone. One such point
is the wavevector

g =
2π√
3a

(0,1), (15.35)

where

g · ê1 = π,
g · ê2 =−π,
g · ê3 = 0. (15.36)

Taking the continuum limit with the fields varying with momenta close to g, we find
that the Ipq depend only upon gradients of Θ1 and Θ2. It is also helpful to parametrize
the Θp in the following manner (analogous to (15.28))

Θ1(r) = ia1(r)eig·r,

Θ2(r) =−ia2(r)eig·r,

Θ3(r) = H(r)eig·r. (15.37)

It can be verified that the condition for the reality of Θp is equivalent to demanding
that a1,a2,H be real.Wewill now take the continuum limit with a1,a2,H varying slowly
on the scale of the lattice spacing. It is then not difficult to show that the invariants Ipq

reduce to (after a Fourier transformation)
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186 15 Theory of GappedZ2 Spin Liquids

I12 = ∂2a1−∂1a2,

I31 = ∂1H−2a1,

I32 = ∂2H−2a2, (15.38)

where ∂i is the spatial gradient along the direction êi. Thus, the a1,a2 are the com-
ponents of a U(1) gauge field, where the components are taken along an “oblique”
coordinate system defined by the axes ê1, ê2; this is just as in the square lattice. How-
ever, in addition to I12, we also have the invariants I31 and I32 in the triangular lattice;
we observe that this involves the field H, which transforms like the phase of a charge-
±2 Higgs field under the U(1) gauge invariance: indeed H is the analog of the field H
introduced in the classical XY model in Chapter 14, and the present triangular-lattice
spin liquid is the analog of phase D of Fig. 14.2. So the fluctuations of an isotropic
triangular lattice will be characterized by an action of the form

Sb =
∫

d3x
1

2K′
[
I2
12 + I2

31 + I2
32
]
, (15.39)

which replaces (15.30). This is the action expected in the Higgs phase of a U(1) gauge
theory. The Higgs condensate gaps out the U(1) photon, and so there are no gapless
singlet excitations on the triangular lattice. This is a necessary condition for mapping
the present state onto a Z2 spin liquid.

The presentation so far of the gauge fluctuations described by a charge-±2 Higgs
field coupled to a U(1) gauge field would be appropriate for an anisotropic triangular
lattice in which the couplings along the ê3 direction are different from those along ê1

and ê2. For an isotropic triangular lattice, all three directions must be treated equiva-
lently, and then there is no simple way to take the continuum limit in the gauge sector;
we have toworkwith the action in (15.39), butwith the invariants specified as in (15.34).
Such an action does not have a gapless photon anywhere in the Brillouin zone, and
all gauge excitations remain gapped. There are other choices for the wavevector g in
(15.35) at which the other pairs of values of cos(kp/2) vanish; these are the points

2π√
3

(√
3

2
,−1

2

)
,

2π√
3

(
−
√

3
2

,−1
2

)
, (15.40)

which are related to the analysis above by the rotational symmetry of the triangular
lattice.

15.3.2 Topological Excitations

The analysis in Section 15.3.1 described small fluctuations in the phases of the Qi j

about their saddle-point values Q̄. On the triangular lattice, we found that such fluc-
tuations led only to gapped excitations, which at higher energies become part of the
two-spinon continuum.

Now we consider excitations that involve large deviations from the spatially uniform
saddle-point values, and that turn out to be topologically protected. These excita-
tions are closely connected to the vortices in charged superfluids that were described in
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Section 7.2. There, we considered a scalar field Ψ with charge q coupled to the electro-
magnetic U(1) gauge field A. We found stable vortex-like saddle points with flux nΦ0,
with Φ0 = hc/q, for all integer n. We have seen above that, on the triangular lattice, the
Schwinger boson state has fluctuations described by a charge-2 Higgs field H coupled
to aU(1) gauge field aµ . In this case, we are normalizing the gauge field so that h̄c⇒ 1,
and so we can expect vortex solutions with aµ flux n(2π)/2, for all integers n. However,
this is not quite correct. A crucial difference between the present theory and the elec-
tromagnetic gauge field is that the aµ gauge field is “compact”: this means that a gauge
field ax,y is identical to ax,y +2π, and tunneling events that change the total flux by 2π
are allowed (these are “monopoles,” which will be considered further in Section 25.3
and Chapter 26). This means that all vortex solutions with even n are identical to each
other, as are those with odd n. The n = 0 case corresponds to no vortex at all, and so
there is only a single non-trivial vortex with n = 1 and flux π. This is the sought-after
vison. Note that because flux π and −π are identical, the vison saddle point preserves
time-reversal symmetry. In contrast, the vortices in Section 7.2 break time reversal,
with±n vortices time-reversal partners of each other. We note that this vison is closely
related to that discussed in Section 14.2.2 for phase D of the classical XY model.

In this section, we obtain the vison saddle-point solution by working with a lat-
tice effective action: this is essential to account for the influence of the monopoles. So
we look for spatially non-uniform solutions of the saddle-point equations (15.21) and
(15.22). In general, solving such equations is a demanding numerical task, and so we
are satisfied with a simplified analysis that is valid when the spin gap is large. In the
large-spin-gap limit, we can integrate out the Schwinger bosons, and write the energy
as a local functional of the Qi j. This functional is strongly constrained by the gauge
transformations in (15.18): for time-independent Qi j, this functional takes the form

E[{Qi j}] =−∑
i< j

(
α|Qi j|2 +

β
2
|Qi j|4

)
−K ∑

even loops
Qi jQ∗jk · · ·Q∗ℓi. (15.41)

Here α , β , and K are coupling constants determined by the parameters in the Hamilto-
nian of the antiferromagnet. We have shown them to be site-independent, because we
have only displayed terms in which all links/loops are equivalent; they can depend upon
links/loops for longer-range couplings provided the full lattice symmetry is preserved.

We can now search for saddle points of the energy functional in (15.41). Far from
the center of the vison, we have |Qν

i j|= Q̄, so that the energy differs from the ground-
state energy only by a finite amount. Closer to the center, there are differences in
the magnitudes. However, the key difference is in the signs of the link variables, as
illustrated in Fig. 15.4: there is a “branch-cut” emerging from the vison core along
which sgn(Qν

i j) =−sgn(Q̄i j), as in Fig. 13.6d. The results of a numerical minimization
[114] of E[{Qi j}] on the the triangular lattice are shown in Fig. 15.4. The magni-
tudes of Qν

i j are suppressed close to the vison, and converge to Q̄i j as we move away
from the vison (modulo the sign change associated with the branch cut), analogous
to the Abrikosov vortices examined in Chapter 7. Despite the branch-cut breaking the
three-fold rotation symmetry, the gauge-invariant fluxes of Qν

i j preserve the rotation
symmetry.
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188 15 Theory of GappedZ2 Spin Liquids

tFigure 15.4 A vison on the triangular lattice [114]. The center of the vison is marked by the X. The wavy line is the “branch-cut”
where we have sgn(Qν

i j) =−sgn(Q̄i j) only on the links crossed by the line. Plotted is the minimization result of
E[{Q̄i j}]withα = 1,β =−2,K = 0.5. Minimization is done with the cluster embedded in a vison-free
lattice with all nearest-neighbor links equal to Q̄i j . The numbers are (Q̄i j−Qν

i j) and the thickness of the links are
proportional to (Qν

i j−Q̄i j)
1/2. Reprinted with permission from APS.

So we have found a stable real-vortex solution that preserves time reversal, and has
a finite excitation energy. We have also anticipated that this vortex is identified with
the vison particle of the Z2 spin liquid: more evidence for this identification is given in
Sections 15.4.2 and 15.4.3.

15.4 Dynamics of Excitations

For the case of the triangular lattice, Section 15.3 has identified two types of elementary
excitations: bosonic spinons with a two-fold spin and a two-fold lattice degeneracy, and
a topological excitation that we have anticipated will become the vison particle of a Z2

spin liquid. I now describe the dynamics of the interactions between these excitations,
and indeed verify that they reproduce the general structure associated with the Z2 spin
liquid.
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189 15.4 Dynamics of Excitations

A similar analysis can also be carried for the U(1) spin liquid on the square lattice.
However, let us defer consideration of this case to Section 28.1.

15.4.1 Bosonic Spinons

The general structure of the theory controlling the low-energy spectrum becomes
clearer upon taking a suitable continuum limit of the Lagrangian in (15.17), while
replacing Qi j = Q̄i j and iλi = λ̄ . We take the continuum limit after separating three
sites, u, ν , w, in each unit cell (see Fig. 15.2).Wewrite the boson operators on these sites
as sα

u = uα , sα
ν = να etc. Then, to the needed order in spatial gradients, the Lagrangian

density becomes [113]

L= u∗α
∂uα
∂τ

+ν∗α
∂να
∂τ

+w∗α
∂wα
∂τ

+ λ̄
(
|uα |2 + |να |2 + |wα |2

)
− 3JQ̄

2
Jαβ

(
uα νβ +να wβ +wα uβ

)
+ c.c.

+
3JQ̄

8
Jαβ

(
∇∇∇uα ·∇∇∇νβ +∇∇∇να ·∇∇∇wβ +∇∇∇wα ·∇∇∇uβ

]
+ c.c. (15.42)

We now perform a unitary transformation to new variables xα , yα , zα . These are chosen
to diagonalize only the non-gradient terms in L. uα

να
wα

=
zα√

6

 1
ζ
ζ 2

+Jαβ
z∗β√

6

 −i
−iζ 2

−iζ

+
yα√

6

 1
ζ
ζ 2

+Jαβ
y∗β√

6

 i
iζ 2

iζ


+

xα√
3

 1
1
1

 , (15.43)

where ζ ≡ e2πi/3. The tensor structure above makes it clear that this transformation is
rotationally invariant, and that xα , yα , zα transform as spinors under SU(2) spin rota-
tions (for convenience, we consider the case USp(2)≡ SU(2) in this section). Inserting
Eq. (15.43) into L we find

L= x∗α
∂xα
∂τ

+ y∗α
∂ zα
∂τ

+ z∗α
∂yα
∂τ

+(λ̄ −3
√

3JQ̄/2)|zα |2 (15.44)

+(λ̄ +3
√

3JQ̄/2)|yα |2 + λ̄ |xα |2 +
3JQ̄
√

3
8

(
|∂xzα |2 + |∂yzα |2

)
+ · · · .

The ellipsis indicates omitted terms involving spatial gradients in the xα and yα , which
we will not keep track of. This is because the fields yα and xα are massive relative to
zα , and so can be integrated out. This yields the effective Lagrangian

Lz =
1

(λ̄ +3
√

3JQ̄/2)
|∂τ zα |2 +

3JQ̄
√

3
8

(
|∂xzα |2 + |∂yzα |2

)
+(λ̄ −3

√
3JQ̄/2)|zα |2 + · · · . (15.45)
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190 15 Theory of GappedZ2 Spin Liquids

Note that the omitted spatial gradient terms in xα , yα do contribute a correction to the
spatial gradient term in (15.45), and we have not accounted for this.

So we reach the important conclusion that the spinons are described by a rela-
tivistic complex scalar field zα . Counting the two values of α , and the particle and
anti-pariticle excitations, we have a total of four spinons, as expected.

Next, we consider the higher-order terms in (15.45), which arise from including
the fluctuations of the gapped fields Q and λ . Rather than computing these from
the microscopic Lagrangian, it is more efficient to deduce their structure from sym-
metry considerations. The representation in (15.43), and the connection of the uα ,
να , wα to the lattice degrees of freedom, allow us to deduce the following symmetry
transformations of the xα , yα , zα :

• Under a global spin rotation by the SU(2) matrix gαβ , we have zα → gαβ zβ , and
similarly for xα , and yα .

• Under a 120◦ lattice rotation, we have uα → να , να → wα , wα → uα . From (15.43),
we see that this symmetry is realized by

zα → ζ zα , yα → ζ yα , xα → xα . (15.46)

Note that this is distinct from the SU(2) rotation because det(ζ ) ̸= 1.

It is easy to verify that Eq. (15.44) is invariant under all the symmetry operations above.
These symmetry operators make it clear that the only allowed quartic term for the
Heisenberg Hamiltonian is

(
∑α |zα |2

)2: this quartic term added to Lz yields a theory
with O(4) symmetry, corresponding to rotations between the four real fields that can
be extracted from the two complex fields zα . So the theory reduces to the M = 4 case
of the relativistic scalar field theories of Chapters 10 and 11.

We also observe from (15.45) that the zα field will condense when

r = (λ̄ −3
√

3JQ̄/2) (15.47)

becomes negative as κ is varied across κc. This condensation breaks the spin-rotation
symmetry, and leads to a quantum phase transition to a phase with coplanar anti-
ferromgnetic long-range order, as illustrated in Fig. 15.5. The order parameter of
this coplanar antiferromagnet is related to Z2 gauge-invariant bilinears of zα by
(generalizing the relation (9.15) for the bipartite lattice)

Si ∝ Im
[
exp(iQ · r)εαγ zγ σσσαβ zβ

]
, (15.48)

where the wavevectorQ= (4π/a)(1/3,1/
√

3). This the Z2 spin liquid to coplanar anti-
ferromagnet phase transition, and is a close analog of the transition from phase D
to phase C of the classical XY model in Fig. 14.2, or a corresponding transition in
Fig. 14.4: the zα field is the analog of the ϕ field, and the main difference is that the
global spin-rotation symmetry here is larger than the U(1) symmetry of the XY model,
and the action for the zα has an O(4) symmetry (corresponding to rotations among
the four real and imaginary components of zα ).
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191 15.4 Dynamics of Excitations

tFigure 15.5 Magnetic ordering transition driven by tuning r in (15.47). Fractionalized anyonic excitations are present only for
r > rc, and so there is a “confinement” transition at r = rc. The critical theory is expressed in terms of bosonic
spinons zα , and is an example of deconfined critical theory. This transition is the analog of the transition between
phases C and D in Figs. 14.2 and 14.3, and a similar transition in Fig. 14.4. There is evidence for such a transition in
KYbSe2 [250].

We can extend the connection to the models of Chapter 14 to the remaining phases
in the phase diagrams in Figs. 14.3 and 14.4 simply by extending the theory in (14.36)
to O(4) symmetry. So now we have

ZZ2 = ∑
Zi j=±1

∏
i

∫
dziα δ

(
∑
α
|ziα |2−1

)[
∏

i
Zi,i+τ

]2S

exp
(
−HZ2 [zα ,Z]

)
,

HZ2 [zα ,Z] =−J2 ∑
⟨i j⟩

Zi j (z∗iα z jα + c.c.)−K ∑
△,□

∏
i j∈△,□

Zi j , (15.49)

where the Ziα reside on the sites i of a three-dimensional hexagonal lattice (i.e., stacked
triangular lattices), and the K term acts on the triangular plaquettes of the spatial
plane, and the rectangular plaquettes along the temporal direction. The prefactor in
the square brackets is the Berry phase term for half-integer-spin S, which is important
for replacing the trivial phase by the valence-bond solid, as in Fig. 14.4. This Berry
phase is directly linked to the vison Berry phase discussed in Section 15.4.2, as we will
see in Section 16.5.2. As in Fig. 14.4, the theory (15.49) is expected to also display
valence-bond solid phases, along with the phases in Fig. 15.5.

The transition from the ordered antiferromagnet to the Z2 spin liquid is not influ-
enced by the Berry phase term (because the visons remains gapped at this transition),
and is described by the O(4) Wilson–Fisher critical theory [50, 51] considered in Sec-
tion 11.2. However, there is an important difference in the structure of the observable
order parameter. Note that zα was obtained from the continuum limit of the spinon sα ,
and so it is a fractionalized degree of freedom, carrying a unitZ2 charge. Correlators of
zα are therefore not observable, only those of gauge-invariant bilinear combinations.
This is denoted by stating the universality class of the transition is actually O(4)∗. This
critical theory has the same exponents as the O(4) theory, but some observables in a
finite geometry are different [308]. As the critical fields of the theory are fractionalized
spinons, this is an example of a “deconfined critical point,” and we will meet others in
Section 16.5.2 and Chapters 26 and 28.
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X

X
X

X

(a) (b)

(c) (d)tFigure 15.6 Adiabatic motion of a vison (denoted by the X) around a single site of the triangular lattice (denoted by the filled
circle). The initial state is in (a), and the final state is in (d), and these differ by a gauge transformation under which
siα →−siα only on the filled-circle site.

15.4.2 Motion of Visons

Let us now consider the motion of the vison elementary excitation, which is illustrated
in Fig. 15.6. The vison is located at the center of a triangle, and so can tunnel between
neighboring triangular cells. We are interested here in any possible Berry phases the
vison could pick up upon tunneling around a closed path.

In Section 15.3.2, we characterized the vison by the saddle-point configuration Qν
i j

of the bond variables in the Hamiltonian (15.19). By diagonalizing this Hamiltonian
[114, 231], we can show that the wavefunction of the vison can be written as (compare
to (4.7) and (13.7))

|Ψν⟩= P exp

(
∑
i< j

f ν
i j Jαβ s†

iα s†
jβ

)
|0⟩, (15.50)

where |0⟩ is the boson vaccum, P is a projection operator that selects only states that
obey (15.4), and the boson-pair wavefunction f ν

i j =− f ν
ji is determined from (15.19) by

a Bogoliubov transformation.
Let us now consider the motion of a single vison [114]. The gauge-invariant Berry

phases are those associated with a periodic motion, and so let us consider the motion
of a vison along a general closed loop C. We illustrate the simple case where C encloses
a single site of the triangular lattice in Fig. 15.6. The wavy lines indicate sgn(Qν

i j) =

−sgn(Q̄i j), as in Fig. 15.4. The last state is gauge-equivalent to the first state, after
the gauge transformation sα

i →−sα
i only for the site i marked by the filled circle. As

long as the vison wavefunction can be chosen to be purely real, it is clear that no Berry
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193 15.4 Dynamics of Excitations

phase is accumulated from the time evolution of the wavefunction as the vison tunnels
around the path C. However, there can still be a non-zero Berry phase because a gauge
transformation is required to map the final state to the initial state. The analysis in
Fig. 15.6 shows that the required gauge transformation is

sα
i →−sα

i , for i inside C,
sα

i → sα
i , for i outside C. (15.51)

By (15.4), each site has ns = 2S bosons, and so the total Berry phase accumulated by
|Ψν⟩ is

πns× (number of sites enclosed by C) . (15.52)

This Berry phase is equivalent to the relationship (13.8) between the translation oper-
ators in the x and y directions acting on the vison states for the square lattice. For the
important case of S = 1/2, the vison experiences a flux of π for every site of the tri-
angular lattice. This phase factor of π is related to an “anomaly” associated with the
global U(1) boson-number symmetry, and translational symmetry [32, 68], and was
first noted in Refs. [119, 230] as a feature of Z2 spin liquids with half-integer spin. In
particular, this result implies the resonating-valence-bond state is an odd-Z2 spin liq-
uid. It is the vison Berry phase in (15.52) that leads to the Berry phase term in (14.35)
for the XY model.

A notable features of (15.52) is that the quantized integer value of ns = 2S is impor-
tant. Memory of this quantization was lost in the mean-field theory of Section 15.1,
which was sensible also for non-integer values of ns. So inclusion of the vison fluc-
tuations restores the quantization of spin. A more complete theory for the vison
fluctuations is given in Chapter 16.

15.4.3 Semions and Fermions

Before the identification of the present Schwinger boson spin liquid with the Z2 spin
liquid, we need to establish that the spinons and visons are mutual semions. This is
immediately apparent from a glance at Figs. 15.4 and 15.7.

X

m

e

tFigure 15.7 Mutual statistics of e andm particles. This process leads to a Berry phase of−1, when the e particle crosses the
branch-cut of them particle.
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X

m
e

m
eXtFigure 15.8 Two ε particles undergoing an exchange: after traversing the path shown, a translation returns the ε particles to the

original state. Each ε particle is a bound state of a vison (them particle) and the sα bosonic spinon (the e particle).
This process leads to a Berry phase of−1, when the moving e particle crosses the branch-cut of the stationarym
particle.

The Qν
i j transport the spinons from site to site, and for spinon encircling a vison in

a large circuit, the only difference between the cases with and without the vison is the
branch-cut. This branch-cut yields an additional phase of π in the vison amplitude,
and provides the needed phase for mutual semion statistics [219, 303].

We can now identify the e, ε , and m anyons, in the abstract topological characteriza-
tion of theZ2 spin liquid at the end of Section 13.4. The e anyon is the Schwinger boson
itself, sα . This is a mutual semion with respect to the vison, and so we identify the vison
with the m particle. Finally, the ε anyon is obtained by the fusion ε = e×m, and so
the ε anyon is a bound state of e and m. The ε anyon is a fermion as can be deduced by
computing the Berry phase associatedwith exchanging one bound state of e and m with
another bound state, as shown in Fig. 15.8. (Note that this “long-distance” Berry phase
is multiplied by the “short-distance” vison motion phases discussed in Section 15.4.2.)
It is quite remarkable that a microscopic theory of bosonic spins S, expressed in terms
of fractionalized bosons sα , yields an excitation that is a fermion; this is one indication
of the presence of long-range entanglement and topological order.

An alternative formulation of the Z2 spin liquid on the triangular lattice proceeds
by expressing the spins S in terms of Schwinger fermions fα ; we consider such for-
mulations for other spin liquids in Chapters 22, 23, and 28. For the Z2 spin liquid,
the fα spinons would become the ε particles, and the bosonic e would be the bound
state of the fα and the m vison. So ultimately, independent of whether we choose to
fractionalize the S spins in terms of bosonic or fermionic partons, we obtain the same
characterization of the observable excitations in the resulting Z2 spin liquid. This iden-
tity also extends to the symmetry transformations of the anyons, as has been shown in
some detail on the kagome lattice [163].

Problem

15.1 Insert the anstaz (15.31) into the mean-field ansatz (15.19) for the triangular lat-
tice. Expand the resulting ansatz to order Θ2

p, and then integrate out the Schwinger
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bosons to obtain the effective action S[Θp(k)]. The gauge invariance (15.34)
requires that this be of the form

S[Θp(k)] =
1
2

∫ d2k
(2π)2 ∑

p̸=q
K(k)Ipq(k)Ipq(−k). (15.53)

Show that it is indeed of this form, and obtain an expression for K(k).
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16 Z2 Gauge Theory

An effective Z2 gauge theory of spin liquids is obtained from the Schwinger-boson
theory. The weak and strong coupling expansions of the Z2 gauge theory enable
a unified description of both the spin liquid and confining phases. Half-integer
spin antiferromagnets are described by an “odd”-Z2 gauge theory, which is used to
describe the deconfined criticality of the transition from theZ2 spin liquid to the con-
finingvalence-bond solid. Theodd-Z2 gauge theory is also connected to thequantum
dimer model in the strong-coupling limit. Finally, a connection is made between Z2

gauge theory and arrays of laser-pumped Rydberg atoms.

Chapter 15 gave an essentially complete presentation of the properties of a Z2 spin
liquid, derived from a theory in which the spins S were fractionalized into bosonic
partons. The purpose of this chapter is to (i) establish that the Z2 spin liquid is stable
for a finite range of parameters by accounting for non-perturbative corrections to the
large-N expansion, and (ii) address the confinement transitions of this spin liquid into
conventional states without fractionalization, similar to those in Figs. 9.2, 14.3, and
14.4. Such confinement transitions proceed by the condensation of one of the bosonic
anyons of the Z2 spin liquid. We have already discussed the confinement transition
associated with the condensation of the e particle in Section 15.4.1; the condensation
of the zα particle leads to a magnetic state with non-collinear order via a deconfined
critical point with emergent O(4) symmetry. This chapter addresses the other possible
confinement transition, driven by the condensation of the m anyon, the vison. As was
first shown in Refs. [119, 230], the condensation of visons is described by an effective
Z2 gauge theory of the visons. For half-integer spins (or bosons at half-filling), the
confining state turns out to be the valence-bond solid (VBS) of Fig. 9.2.

16.1 From the Large-N Path Integral to aZ2 Gauge Theory

The theory for theZ2 spin liquid in Chapter 15 began by fractionalizing the spin opera-
tor into Schwinger bosons siα , and then writing down the path integral (15.16) in terms
of auxilliary variables Qi j that reside on the links of the lattice, and a Lagrange mul-
tiplier on each site λi. This path integral had the fundamental property of invariance

196
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197 16.1 From the Large-N Path Integral to aZ2 Gauge Theory

under theU(1) gauge transformation in (15.18). Subsequently, as dictated by the large-
N limit, we integrated out the siα spinons, and examined the structure of effective action
forQi j and λi.We found a saddle point for the ground state Q̄i j, and also a saddle point
for the vison Qν

i j in Section 15.3.2 and Fig. 15.4.
In this chapter, I would like to examine the path integral over theQi j and λi in more

detail, going well beyond the large-N expansion employed in Chapter 15. In particular,
we want to sum over the vison saddle points in the path integral, along with “instan-
tons” between the saddle points, and even allow the vison density to become large,
so that we move across the transition associated with vison condensation. I now argue
that all of this physics can be mapped onto a Z2 gauge theory. This mapping was estab-
lished in Refs. [119, 230] by employing a duality mapping to an Ising model on the dual
lattice. Here we shall proceed in a direct approach, focusing on a Hamiltonian descrip-
tion. The analysis here is the analog of the mapping to the Z2 gauge theory in (14.32)
from the U(1) gauge theory in (14.21) for the classical XY model.

Working directly with the path integrals defined in Chapter 15 is far too complicated,
and it pays to obtain a simpler effective theory that retains the essential physics. For
this purpose, an important observation is that the saddle-point values for the ground
state Q̄i j, and for the visonQν

i j, are both real. Moreover, far from the core of the vison
in Fig. 15.4, Qν

i j differs from Q̄i j only by a change in sign along the branch-cut. This
indicates that, to include the visons, we can just perform the path integral over realQi j.

In the path integral over the realQi j, we need to include terms that endow the system
with a quantum time dependence. After integrating out the gapped spinons, we will
generate terms in the effective action for Qi j of the form

∑
⟨i j⟩

∫
dτ
[
(∂τQi j)

2 +V (Qi j)
]
. (16.1)

Here, we are using a gauge in which λi(τ) has been made τ independent after a suitable
gauge transformation from (15.18). On its own, (16.1) implies that there is a “particle”
on each link of the lattice, with a discrete spectrum of non-degenerate energy levels.
Let us assume that the potential V , which is symmetric under a sign change of Qi j,
has deep minima at valuesQi j =±1, after a suitable rescaling of theQi j. There will be
instanton events in the path integral, which tunnel between these minima, and so we
obtain two closely spaced lowest-energy eigenstates, with an energy spacing we equate
to 2g. We focus our attention on these two states: so we have a “qubit” on each link of
the lattice, and we introduce Pauli matrices Xi j, Yi j, Zi j, which act on each qubit. From
this reasoning, we have argued for the replacement

Qi j⇒ Zi j (16.2)

in the large-N path integral; this is the precise analog of the mapping (14.31) for the XY
model. This is the converse of the reasoning that related the Ising model to the theory
of a real scalar field, and we have restricted the Qi j to only two possible values, ±1.
Moreover, the energies of the qubit on each link can be accounted for by a term in the
Hamiltonian
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198 16 Z2 Gauge Theory

tFigure 16.1 (a) The plaquette term of theZ2 lattice gauge theory. (b) The operatorsGi that generateZ2 gauge transformations.

−g ∑
⟨i j⟩

Xi j . (16.3)

It is worth noting that the mapping between (16.1) and (16.3) is very similar to the
mapping from the transverse-field Ising model and the path integral of the ϕ 4 field
theory, which is discussed at length in the QPT book [234].

As always, we have to play close attention to gauge invariance. With the restriction
of the Qi j to real values, the U(1) gauge transformation in (15.18) has effectively been
“Higgsed” to a residual Z2 gauge transformation

Zi j→ Zi jρiρ j,

Xi j→ Xi j,

s†
iα → s†

iα ρi, (16.4)

where ρi = ±1 generates the Z2 gauge transformation. Note the close analogy to the
Z2 gauge transformation in (14.33) for the classical XY model in (14.32).

Let us now turn to spatial fluctuations in Qi j, for which the gauge transformation
(16.4) will play a crucial role. An important point is that the replacement (16.2) is
sufficient to capture the vison saddle points we encountered in Section 15.3.2. From
Fig. 15.4, we observe that a vison is simply a state with Z2 gauge flux equal to−1, that
is,

∏
⟨i j⟩∈C

Zi j =−1, (16.5)

where C is any contour that encloses the vison, similar to the discussion on phase D
in Section 14.2.3 for the classical XY model. Note that the product (16.5) is invariant
under the Z2 gauge transformation (16.4). Moreover, the energy of the vison saddle
point can be accounted for by a gauge-invariant term in the Hamiltonian, which is

−K ∑
□

∏
ℓ∈□

Zℓ , (16.6)

where □ indicates the elementary plaquettes on the square lattice, as indicated in
Fig. 16.1a. We are now using the symbol ℓ to represent a link between the square-
lattice sites i, j. The term in (16.6) measures the Z2 “flux” in each square plaquette. A
configuration of Zi j with two visons is sketched in Fig. 16.2.
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–1

–1tFigure 16.2 Two visons (indicated by the−1 in the plaquettes) connected by an invisible string. The dashed lines indicate the
links, ℓ, on whichZℓ =−1. TheXℓ operators on these links act on |0⟩ in (16.15) to create a pair of separated
visons. The plaquettes with an even number of dashed lines on their edges carry noZ2 fluxes, and so are “invisible.”

Note that we are presenting the effective Z2 gauge theory here on a nearest-neighbor
square lattice. This is mainly for notational simplicity, and it is straightforward to
extend the Z2 gauge theory to any lattice. The necessary ingredient is that the large-N
saddle point we begin with must have the lattice U(1) gauge symmetry broken down to
Z2, as in Section 15.3.1 for the triangular lattice. For the case of the square lattice, the
large-N theory requires that we include non-nearest-neighbor exchange interactions,
which yield saddle-point values for the Qi j without a bipartite structure. It is not dif-
ficult to extend our analysis here to include such longer-range links in (16.6), but we
avoid it in the interests of keeping the presentation readable.

The energy cost of the vison configuration in (16.5) is exactly 2K, as only a single
elementary plaquette at the vison center has a change in the sign of the Z2 flux. So
we can equate 2K to the energy of the vison saddle point in Fig. 15.4; in the large-N
limit, we obtain the scaling K ∼ N. The tunneling associated with g in (16.3) leads to
a change in sign of Qi j on a link; if this link is next to the center of a vison, we see
from Fig. 15.4 or (16.5) that the result is the motion of the vison by a single lattice
spacing across the link. Thus, the visons are now mobile, and we have included an
instanton event between different vison saddle points of the path integral. From this
reasoning, we can conclude that the large-N limit has g ∼ e−aN , for some constant a.
So the vison tunneling events are rare in the large-N limit, and the main purpose of our
present analysis is to introduce a framework in which we can understand the physics at
larger g.

16.2 Hamiltonian of theZ2 Gauge Theory

Wenow collect all the ingredients assembled in Section 16.1 to specify theHamiltonian
of the Z2 gauge theory investigated in this chapter. As noted above, the discus-
sion is presented entirely in terms of a Z2 gauge theory on the square lattice, and

https://doi.org/10.1017/9781009212717.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.017


200 16 Z2 Gauge Theory

generalizations to other lattices is straightforward. The degrees of freedomof the quan-
tum model are qubits on the links, ℓ, of a square lattice. The Pauli operators Xℓ, Yℓ, Zℓ

act on these qubits. The Hamiltonian combining (16.6) and (16.3) is

HZ2 =−K ∑
□

∏
ℓ∈□

Zℓ−g∑
ℓ

Xℓ , (16.7)

where □ indicates the elementary plaquettes on the square lattice, as indicated in
Fig. 16.1a. The model (16.7) is just the Hamiltonian version of the classical Z2 gauge
theory defined by the K term in (14.32), in the “temporal” gauge, which sets all Zi,i+τ
to unity, as discussed further in Section 16.2.1.

The key property constraining the structure of possible terms in (16.7) is the require-
ment of invariance under the Z2 gauge transformations in (16.4); this allows the “flux”
term proportional to K, and also the “kinetic” term in (16.3). For completeness, we
note that we could also include the spinon terms in (15.19), so that the complete Z2

gauge theory for visons and spinons is

Hνs
Z2

=HZ2 +∑
⟨i j⟩

(
−J̃i jZi jJαβ sα

i sβ
j +H.c.

)
+∑

i
λ̄i(s

†
iα sα

i −ns) , (16.8)

where we recall from (15.4) that the integer ns = 2S for a spin-S antiferromagnet. The
spinon-hopping term in (16.8) is the analog of the J2 term in (14.32) for the classical XY
model. All terms in (16.8) are invariant under (16.4).We assume that the spinons have a
large energy gap in this chapter, and soworkmainlywith the vison-onlyHamiltonian in
(16.7). However, the presence of a background density of ns spinons has an important
influence even in the approach based on the Hamiltonian (16.7), as we now discuss.

On the infinite square lattice, we can define operators on each site, i, of the lattice,
which commute with the pure gauge theoryHZ2 (see Fig. 16.1b)

Gi = ∏
ℓ∈+

Xℓ , (16.9)

which clearly obey G2
i = 1. We have GiZℓGi = ρiZℓ, where ρi =−1 only if the site i is at

the end of link ℓ, and ρi = 1 otherwise: the Gi generates a space-dependent Z2 gauge
transformation on the site i, equivalent to the operation of ρi in (16.4). There are an
even number of Zℓ emanating from each site in the K term inHZ2 , and so

[HZ2 ,Gi] = 0 . (16.10)

The key ingredients in our analysis ofHZ2 are the values assigned to the conservedZ2

gauge charges Gi. Before we specify these values, let us note that it is possible to extend
the definition of Gi in (16.9) so that it commutes with the vison–spinon Hamiltonian
in (16.8), which is the Z2 gauge theory withmatter. It is easy to check that the required
term is

Gνs
i = Gi exp

(
iπs†

iα sα
i

)
. (16.11)

This ensures that each siα spinon carries a unit Z2 gauge charge, as required by (16.4).
The full system of visons and spinons should be gauge neutral, and so we have

Gνs
i = 1, Z2 gauge theory with matter . (16.12)
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201 16.2 Hamiltonian of theZ2 Gauge Theory

But recall from (15.4) that the spinon number appearing in (16.11) is exactly con-
strained to equal ns = 2S, and the exponential factor in (16.11) evaluates to (−1)2S.
In the remainder of this chapter we will work with the Z2 gauge theory (16.7), in which
the spinon matter fields have been integrated out; the constraint on the siα number is
realized in such a theory by placing the siα in a valence bondwhose number ismeasured
by theZ2 gauge fields: this is clear from (16.2), which identifies Zi j with the singlet bond
annihilation operator εαβ siα s jβ . From this analysis, we conclude that the vison-only
theory HZ2 in (16.7), with no dynamic Z2 electric charges, should be examined in the
Hilbert-space sector in which the Z2 gauge charges take the values

Gi = (−1)2S, “pure” Z2 gauge theory without matter . (16.13)

(We note that Z2 gauge theories with “relativistic matter” without Berry phases, as
in (14.36) and (15.49), belong in the “without-matter” category in (16.13).) We will
see below that this gauge charge constraint is precisely that needed to reproduce the
Berry phase of the vison motion computed in Section 15.4.2. For half-integer S, the
constraint Gi = −1 corresponds to the additional term in (14.35) for the classical XY
model coupled to a Z2 gauge theory in (14.32): see Problem 16.2 for further details on
this mapping.

In the language of the Z2 gauge theory, integer S antiferromagnets correspond to a
“pure”Z2 gauge theory with no electrically charged matter fields. This is the “even”-Z2

gauge theory, where the spinons in (16.8) are gapped, and ns is even. The case of half-
odd-integer S is sometimes called an “odd”-Z2 gauge theory, and this case is of interest
for the resonating-valence-bond theory of spin S = 1/2 antiferromagnets. We will see
below that the properties of the even- and odd-Z2 gauge theories are very different.
The odd gauge theory corresponds to placing a static background Z2 electric charge
on each lattice site. The system has to be globally neutral, and so, on a torus of size
Lx×Ly, the number of sites, LxLy, has to be even for there to be any states which satisfy
Gi =−1.

Finally, we note that the connection outlined above between the U(1) gauge theory
of Chapter 15 and the Z2 explored in the present chapter is studied in more detail in
Section 26.2.

16.2.1 Wegner's Z2 gauge theory

As a historical aside, we note that the Z2 theory in (16.7) first appeared in Wegner’s
pioneering lattice gauge theory paper [301] for the case of Gi = 1, that is, the even-
Z2 gauge theory. Wegner, and the subsequent lattice gauge theory literature, has not
considered the odd-Z2 gauge theory that is important for our purposes.

Wegner defined the Z2 gauge theory as a classical statistical mechanics partition
function on the cubic lattice. He considered the partition function [301]

Z̃Z2 = ∑
{Zi j}=±1

exp
(
−H̃Z2/T

)
,

H̃Z2 =−K ∑
□

∏
(i j)∈□

Zi j , (16.14)
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202 16 Z2 Gauge Theory

tFigure 16.3 The Wegner-Wilson loop operatorWC on the closed loopC . Shown above is a schematic ground-state phase diagram
ofHZ2 for integer S, with the distinct behaviors ofWC in the deconfined and confined phases.

which is just the K term in (14.32). The degrees of freedom in this partition function are
the binary variables Zi j =±1 on the links ℓ≡ (i j) of the cubic lattice. The □ indicates
the elementary plaquettes of the cubic lattice. The quantum Hamiltonian is obtained
from the classical theory in (16.14) by the usual quantum-to-classical mapping dis-
cussed in the QPT book [234], similar to that relating the quantum Ising model in
a transverse field to a classical Ising model in one additional dimension. By such an
analysis it can be shown [146] that the three-dimensional classical model in (16.14) is
equivalent to the two-dimensional quantum model in (16.7) for Gi = 1 with the Zi j on
the spatial links mapping to the Zi j operator of the quantum model. The extension of
the three-dimensional classical model in (16.14) to the case Gi = −1 was described
in Refs. [119, 230], and leads to the additional term in (14.35) in spacetime lattice
formulation.

Wegner [301] showed that there were two phases with exponentially decaying cor-
relations in the theory, which are necessarily separated by a phase transition. One of
these phases (the “deconfined” phase below) corresponds to the Z2 spin liquid, and
so the connection to Wegner’s work establishes the stability of the Z2 spin liquid for a
finite range of parameters, beyond the large-N expansion of Chapter 15. Remarkably,
unlike all previously known cases, Wegner’s phase transition was not required by the
presence of a broken symmetry in one of the phases; there was no local order param-
eter characterizing the phase transition. Instead, Wegner argued for the presence of a
phase transition using the behavior of the Wegner–Wilson loop operator WC , which
is the product of Zα on the links of any closed contour C on the direct square lattice,
as illustrated in Fig. 16.3. (WC is usually, and improperly, referred to just as a Wilson
loop.) The two phases are:
(i) At g ≫ K we have the “confining” phase. In this phase WC obeys the area law:
⟨WC⟩ ∼ exp(−αAC) for large contours C, where AC is the area enclosed by the contour
C and α is a constant. This behavior can easily be seen by a small-K expansion of ⟨WC⟩:
one power of K is needed for every plaquette enclosed by C for the first non-vanishing
contribution to WC. The rapid decay of ⟨WC⟩ is a consequence of the large fluctuations
in the Z2 flux, ∏ℓ∈□ Zℓ, through each plaquette, that is, the proliferation of visons in
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203 16.3 Topological Order at Small g

the quantum model. This proliferation of visons implies that particles carrying a Z2

electric charge, that is, spinons, will be confined in this phase.
(ii) At K≫ g we have the “deconfined” phase. In this phase, the Z2 flux is expelled, the
visons have a large gap, and ∏ℓ∈□ Zℓ usually equals +1 in all plaquettes. We see later
in Section 26.2 that the flux expulsion is analogous to the Meissner effect in super-
conductors. The small residual fluctuations of the flux lead to a perimeter-law decay,
⟨WC⟩ ∼ exp(−α ′PC) for large contours C, where PC is the perimeter of the contour C
and α ′ is a constant.

16.3 Topological Order at Small g

While Wegner’s analysis yields a satisfactory description of the pure Z2 gauge theory,
the Wegner–Wilson loop is, in general, not a useful diagnostic for the existence of a
phase transition. Once we add dynamicmatter fields,WC invariably has a perimeter-law
decay, although the confinement–deconfinement phase transition can persist.

The modern interpretation of the small-g phase of Z2 lattice gauge theory is that it is
characterized by the presence ofZ2 “topological” order [17, 88, 101, 133, 171, 219, 303].
The stability of the small-g phase implies that the Z2 spin-liquid phase obtained in
Chapter 15 by large-N methods is stable, and we have already described its topological
characteristics. We now describe two characteristics of this topological order in the
context of the Z2 gauge theory. Both characteristics can survive the introduction of
additional degrees of freedom; but we will see in Section 28.4 that the first is more
robust, and is present even in cases with gapless excitations carrying Z2 charges.

The first characteristic is that there are stable low-lying excitations of the small-g
phase in the infinite lattice model, which cannot be created by the action of any local
operator on the ground state (i.e., there are “superselection” sectors [133]). This exci-
tation is, of course, the “vison,” which carries Z2 flux of−1 [138, 215, 257]. Recall that
the ground state of the deconfined phase expelled the Z2 flux: at g = 0 the state with
all qubits up, |⇑⟩, (i.e., eigenstates of Zℓ with eigenvalue +1) is a ground state, and this
has no Z2 flux. This state is not an eigenstate of the Gi, but this is easily remedied by a
gauge transformation:

|0⟩= ∏
i
(1+(−1)2SGi) |⇑⟩ . (16.15)

It is easily shown that this state is an eigenstate of all the Gi with the eigenvalues obeying
(16.13). When we apply the Xℓ operator on a link ℓ, the neighboring plaquettes acquire
a Z2 flux of −1. We need a non-local “string” of Xℓ operators to separate these Z2

fluxes so that we obtain two well-separated vison excitations; see Fig. 16.2. Each vison
is stable in its own region, and the motion of visons is described in Section 16.5.

The second topological characteristic emerges upon considering the low-lying states
of HZ2 on a topologically non-trivial geometry, like the torus. A key observation in
such geometries is that the Gi (and their products) do not exhaust the set of operators
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tFigure 16.4 Operators in a torus geometry; periodic boundary conditions are implied on the lattice.

that commute with HZ2 . On a torus, there are two additional independent operators
that commute with HZ2 : these operators, Vx, Vy, are illustrated in Fig. 16.4 (these are
analogs of ’tHooft loops). The operators are defined on contours, Cx,y, which reside on
the dual square lattice, and encircle the two independent cycles of the torus. The specific
contours do not matter, because we can deform the contours locally by multiplying
them with the Gi.

It is also useful to define Wegner–Wilson loop operators Wx,y on direct lattice con-
tours Cx,y, which encircle the cycles of the torus; note that the Wx,y do not commute
withHZ2 , while the Vx,y do commute. Because the contour Cx intersects the contour Cy

an odd number of times (and similarly with Cy and Cx) we obtain the anti-commutation
relations

WxVy =−VyWx , WyVx =−VxWy , (16.16)

while all other pairs commute. Note that Wx,y and the Vx,y commute with all the Gi.
With this algebra of topologically non-trivial operators at hand, we can now identify

the second distinct signature of the small-g phasewith topological order. All eigenstates
of HZ2 on the torus can also be made eigenstates of Vx and Vy. The ground state |0⟩ is
not an eigenstate ofVx,y, but is instead an eigenstate ofWx,y withWx =Wy = 1. The state
Vx |0⟩ is easily seen to be an eigenstate of Wx,y with Wx = 1 and Wy = −1; so this state
has Z2 flux of−1 through one of the holes of the torus, as is illustrated in Fig. 16.5. At
g = 0, the state Vx |0⟩ is also a ground state of HZ2 , degenerate with |0⟩. Similarly, we
can create two other ground states,Vy |0⟩ andVyVx |0⟩, which are also eigenstates ofWx,y

with distinct eigenvalues. So, at g = 0, we have a four-fold degeneracy in the ground
state, and all other states are separated by an energy gap.

When we turn on a non-zero g, the ground states will no longer be eigenstates of
Wx,y because these operators do not commute withHZ2 . Instead, the ground states will
become eigenstates of Vx,y; at g = 0 we can take the linear combinations (1±Vx)(1±
Vy) |0⟩ to obtain degenerate states with eigenvaluesVx =±1 andVy =±1. At non-zero g,
these four states will no longer be degenerate, but only acquire an exponentially small
splitting of order gL(g/K)L, where L is a linear dimension of the torus. This is because
the four states differ from each other only by global topological operators, and any
non-zero matrix element between them requires the application of −g∑ℓ Xℓ on loops
that encircle the lattice. Alternatively stated, the tunneling amplitude between states
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tFigure 16.5 A typical term in the expansion for the state |0⟩ in (16.15), and for the stateVx|0⟩ on a torus (periodic boundary
conditions are implied). All links of the direct lattice have |↑⟩ state, apart from those crossing a thick line which have
|↓⟩. Each term has a prefactor of (−1)2S for each site of the direct lattice enclosed by the loops of thick lines. The
stateVx|0⟩ always has a single thick line that encircles the cycle of the torus, unlike the state |0⟩. Notice that every
plaquette of the direct lattice cuts an even number of thick lines, and so hasZ2 flux+1 and both states are ground
states at g = 0. The state |0⟩ hasWx =Wy = 1, while the stateVx|0⟩ hasWx = 1 andWy =−1. At small
non-zero g, there is a non-zero tunneling amplitude between |0⟩ andVx |0⟩ of order gLx , whereLx is the length of
Cx.

with distinct Z2 fluxes through the holes of the torus is exponentially small in the size
of the system.

We can encapsulate these tunneling terms in an effective Hamiltonian He f f as a 4×4
matrix which acts on this space of lowest-energy states. We can also project the opera-
torsVx,y andWx,y onto this space of four states, which then become a set of 4×4 matrices
that obey the algebraic relations in Fig. 16.4. After this projection, the Wx,y will differ
from the g = 0 expressions in Fig. 16.4 by a canonical transformation that can be com-
puted order by order in g; see Problem 16.3. The operators Vx,y must commute with
the effective Hamiltonian, and so we can write the most general form

He f f = c1Vx + c2Vy + c3VxVy , (16.17)

where c1,2,3 are constants of order gL(g/K)L.
The presence of these four lowest energy states, which are separated by an energy

splitting that vanishes exponentially with the linear size of the torus, is one of the
defining characteristics of Z2 topological order. We can take linear combinations of
these four states to obtain distinct states with eigenvalues Wx =±1, Wy =±1 of the Z2

flux through the holes of the torus; or we can take energy eigenvalues, which are also
eigenstates of Vx,y with Vx = ±1, Vy = ±1. These features are present throughout the
entire deconfined phase.

Finally, we turn to the subtle role played by translational symmetry. The considera-
tions below apply for any g, and play a crucial role in our discussion of the large-g limit
in the subsequent sections. Let Tx (Ty) be the operator that translates the system by one
lattice spacing along the x (y) direction. Clearly, the operators Tx,y commute with the
Hamiltonian in (16.7). Now, consider the operators Vx and Vy, defined as in Fig. 16.4
on a Lx×Ly torus, for convenience on contours Cx and Cy that are straight, of lengths
Lx and Ly respectively. These operators Vx and Vy also commute with the Hamiltonian.
But, as illustrated in Fig. 16.6, Vx,y and Tx,y don’t always commute with each other:
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tFigure 16.6 The operatorVx on the contourCx is translated byTy upon the action ofGi on the encircled sites. This yields (16.18).

TxVy = (−1)2SLyVyTx , TyVx = (−1)2SLxVxTy . (16.18)

The relations in (16.18) are valid on any state and apply for all g. They have particu-
larly strong consequences for half-odd-integer S, when Tx,Vy or Ty,Vx can anti-commute
with each other for certain system sizes. As Tx,y and Vx,y all commute with the Hamil-
tonian, all the eigenstates of the Hamiltonian must realize various representations of
the algebra in (16.18). This immediately implies that the ground state of HZ2 cannot
be trivial for any g and half-odd-integer S. Here, by a trivial ground state, we mean one
which is insensitive to global features such as the size of the lattice or its topology. This
is a version of the Oshikawa–Hastings theorem [105, 194] of the impossibility of trivial
states in boson systems at half filling. In the context of HZ2 with half-odd-integer S
our analysis in this section leads us to conclude that (i) the ground state has topologi-
cal order at small g, and (ii) at large g, either the topological order survives or there is
broken translational symmetry.

We now comment on the nature of the Tx, Ty operators within the four-dimensional
space of (near) ground states on a torus in the small-g topological phase. For integer
S, the relation (16.18) is trivial, and so Tx and Ty both reduce to unit operators on this
space. However, for half-integer S, by comparing (16.18) with (16.16) we deduce that
the nature of these operators depends upon the parities of Lx and Ly:

Lx even and Ly even⇒ Tx = 1,Ty = 1,

Lx even and Ly odd⇒ Tx =Wx,Ty = 1,

Lx odd and Ly even⇒ Tx = 1,Ty =Wy. (16.19)

Note that Tx and Ty commute with each other in the ground-states subspace in all cases.
We close this section by noting that the Z2 topological order described above can

also be realized in a U(1)×U(1) Chern–Simons gauge theory [88, 171]. This will be
described in Section 17.1.1, where (17.14) contains alternative expressions for the Wi

and Vi which obey the same commutation relations as in (16.16).

16.4 Large-g Limit

Unlike the small-g limit, the large-g limit is dramatically different for integer and half-
odd-integer S. We will consider these cases in the separate subsections.
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tFigure 16.7 An updated version of the phase diagram ofHZ2 in Fig. 16.3 for integer S. The confinement–deconfinement phase
transition is described by the Ising∗ Wilson–Fisher CFT. This is the same transition as that between phases A+B and D
in Figs. 14.2 and 14.3.

16.4.1 Integer S: Trivial Ground State

With Gi = 1, we immediately obtain a trivial, unique ground state at large g, with a large
energy gap to all excitations. At g = ∞, the ground state, |⇒⟩, has all qubits pointing to
the right (i.e., all qubits are eigenstates of Xℓ with eigenvalue+1). This state clearly has
eigenvalues Vx =Vy =+1. States with Vx =−1 or Vy =−1 must have at least one qubit
pointing to the left, and so cost a large-energy g: such states cannot be degenerate with
the ground state, even in the limit of an infinite volume for the torus. See Fig. 16.7.

16.4.2 Half-Odd-Integer S: Quantum-dimer Model

A notable feature of the confining phase obtained in Fig. 16.7 for integer S is that it
is completely “trivial.” It has no broken symmetry, no degeneracy on the torus, and
no fractionalized excitations. We motivated the Z2 gauge theory in the introduction
to this chapter as the low-energy theory of an antiferromagnet of S spins, and so it is
natural to ask to what state of the antiferromagnet this confining state corresponds. A
glance at Fig. 9.2 does not yield any suitable candidates; all states there break either
spin-rotation or lattice symmetries. However, recall that Fig. 9.2 corresponds to S= 1/2
antiferromagnets. And, precisely for this case, we derived a Berry phase in the motion
of visons in Section 15.4.2, corresponding to the projective realization of translational
symmetries in (13.8). Clearly, we need to include this Berry phase in our effective gauge
theory here, and we argued in Section 16.2 that this corresponds to the case Gi = −1
on each site. As we will see below, this is sufficient to remove the trivial confining state.

The value Gi = −1 implies that there must be an odd number of |←⟩ qubits on the
links ending on each site. Every one of these |←⟩ qubits costs an energy 2g, and so at
large g we need to minimize the total number of |←⟩ qubits. As illustrated in Fig. 16.8,
there is a very large number of possible |←⟩ qubit configurations, and these are in one-
to-one correspondence with the dimer close-packings of the lattice. So the ground state
at g = ∞ is highly degenerate, and indeed there is an extensive ground-state entropy.
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tFigure 16.8 Connection between the large-g ground states of theZ2 gauge theoryHZ2 for half-odd-integer S and
quantum-dimer packings. All links with a dimer have a qubit in the |←⟩ state (i.e., the eigenstate ofXℓ with
eigenvalue−1), while the remaining links are in the orthogonal |→⟩ state. Each lattice site neighbors exactly one
|←⟩ state, and soGi =−1 on all sites. The left and right states are connected by theK term in (16.7) applied to
the plaquette shown. This mapping applies on any lattice. Compare to the mapping to the interface model in Fig. 26.3,
which applies only bipartite lattices.

Tracing our mappings back to the spin models of Chapter 15, it is clear that we
can identify the dimers with singlet bonds of the underlying spins of the antiferromag-
net. Recall that we identified Qi j, the singlet annihilation operator, with Zi j in (16.2).
It is therefore natural to identify the conjugate Xi j operator with the dimer-number
operator.

For a proper description of the antiferromagnet, it is clear that the g = ∞ limit is sin-
gular, and we have to include corrections to this limit. At first order in K/g, it is simple
to see that the K term in (16.7) induces a dimer resonance term: that is, it interchanges
the |←⟩ and |→⟩ qubits, as illustrated in Fig. 16.8. This off-diagonal term leads to a
quantum-dimermodel: theHilbert space of thismodel is in one-to-one correspondence
with dimer packings, and the effective Hamiltonian on this dimer space is [222]

Hqd =−K ∑
□

(
|⟩ ⟨|+ |⟩ ⟨|

)
+V ∑

□

(
|⟩ ⟨|+ |⟩ ⟨|

)
. (16.20)

The first-order correction in K/g yields only the K term in (16.20), but we have included
the commonly consideredV term, which appears at higher orders in the K/g expansion.
Although we have presentedHqd on the square lattice, there is a natural generalization
of such models to the large-g limit ofHZ2 on any lattice.

The next step is the determination of the spectrum ofHqd . This is a difficult problem,
which has been addressed by a variety of numerical and analytic methods. The case of
the square lattice is addressed in Section 26.1.2; we present general arguments that, on
bipartite lattices, the quantum dimermodel only has confining states that break the lat-
tice translational symmetry with the appearance of VBS order, as shown in Fig. 26.4.
In the following section, we address the nature of the translational symmetry break-
ing by developing a theory of the condensation of the m anyons, and obtain the same
result; this analysis starts from the spectrum of the m visons in the deconfined topo-
logical phase, but after the condensation of the anyons it is also possible to describe
the spectrum in the confining phase.
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209 16.5 Visons and Anyon Condensation

The large-g limit of the Gi =−1Z2 gauge theory on the triangular lattice alsomaps to
a quantum dimer model with one dimer on each triangular lattice site. This quantum-
dimer model has been studied numerically and, for the V = 0 case relevant for the
large-g expansion, it has a confining ground state with broken translational symmetry
[179, 180, 320]. This can also be described by the analogous vison condensation theory
of Section 16.5.

16.5 Visons and Anyon Condensation

This section describes in more detail the spectrum of the excited states of the Z2 gauge
theory in (16.7). We begin in the small-g topological phase and compute the spectrum
of the vison excitations. General symmetry arguments will then allow us to write down
a field theory for the condensation of the visons. We will then also be able to use this
field theory to understand the structure of the large-g confining phase, and of the phase
transition to it. As in Section 16.4, the even- and odd-Z2 gauge theories are addressed
separately.

16.5.1 Integer S: Ising∗ Criticality

A pair of well-separated vison states are obtained by applying a string of Xℓ operators
to the ground state in (16.15), as shown in Fig. 16.2. For integer S, the action of −gXℓ

on the four links surrounding the vison plaquette move the vison by one lattice spacing
in either direction, and so the single vison dispersion is

εν
k = 2K−2g(cos(kx)+ cos(ky))+O(g2/K) . (16.21)

So we obtain a single real particle with a dispersion minimum at k = 0, and a gap of
2(K−g).

As g increases, this vison gap will decrease, until it vanishes at the confinement tran-
sition already shown in Figs. 16.3 and 16.7. This is also the transition from phase D to
phaseA+B in the classical XY model in Figs. 14.2 and 14.3.Wegner also determined the
critical properties of the transition. He performed a Kramers–Wannier duality trans-
formation, and showed that the Z2 gauge theory was equivalent to the classical Ising
model in D = 3 dimensions. This establishes that the confinement–deconfinement tran-
sition is in the universality class of the the Ising Wilson–Fisher [310] conformal field
theory (CFT) in three spacetime dimensions (a CFT3). The phase with the dual Ising
order is the confining phase, and the phase with Ising “disorder” is the deconfined
phase.

Indeed, we can identify the real Ising field ϕ with the vison creation and annihila-
tion operator. This is clear from the structure of the duality transformation from the
Z2 gauge theory: the plaquette flux operator is dual to the Ising spin operator, which
resides at the center of the plaquette. We can now derive the field theory obeyed by this
Ising field by starting in the deconfined phase, when the vison excitations are gapped;
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210 16 Z2 Gauge Theory

we write down a free field theory on a lattice whose dispersion reproduces (16.21) at
small g. A suitable Hamiltonian is

Hϕ = ∑
j

[
π2

j

2
+

ω2
0

2
ϕ 2

j

]
− ∑
⟨ j j′⟩

t j j′ϕ jϕ j′ , (16.22)

where j, j′ represent sites on the dual square lattice (on which the vison is centered),
and π j is the canonically conjugate momentum to ϕ j:

[ϕ j,π j′ ] = iδ j j′ . (16.23)

Matching the dispersion of (16.22) to (16.21) at small g, we obtain ω0 = 2K and a
nearest-neighbor hopping t = gω0.

The confinement transition occurs when the Ising field ϕ condenses, near which
point we need to include higher-order corrections toHϕ . The simplest allowed term is
∑ j ϕ 4

j , representing the scattering of a pair of visons. We take the continuum limit near
the critical point, and therefore obtain the relativistic field theory of Chapters 10 and
11 for N = 1. This has the (2+1)-dimensional Lagrangian density

Lϕ = (∂µ ϕ)2 + g̃ϕ 2 + ũϕ 4, (16.24)

where the coupling g̃ increases as g decreases (see Fig. 16.7). So, for g < gc, the ϕ field is
gapped, and the ϕ excitations correspond to the visons. The confining phase for g > gc

is obtained by the condensation of the visons. A another derivation of this Ising critical
theory is presented in Section 26.2.2.

We also note that the critical theory is not precisely the Ising Wilson–Fisher CFT,
but what is often called the Ising* theory. In the Ising* theory, the only allowed oper-
ators are those which are invariant under ϕ →−ϕ , where ϕ is the Ising primary field
[252, 308].

16.5.2 Half-Odd-Integer S: VBS Order and XY∗ Criticality

We compute the vison motion for Gi = −1 in a perturbation theory in g applied to
the vison state shown in Fig. 16.2. Tx and Ty do not commute when acting on a vison
state |ν⟩:

TxTy|ν⟩=−TyTx|ν⟩ . (16.25)

The proof of this relation is presented in Fig. 16.9. This implies that the vison accu-
mulates a Berry phase of π when transported around a single square-lattice site. This
is precisely the phase factor illustrated in Fig. 15.6 in Section 15.4.2 for the underlying
spin system on the triangular lattice, and also discussed in Section 13.4.

Following the computation in Section 16.5.1, we determine the dispersion of the
vison excitations for Gi =−1. The explicit computation is presented in Ref. [230], but
herewe obtain the result by a general argument similar to that used to obtain (16.24) for
the even-Z2 gauge theory. As indicated in Fig. 16.9, each vison moves in a background
π flux per plaquette of the dual lattice due to the presence of the electric charges on the
sites of the direct lattice. So we account for this flux by modifying the hopping t j j′ in
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–1 –1

–1–1

Gi

tFigure 16.9 Starting from the lower left, we illustrate a vison undergoing the operationsTx,Ty,T−1
x ,T−1

y . The final state differs
from the initial state by the action ofGi on the single encircled site. UsingGi =−1, we then obtain (16.25), theπ
Berry phase of a vison moving on the path shown.

tFigure 16.10 TheZ2 gauge theory resides on the sites of the direct lattice of sites i (connected by full lines), while the Ising theory
for the visons resides on the dual lattice of sites j (connected by dashed lines). The visons hop with amplitude t to
nearest neighbors on the dual lattice, except for the dotted links with amplitude−t . This ensures that the vison
experiencesπ flux upon encircling any site of the direct lattice, as required for half-odd-integer S in Section 15.4.2.

(16.22) to that shown in Fig. 16.10. In momentum space, the hopping matrix is a 2×2
matrix (

−2t cos(ky) −2t cos(kx)

−2t cos(kx) 2t cos(ky)

)
. (16.26)

After diagonalizing this matrix, from (16.22) we find that the vison dispersion is

εν
k =

[
ω2

0 ±4t
(
cos2(kx)+ cos2(ky)

)1/2
]1/2

. (16.27)

Now we turn to the confinement transition where the vison gap vanishes. This tran-
sition was not considered by Wegner [301] for the odd-Z2 gauge theory. This transition
is that from the fractionalized phase to the bond-order phase in Fig. 14.4 for the XY
model with the Berry phase term in (14.35). As with the even gauge theory in Sec-
tion 16.5.1, performing the Kramers–Wannier duality with the condition Gi = −1
leads to an Ising model in a transverse field on the dual lattice. However, in the
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212 16 Z2 Gauge Theory

odd gauge theory, the signs of the couplings in each spatial plaquette are frustrated
[119, 257]. Such a fully frustrated Ising model has been investigated in experiments on
superconducting qubits [131].

Here, we will derive the low-energy theory of this fully frustrated Ising model by
simple symmetry arguments applied to the vison disperson in (16.27).Near the confine-
ment transition, we can focus energy on the lowest-energy vison states. From (16.27),
we observe that the minimum of the vison dispersion is at two distinct points in the
reduced Brillouin zone of the lattice in Fig. 16.10; these are the points k = (0,0) and
k = (0,π). So the continuum theory will be expressed in terms of two real fields, in
contrast to the single real field for the even case in Section 16.5.1. We label these
states as

φ1 = ϕ(k= (0,0))on the first sublattice,

φ2 = ϕ(k= (0,π))on the second sublattice . (16.28)

Now we need a continuum theory for φ1,2 in the vicinity of the confinement transi-
tion, the analog of (16.24) for the even case. In principle, this can be obtained by a g/K
perturbation theory of the underlying Z2 gauge theory Hamiltonian. However, it is
more illuminating to derive the general answer from symmetry principles. The simplest
symmetry is translations in the y directions, which follow directly from (16.28):

Ty : φ1→ φ1 ; φ2→−φ2 . (16.29)

The operation of Tx is more subtle, because the pattern in Fig. 16.10 is not invari-
ant under translation by one lattice spacing. However, we can restore translational
invariance by a Z2 gauge transformation, and this gauge action yields the needed
transformation [18, 114, 199]

Tx : φ1→ φ2 ; φ2→ φ1. (16.30)

We can now immediately verify from (16.29) and (16.30) that

TxTy =−TyTx, (16.31)

as needed for the vison states from Section 15.4.2 and (16.25). The relation (16.31) also
explains the double degeneracy of the low-energy vison states, as 2×2 matrices are the
smallest realization of this algebra. We emphasize that the anti-commutation relation
(16.31) applies only for single vison states for half-odd-integer S. Contrast this with
the relations (16.19) in the ground-state subspace, where Tx and Ty commute with each
other.

In a similar manner, we can also obtain the action of rotations [18, 114, 199]

Rπ/2 : φ1→
1√
2
(φ1 +φ2) ; φ2→

1√
2
(φ1−φ2), (16.32)

where Rπ/2 is the symmetry of rotations about a dual lattice point. The transformations
in (16.29), (16.30), and (16.32), and their compositions, form the projective symmetry
group, which constrains the theory of the topological phase and of its phase transitions.
Direct computation shows that the group generated by (16.29), (16.30), and (16.32) is
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213 16.5 Visons and Anyon Condensation

tFigure 16.11 Phase diagram of the oddZ2 gauge theory defined by (16.7) andGi =−1. Compare to Fig. 16.7 for the even-Z2

gauge theory. The transition above is also the transition between the fractionalized phase and bond order in Fig. 14.4.
This phase diagram is an example of deconfined criticality, and a numerical study appeared early on in Ref. [119].

the 16-element non-abelian dihedral group D8 [114]. We combine these real particles
into a single complex field

Φ = e−iπ/8 (φ1 + iφ2) . (16.33)

With these phase factors, Φ transforms under D8 as

Tx : Φ→ eiπ/4Φ∗ ; Ty : Φ→ e−iπ/4Φ∗ ; Rπ/2 : Φ→Φ∗ . (16.34)

Note again that under the vison D8 operations in (16.34), Tx and Ty anti-commute
(as required by (16.31)). Then the effective theory for Φ is the simplest Lagrangian
invariant under the D8 symmetry:

LΦ = |∂µ Φ|2 + g̃|Φ|2 + ũ|Φ|4−λ
(
Φ8 +Φ∗8

)
. (16.35)

This is the generalization of the Ising Lagrangian for a real field in (16.24) with Z2

symmetry for the even case. For the odd gauge theory we have a complex field Φ with
D8 symmetry.

The phase diagram of LΦ is modified from Fig. 16.7 to Fig. 16.11. The topological
phase has a gapped Φ excitation. A crucial difference from the even-Z2 gauge theory is
that this excitation is doubly degenerate; LΦ is sufficiently high order that the degener-
acy between the real and imaginary parts of Φ is not broken. So the vison is a complex
relativistic particle, unlike the real particle in Section 16.5.1. This double degeneracy
in the vison states is a feature of the symmetry-enriched topological order [45, 69], and
is intimately linked to the D8 symmetry and to the anti-commutation relation [18] in
(16.25); it is not possible to obtain vison states that form a representation of the algebra
of Tx and Ty without this degeneracy.

Turning to the confined phase where Φ is condensed, the non-trivial transformations
in (16.34) imply that lattice symmetries must be broken. This is because we can define a
Z2 gauge-invariant order parameter, which is non-zero when Φ condenses, and which
is not invariant under lattice symmetries. This is the VBS order parameter
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OV BS = e−iπ/4Φ∗2 . (16.36)

Using (16.34), we obtain the transformations of the VBS order parameter [119]:

Tx :OV BS→−O∗V BS ; Ty :OV BS→O∗V BS ; Rπ/2 :OV BS→−iO∗V BS . (16.37)

Note that Tx and Ty commute when acting on the VBS order, as they must on any
gauge-invariant observable. The precise pattern of the broken symmetry depends upon
the sign of λ , and the two possibilities are shown in Fig. 16.11. The columnar ordering
pattern is four-fold degenerate and corresponds to

⟨OV BS⟩ ∼ 1, i,−1,−i, (16.38)

where the plaquette ordering pattern is also four-fold degenerate with

⟨OV BS⟩ ∼ eiπ/4,ei3π/4,ei5π/4,ei7π/4 . (16.39)

So an important feature of the odd Ising gauge theory is that there is no “triv-
ial” phase without symmetry breaking and fractionalization; the background gauge
charges induce a breaking of translational symmetry in the confining phase. When
extended to the boson model at filling ν , this implies the absence of trivial phases at
half filling: this is consistent with the requirements of various rigorous arguments on
the ground states of such models.

Finally, we address the confinement–deconfinement transition in Fig. 16.11. In
(16.35), the λ term is an irrelevant perturbation to LΦ, and the critical point of LΦ is
the XY ∗Wilson–Fisher CFT [119, 230, 256, 261] (contrast this with the Ising∗Wilson–
Fisher CFT in Fig. 16.7). This is an example of a “deconfined critical point” (hence the
asterisk on XY ) because the field theory is expressed in terms of the gauge-dependent
field Φ, which is not an observable; only the “square” of the field is the VBS order
parameter in (16.36). So the order parameter has fractionalized at the critical point.
We present another formulation of this critical point in Section 26.2.3, where we obtain
a dual formulation inwhich the deconfined criticality has an emergentU(1) gauge field.

We note that the above phase diagram also applies to quantum dimer models on
the square lattice [119, 230]. The extension to quantum dimer models on other lattices
have also been considered [84, 114, 180, 181, 182, 290].

16.6 Models of Rydberg Atoms

This section is motivated by a recent experiment [254] on rubidium (Rb) atoms individ-
ually trapped in an array of optical tweezers, and pumped by optical tweezers to Ryd-
berg states (see Fig. 16.12). Each Rydberg atom effectively becomes a two-state system
(a qubit), and the whole system can be described by the Fendley–Sengupta–Sachdev
(FSS) model [76] with the Hamiltonian

HFSS = ∑
ℓ

[
Ω
2

(
Bℓ+B†

ℓ

)
−∆Nℓ

]
+

1
2 ∑
ℓ̸=ℓ′

V (rℓ− rℓ′)NℓNℓ′ . (16.40)
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|0〉

|r〉

|r〉

|e〉

|g〉|g〉

B †

Ω
|0〉

1,013 nm Vij
420 nm

ΩB

ΩR

∆

tFigure 16.12 An array of Rb atoms trapped in tweezers and pumped by lasers with wavelengths 1013 nm and 420 nm to the
Rydberg state |r⟩ [29]. The quantum dynamics of these levels is described byHFSS in (16.40) after identifying the
|r⟩ state with the occupied state of a hard-core bosonB. Reprinted with permission from Springer Nature.

Here ℓ labels a set of lattice points with position rℓ; in the notation of the present
chapter, the symbol ℓ has been reserved for the links of a lattice, and our notation
here anticipates the connection to Z2 gauge theory to be made below. At the moment,
though, HFSS is not a lattice gauge theory, and Bℓ is the annihilation operator of a
boson that does not carry gauge charges. This is a “hard core” boson, and so the boson-
number operator Nℓ obeys

Nℓ ≡ B†
ℓBℓ , Nℓ = 0,1 . (16.41)

The function V (r) represents repulsive interactions between the bosons on different
sites, and is specified later.

The FSSmodel was originallymotivated by a different connection to experiments on
ultracold atoms [241]. The connection to the recent Rydberg atom experiment [254] is
illustrated in Fig. 16.12. We identify the ground state of each atom, |g⟩, with the empty
boson state |0⟩, and the Rydberg state, |r⟩, with the filled boson state B† |0⟩. These are
coupled by the external lasers with a Rabi frequency Ω. The frequency of the external
laser is adjusted so that the detuning away from resonance of the |g⟩ to |r⟩ transition
is ∆. The potential V (r) represents the van der Waals interaction when both atoms are
in their Rydberg states; there is no appreciable van der Waals interaction of an atom
in its ground state.

The basic physics of this system is that of the “Rydberg blockade”; the interaction
V (r) can be large at short distances, so that there is a large energy cost for two nearby
atoms to both be in the |r⟩ state, that is, for Nℓ = 1 on both sites. This induces quantum
correlations between the atomic states, and this effect has been exploited to realize a
number of interesting phases of quantum matter in recent experiments [29, 65, 129,
254].

We are interested here in configurations of the FSS model that can realize a Z2

spin liquid. Our strategy in Section 9.2 and Chapter 15 has been to identify hard-core
bosons with spin operators B→ S−, fractionalize the spin into spinons, and then study
if the spinon theory can have a deconfined phase. However, a different strategy has so
far proved useful for the FSS model [19, 224, 245, 246, 288]: we identify the two boson
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i-lattice

-lattice
V2 V1

tFigure 16.13 The ℓ-lattice is a kagome lattice, and the i-lattice is a triangular lattice. Rydberg atoms are on the ℓ-lattice. This model
was numerically studied in Ref. [245].

states on each site with the qubits of the Z2 gauge theory of Section 16.2. Specifically,
we make the identification

Bℓ+B†
ℓ ⇔ Zℓ,

Nℓ⇔ (1−Xℓ)/2. (16.42)

In the large-g limit of the odd-Z2 gauge theory of Section 16.4.2 and Fig. 16.8, the B
boson is therefore identified with a dimer. Then, without approximation, we can write
the FSS model as a model of interacting qubits

HFSS =
1
2 ∑

ℓ

[ΩZℓ+∆Xℓ]+
1
2 ∑
ℓ̸=ℓ′

V (rℓ− rℓ′)
4

(1−Xℓ)(1−Xℓ′) . (16.43)

In contrast to the dimermodel considered in Section 16.2, the dimermodel of (16.43)
does not satisfy a dimer close-packing constraint. The Zℓ term can annihilate or create
a dimer on site ℓ independent of the occupation of neighboring sites. In the language of
the Z2 gauge theory, this is related to the fact that (16.43) is not invariant under the Z2

gauge transformation in (16.4). But notice that a Zℓ term does appear in the theory that
includes spinons in (16.8); it is made Z2 gauge invariant by the presence of spinons that
carry Z2 gauge charges. In a similar manner, to study possible Z2 spin-liquid states, we
exploremaking (16.43) gauge invariant by introducing zero-energymatter fields, which
carry aZ2 gauge charge. We introduce an “i-lattice” of sites i, j, . . ., so that the center of
the (i, j) link on the i-lattice coincides with the ℓ sites in (16.43); the latter sites belong
to the “ℓ-lattice.”Wewant to introduce the i-lattice in amanner that does not break any
symmetries of the ℓ-lattice as illustrated in two cases in Figs. 16.13 and 16.14. Note that
for a given ℓ-lattice, it is not always possible to define an i-lattice that does not break
some symmetries of the ℓ-lattice, for example, square and honeycomb ℓ-lattices do not
have a corresponding i-lattice that preserves all symmetries of the ℓ-lattice. Also, the
ℓ-lattice is sometimes called the medial lattice of the i-lattice.

Having found suitable ℓ- and i-lattices, we place the Rydberg atoms on the ℓ-lattice,
and introduce a new set of qubits on the i-lattice. The i-lattice qubits are acted on by
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V3

V2

V1

i-lattice

-lattice

tFigure 16.14 The ℓ-lattice is a ruby lattice, and the i-lattice is a kagome lattice. Rydberg atoms are on the ℓ-lattice. The model with
V1 =V2 =V3 = ∞, and the remainingV (r) = 0, displays aZ2 spin liquid [288].

Pauli matrices τx,y,z
i , and these transform under the Z2 lattice gauge transformations in

(16.4) by

τz
i → τz

i ρi,

τx
i → τx

i . (16.44)

Then, an explicitly Z2 gauge-invariant form of the FSS Hamiltonian is

HFSS =
Ω
2 ∑
⟨i j⟩

τz
i Zi jτz

j +
∆
2 ∑

ℓ

Xℓ+
1
2 ∑
ℓ̸=ℓ′

V (rℓ− rℓ′)
4

(1−Xℓ)(1−Xℓ′) , (16.45)

where Zi j ≡ Zℓ on the ℓ-lattice site between the i and j sites on the i-lattice. This form
of HFSS is gauge invariant under (16.4) and (16.44). The exact equivalence of (16.45)
to (16.43), and hence to (16.40), can is established by fixing the gauge, by choosing
ρi = τz

i .
With the introduction of the τz Ising matter fields, we introduce an infinite number

of gauge charges Gi that commute withHFSS. These generalize (16.9) to

Gi = τx
i ∏
ℓ ends on i

Xℓ , (16.46)

and we impose the Gauss law constraint:

Gi = 1, (16.47)

which is the analog of Gνs
i = 1 in (16.12). With this constraint, it is easy to see

that the Ising matter fields do not introduce any additional states, and the Hilbert
space of (16.45) is identical to that of the original Rydberg model (16.40). Given
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this identification between (16.45) and (16.40), we can view the i-lattice τx,y,z spins as
“ancilla qubits” introduced only to enable the description of entangled states on the
physical qubits of the ℓ-lattice Rydberg atoms.

Unlike the conventional Hamiltonian of aZ2 gauge theory with Ising matter, (16.45)
does not contain an on-site term such as ∑i τx

i that can gap the matter field. In the
absence of such a term, one might worry that τz will condense, and this will lead
to a Higgs/confining phase of the Z2 gauge theory, as in the spinon condensation
transitions discussed in Section 15.4.1. Now the task is to find choices for the ℓ-
and i-lattices, and for V (r), so that the Z2 gauge theory (16.45) has a Z2 spin-liquid
phase, that is the Z2 gauge charges are deconfined. We need the τx gauge-charged
matter fields to be gapped, similar to the bosonic spinons in Section 15.2. This can
be achieved here; from the first term in (16.45), we see that the motion of the Ising
matter τz requires a Z operation, and by (16.42) this can add a Bℓ boson, which
leads to a large energy cost from the Rydberg interaction V (r). So τx gauge-charge
fluctuations are expensive, and this could help stabilize a deconfined phase of the
Z2 gauge theory (16.45). Then we can eliminate the τz matter fields in an Ω expan-
sion, and this will induce terms involving the gauge-invariant product of Zℓ around
closed loops, similar to those in (16.6) and Fig. 16.1; these are the terms in (16.48)
below. Such terms suppress fluctuations in Z2 flux, and so stabilize a deconfined
phase.

A proposal for a possible Z2 spin liquid phase for Rydberg atoms on the kagome
ℓ-lattice in Fig. 16.13 was made in Refs. [245, 246, 320], and supported by some
numerical evidence. Reference [288] proposed the ruby ℓ-lattice configuration shown in
Fig. 16.14, and provided convincing numerical evidence for aZ2 spin-liquid phase for a
specific V (r); they included a perfect blockade on the first, second, and third neighbor
sites, with V1 = V2 = V3 = ∞ in Fig. 16.14, and the remaining V (r) = 0. This block-
aded model is a version of the “PXP model” [160, 241, 283, 322] on the ruby lattice
(although, with our choice of X ,Y,Z axes in (16.42), the terminology “PZP model”
would be more appropriate here). With this blockade, at large positive ∆, we have
to maximize the number of ℓ sites with Xℓ = −1, that is, atoms in the |r⟩ state. It is
not difficult to see that the set of all such configurations are precisely the dimer cov-
erings of the kagome lattice, and the reasoning is similar to that in Section 16.4.2.
Consequently, quantum fluctuations of the dimers in an Ω expansion can be mapped
onto a quantum dimer model on the kagome lattice [288], similar to that in (16.20).
The dimer flipping terms in this dimer model are the Z2 flux terms in (16.7) on the
ℓ-lattice

Hloop =− ∑
loops

Kloop ∏
ℓ1,ℓ2,ℓ3,...,∈ loop

Zℓ1Zℓ2 Zℓ3 , . . . , (16.48)

which commute with the contraints in (16.46); recall that it was in the large-K limit we
found the deconfined phase. Similar comments apply to the model of Fig. 16.13, for
V1 =V2 = ∞ [245].

Recent experiments [254] on Rydberg atoms in the configuration in Fig. 16.14 have
yielded evidence for topological correlations.
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Problems

16.1 We will work out the excitation spectrum of the Z2 gauge theory in both the
confining and deconfined phases. We examine the Hamiltonian

H =−K ∑
□

∏
ℓ∈□

Zℓ−g∑
ℓ

Xℓ. (16.49)

(a) First, consider the easy case of the deconfined phase K≫ g. Starting with the
state with all spins up, compute the dispersion of a π-flux particle to order g.

(b) Now, consider the confined case g≫ K. Compute the ground-state energy to
order K2.

(c) We now consider the dispersion of the lowest quasiparticle exctiation for
g≫ K. The lowest mobile excitation is the analog of a “glueball” in quantum
chromodynamics; it is a set of four spins which have flipped to | ←⟩ from | →⟩
around a plaquette (verify that any smaller set of flipped spins is not mobile).
We will use an effective Hamiltonian method to compute the dispersion of this
excitation.

We describe this method for a general Hamiltonian. Consider a particular
Hamiltonian, H , whose spectrum consists of two sets of states, labeled a and
b, whichare separatedbya largeenergygap. Letus label these states |a, i⟩and
|b, j⟩. The Hamiltonian has non-vanishing matrix elements between these
two sets of states. We would like to derive an effective Hamiltonian that acts
only on the a states, so that we no longer have to consider the b states. This
is done by performing a canonical transformation, so that the transformed
Hamiltonian H ′ has vanishing matrix elements between the a and b states.
The Hamiltonian H ′ acts only within the a subspace, and its matrix elements
can be computed in an expansion in the inverse energy gap. To leading order,
the matrix elements of H ′ are:

⟨a, i|H ′|a, i′⟩= ⟨a, i|H|a, i′⟩

+∑
j

⟨a, i|H|b, j⟩⟨b, j|H|a, i′⟩
2

(
1

Ea,i−Eb, j
+

1
Ea,i′ −Eb, j

)
. (16.50)

In our case, a labels all single quasiparticle states, labeled by the location i
of the quasiparticle. And b labels other states connected to the single quasi-
particle states by the Hamiltonian. Note that b includes states that have an
energy both above and below that of a states.

Using the method just described, obtain the dispersion of the glueball to order
K2/g. Note that there are two sets of intermediate states: one in which the
number of flipped spins increases, and the other in which the number of flipped
spins decreases. And there is an exact cancellation between these states for
processes which involve an apparent non-local hopping of the glueball.
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220 16 Z2 Gauge Theory

16.2 Start from the Hamiltonian (16.7), along with the constraint (16.13), and express
its partition function as a discrete-time path integral. This starts from the Trotter
product representation exp

(
−βHZ2

)
= ∏N

i=1 exp
(
−∆τHZ2

)
, with N∆τ = β , and

N → 0, ∆τ → 0. Insert complete sets of Zℓ eigenstates between each exponential,
and impose the constraint (16.13) by a discrete Lagrange multiplier Zi,i+τ , which
will become the time component of the gauge field. In this manner, establish the
equivalence of (16.7) and (16.13) to the cubic-lattice gauge theory of Chapter 14
in (14.32) and (14.36) with J2 = 0. This establishes the S-dependent Berry phase
factor in (14.36). A similar analysis has been performed in Appendix A of the
arXiv version of Ref. [90]; the reader should set the fermion number nr = 1 rigidly
in their analysis.

16.3 Compute the wavefunctions of the four ground states of the Z2 gauge theory on
a torus to order g2. These states will be exactly degenerate at this order, and can
be chosen to be eigenstates of Vx and Vy. Use these wavefunctions to compute the
corrections to the Wx and Wy operators in Fig. 16.4 at order g2. The operators
Wx,y should be chosen to satisfy the anti-commutation relations in (16.16) in the
ground-state subspace, that is, they should be the operators that change the sign
of the eigenvalues of Vx,y.
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17 Chern−Simons Gauge Theories

TheU(1) Chern–Simons gauge theory is introduced, along with an exact description
of its properties. The topological degeneracy on a torus, the quasiparticle statistics,
and the Hall conductance are obtained. A connection is also established between the
Z2 spin liquid and a U(1)×U(1) Chern–Simons theory. The bulk–boundary corre-
spondencebetween thebulkChern–Simons theory and theboundary chiral Luttinger
liquid is established.

Chapters 13, 15, and 16 describe a gapped “topological” state: the Z2 spin liquid. Such
states have quasiparticle excitations that are “anyons”, which means they pick up non-
trivial phase factors upon encircling each other, even while they are separated by large
distances. It turns out that the Z2 spin liquid, and other topological states we will
consider, can be described in a common formalism: that of the Chern–Simons gauge
theory.

We consider in this chapter the abelian Chern–Simons theory with the imaginary-
time action

SCS =
∫

d3x

[
i

4π
εµνλ aI

µ KIJ ∂ν aJ
λ

]
, (17.1)

where I,J are indices extending over N values 1, . . . ,N, aI
µ are N U(1) gauge fields, and

the KIJ are integers in a symmetric N×N matrix.
Different choices of K lead to different topological phases. We argue that the Z2 spin

liquid has N = 2 and the symmetric K matrix

K =

(
0 2
2 0

)
. (17.2)

Much of our analysis is carried out for the simplest case with N = 1. We will see later
in Chapter 24 that this describes the Laughlin fractional quantum Hall states, which
have

K = m, (17.3)

with m an odd (even) integer for fermions (bosons).
In addition to the structure described by SCS, specification of a particular state of

condensed matter often requires the quasiparticle quantum numbers, and the trans-
formations of the gauge fields and the quasiparticles under various global symmetries
of the Hamiltonian. We consider such issues in Section 17.3.

221
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222 17 Chern−Simons Gauge Theories

17.1 Chern–Simons Theory on a Torus

We now discuss the quantization of (17.1) on a spatial torus of size Lx×Ly. One impor-
tant property of (17.1) is that it is exactly invariant under the gauge transformations
aI

µ → aI
µ−∂µ ζ I , where ζ I generates the gauge transformation; there is no surface term

upon integration by parts on a torus, and the variation in the action vanishes exactly.
For simplicity, we consider first the case N = 1, with K = m; the methods below can

be generalized to other values of N and K.
We work in the gauge aτ = 0, where τ is imaginary time. However, we cannot just set

aτ = 0 in (17.1). We have to examine the equation of motion obtained by varying aτ ,
which for the pure Chern–Simons theory is simply the zero-flux condition

εi j∂ia j = 0. (17.4)

But this does not imply the theory is pure gauge and trivial. We still have to consider
fluxes around the cycles of the torus. So, up to a gauge transformation, we can choose
the solutions of (17.4) as constants we parameterize as

ax =
θx

Lx
, ay =

θy

Ly
, (17.5)

in terms of new variables θx and θy. Now let us consider the influence of a “large” gauge
transformation on (17.5), generated by

ζ =
2πℓx

Lx
, (17.6)

where ℓ is an integer. Such a gauge transformation is permitted because eiζ is single-
valued on the torus, and it is always eiζ that appears as a gauge-transformation factor
on any underlying particles. Under the action of (17.6) we have

θx→ θx−2πℓ. (17.7)

So only the value of θx modulo 2π can be treated as a gauge-invariant quantity, and θx

is an “angular” variable. A similar argument applies to θy. We therefore introduce the
Wilson-loop operators

Wx ≡ eiθx , Wy ≡ eiθy . (17.8)

These are the gauge-invariant observables that characterize Chern–Simons theory on
a torus.

Inserting (17.5) into (17.1), we find that the dynamics of θx,y is described by the
simple action

Sθ =
im
2π

∫
dτ θy

dθx

dτ
. (17.9)

This is a purely kinematic action, and it shows that (m/(2π))θy is the canonically con-
jugate momentum to θx. There is no Hamiltonian, and so the energy of all states
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223 17.1 Chern–Simons Theory on a Torus

is zero. Upon promoting θx,y to operators, this action implies the commutation
relation

[θ̂x, θ̂y] =
2πi
m

. (17.10)

In terms of the gauge-invariant Wilson loop operators, this commutation relation is
equivalent to

ŴxŴy = e−2πi/m ŴyŴx. (17.11)

This is the fundamental operator relation that controls the quantum Chern–Simons
theory on a torus.

For the simplest non-trivial case of m = 2, we see that Ŵx and Ŵy anti-commute.
So they must act on a Hilbert space that is at-least two-fold degenerate, because the
smallest matrices that anti-commute are the Pauli matrices; we can choose Ŵx = σ x

and Ŵy = σ z. So the U(1) Chern–Simons theory on the torus at level m = 2 has a
two-dimensional Hilbert space at zero energy.

It is not difficult to generalize the above argument to the general integer m. As (Ŵy)
m

commutes with all other Wilson loop operators, we can demand that it equal the unit
matrix. Then, the eigenvalues of Ŵy can only be e2πiℓ/m, with ℓ= 0,1, . . . ,m−1. So we
introduce the m states |ℓ⟩ obeying

Ŵy |ℓ⟩= e2πiℓ/m |ℓ⟩ . (17.12)

The relationship (17.11) can be satisfied by demanding that Ŵx is a cyclic “raising”
operator on these states:

Ŵx |ℓ⟩= |(ℓ+1)(mod m)⟩ . (17.13)

So, the U(1) Chern–Simons theory on the torus at level m has an m-fold ground-state
degeneracy.

17.1.1 Z2 Spin Liquid

It is easy to extend this analysis to the N = 2 case with the K matrix given by (17.2).
We introduce the operators

Wi = exp
(

i
∫
Ci

a1
µ dxµ

)
, Vi = exp

(
i
∫
Ci

a2
µ dxµ

)
, (17.14)

where Cx,y , with i = x,y, are contours that encircle the contours of the torus. These cor-
respond to the identically named operators in Section 16.3. Then, by a parallel analysis,
it is easy to see that these operators obey the relations

WxVy =−VyWx , WyVx =−VxWy , (17.15)

while remaining pairs commute. These were precisely the relations found in the Z2

gauge theory in (16.16), and they imply a four-fold degeneracy on the torus.
More generally, it can be shown that the torus degeneracy is |detK|.
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224 17 Chern−Simons Gauge Theories

17.1.2 Path-Integral Quantization

Returning to the N = 1 case, it is instructive to obtain the above results by regularizing
the action (17.9) by adding higher-derivative terms, so that the Hamiltonian does not
vanish, and all states are not exactly at zero energy. By adding a bare Maxwell term to
the Chern–Simons theory, we can extend (17.9) to

Sθ =
∫

dτ

[
M
2

(
dθx

dτ

)2

+
M
2

(
dθy

dτ

)2

+ iAx
dθx

dτ
+ iAy

dθy

dτ

]
, (17.16)

with

(Ax,Ay) = (mθy/(2π),0). (17.17)

But this is precisely the (imaginary-time) Lagrangian of a fictitious particle with coor-
dinates (θx,θy) and massM moving in the presence of “magnetic field” specified by a
vector potential (Ax,Ay). We are interested in the spectrum in the limitM→ 0, when
(17.16) reduces to (17.9). The strength of the magnetic field is B = ∂θxAy− ∂θyAx =

−m/(2π). We can now introduce a wavefunction ψ(θx,θy) obeying the Schrödinger
equation

Hψ(θx,θy) = Eψ(θx,θy), (17.18)

where the Hamiltonian is

H=
1

2M

(
1
i

∂
∂θx
−Ax

)2

+
1

2M

(
1
i

∂
∂θy
−Ay

)2

. (17.19)

A subtle feature in the solution of this familiar Hamiltonian is the nature of the
periodic boundary conditions on θx and θy. This fictitious particle moves on a torus of
size (2π)× (2π), not to be confused by the torus of size Lx×Ly for the original Chern–
Simons theory. The total “magnetic” flux is therefore 4π2B, and the total number of
“magnetic”-flux quanta is 4π2|B|/(2π) = m. So, from the Landau-level analysis to be
carried out in Chapter 19, we expect that the eigenstates of H are m-fold degenerate,
just as we concluded from the arguments above using the Wilson loop operators. In
computing the eigenstates of H, we run into the difficulty that the vector potential in
(17.17) is not explicitly a periodic function of θy, and instead obeys

Ax(θx,θy +2π) =Ax(θx,θy)+m,

Ay(θx,θy +2π) =Ay(θx,θy). (17.20)

But we can make the vector potential periodic by using the gauge transformation

Ai→Ai−∂iζ , (17.21)

with ζ = mθx. So we need to solve (17.18) and (17.19) subject to the boundary
conditions

ψ(θx +2π,θy) = ψ(θx,θy), (17.22)

ψ(θx,θy +2π) = eimθx ψ(θx,θy). (17.23)
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The Landau-level eigenstates of (17.19) in an infinite plane are obtained in Chap-
ter 19. We focus only on the lowest Landau-level states, as these are the only ones that
will survive theM→ 0 limit. Imposing only the boundary condition (17.22), we obtain
the unnormalized eigenstates

ϕℓ(θx,θy) = exp

(
iℓθx−

m
4π

(
θy−

2πℓ
m

)2
)
, (17.24)

where ℓ is any integer. Notice that these states obey

ϕℓ(θx,θy +2π) = eimθx ϕℓ−m(θx,θy). (17.25)

Now it is evident that we can also satisfy the second boundary condition (17.23) with m
different orthogonal wavefunctions ψℓ(θx,θy), with ℓ= 0,1, . . . ,m−1, which are given
by

ψℓ(θx,θy) =
∞

∑
p=−∞

ϕℓ+mp(θx,θy). (17.26)

These are related to Jacobi theta functions. We have again reached the conclusion that
the U(1)Chern–Simons theory at level m has an m-fold degenerate ground state on the
torus.

17.2 Quasiparticles and Their Statistics

Let us now introduce a set of gapped quasiparticle excitations to the Chern–Simons
theory, in infinite two-dimensional space. While the Chern–Simons theory is “triv-
ial” on its own, without any dynamic excitations, it does induce non-trivial statistical
interactions between the quasiparticles. In other words, the quasiparticles acquire non-
trivial Berry phases along their trajectories due to the presence of the other particles.
A quasiparticle excitation is labeled by its ℓ-vector, ℓI , which is a set of N integers
representing its charges under the N gauge fields. The Aharonov–Bohm–Berry phase
acquired by this quasiparticle along its trajectory C is

exp
(

i
∫
C

dxµℓIaI
µ

)
. (17.27)

In terms of the action (17.1), this extends the action to

SCS =
∫

d3x

[
i

4π
εµνλ aI

µ KIJ ∂ν aJ
λ + i jµ ℓIaI

µ

]
, (17.28)

where jµ is the current of the quasiparticle.
Now consider a quasiparticle ℓI stationary at the origin of space. The saddle-point

equations of (17.28) imply that this particle produces a flux tube of aI obeying

KIJ∇∇∇×aJ = 2πℓI δ 2(⃗r)ẑ. (17.29)
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If we take a second identical quasiparticle, also with charges ℓI , and have it encircle
the origin halfway, it will acquire a phase factor θℓ, associated with the evaluation of
(17.27) for the solution of (17.29), given by

θℓ = π ℓT K−1 ℓ . (17.30)

This value of θℓ determines the self statistics of this type of quasiparticle/anyon, as a
half circle can be turned into an exchange without any additional Berry phases. Note
θ = 0mod(2π) corresponds to bosons, and θ = π mod(2π) corresponds to fermions.

Next, we can take a quasiparticle with a charge vector ℓ′I all the way around the ℓI

quasiparticle and determine the angle controlling their mutual statistics:

θℓ,ℓ′ = 2πℓT K−1ℓ′ . (17.31)

17.2.1 Z2 spin liquid

For theZ2 spin liquid, with the K matrix (17.2), the ℓ vectors of the e, m, and ε particles
are:

ℓe =

(
1
0

)
, ℓm =

(
0
1

)
, ℓε =

(
1
1

)
. (17.32)

It is now instructive to verify that the self and mutual statistics of these particles are
exactly those obtained in the Z2 gauge theory.

17.3 Coupling to an External Gauge Field

In many physically important cases, topological phases have a globally conservedU(1)
quantum number, such as the electrical charge, boson number, or spin component.
Associated with this globally conserved U(1), we can create a fixed background U(1)
gauge field Aµ , and describe its coupling to theChern–Simons theory. It is conventional
to write this coupling by a “mutual” Chern–Simons term between the Aµ and aI

µ , so
that (17.28) is extended to

SCS =

∫
d3x

[
i

4π
εµνλ aI

µ KIJ ∂ν aJ
λ +

i
2π

tIAµ εµνλ ∂ν aI
λ + i jµ ℓIaI

µ

]
, (17.33)

where the tI are a set of integers that determine the U(1) charges of the quasiparticle.
Again using (17.29), we see that the U(1) charge of the quasiparticle ℓ is

Q = ℓT K−1 t. (17.34)

In the absence of quasiparticles, it is possible to “integrate out” the aI
µ from (17.33),

and obtain an effective action for Aµ (e.g., by addingMaxwell terms for aI
µ to regularize

the integral)
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SA = (tT K−1t)

∫
d3x

[
i

4π
εµνλ Aµ ∂ν Aλ

]
. (17.35)

For the case where the U(1) charge is the electrical charge, the value of tT K−1t is the
Hall conductance, in units of e2/h.

17.3.1 Z2 Spin Liquid

For the Z2 spin liquid realized as a phase of a boson (spin) model with a conserved
boson number Q, we have the tI vector

t =
(

0
1

)
. (17.36)

This associates an Aµ charge with the a2
µ flux that is carried by each spinon. It is now

easy to show that the e and ε particles (the spinons) have boson number Q = 1/2, while
the m particle has Q = 0. Also, the Hall conductance vanishes, as expected from the
time-reversal symmetry of the Z2 spin liquid.

17.4 Physics at the Edge

We return to the Chern–Simons theory in (17.1), and describe its quantization in the
geometry of Fig. 19.1. To begin with, we will just consider the U(1) theory with N = 1,
and with K = m. The first important property of SCS is that it is not invariant under a
gauge transformation aµ → aµ −∂µ ζ in the presence of an edge. Instead, we obtain a
surface term

SCS→SCS−
im
2π

∫
dxdτ ζ (∂τ ax−∂xaτ)

∣∣∣
y=0

. (17.37)

The proper way to understand this lack of gauge invariance is to regard the Chern–
Simons theory as an effective theory for microscopic degrees of freedom that are
gauge invariant. So, while the Chern–Simons theory properly describes the low-energy
physics in the bulk, it evidently fails to do so on the boundary. Theremust be additional
degrees of freedom on the boundary, which restore gauge invariance. Ultimately, we
have to return to a suitable microscopic model to directly determine the degrees of
freedom on the edge. We will do so in Chapters 18 and 19, when we consider specific
situations that give rise to an effective Chern–Simons gauge theories.

For now, we employ a somewhat ad hoc procedure, which defines a gauge-invariant
theory in the bulk, and introduces new degrees of freedom on the boundary designed
to restore gauge invariance. We work directly with the Chern–Simons action in the
geometry of Fig. 19.1. The variation of the action is [66]:

δSCS =
im
2π

∫
d3x
[
δaµ(εµνλ ∂ν aλ )

]
+

im
4π

∫
dxdτ (axδaτ −aτ δax)

∣∣∣
y=0

. (17.38)
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To make the variation vanish, we require the usual zero-flux condition, εµνλ ∂ν aλ = 0,
in the bulk. But, on the boundary, wemust also impose a secondary condition to define
the theory under the stationary action principle; a convenient choice is to set aτ = 0
(and hence also δaτ = 0) at y = 0. We now find that the fluctuations of the gauge field
near the boundary are no longer pure gauge, in contrast to the situation in the bulk.

Let us quantize the system by choosing the gauge aτ = 0 in the bulk. Then, (17.4)
continues to hold for the spatial components of the gauge field, and so we can solve
this constraint by the choice

ai = ∂iφ (17.39)

in terms of a scalar field φ . As in (17.7), we can use large gauge transformations to
argue that φ should be physically equivalent to φ +2π, and so φ takes values on a unit
circle. Inserting (17.39) into SCS, and integrating over y, we obtain the edge action

Se =−
im
4π

∫
dxdτ ∂τ φ∂xφ, (17.40)

where the fields are now implicitly evaluated at y = 0. Now we notice that at m = 1
this is precisely the kinematic term in the bosonic representation of a free chiral
fermion obtained in the last line of (12.34). For general m, following the arguments
in Chapter 12 on Luttinger liquids, we can write (17.40) as a commutation relation

[φ(x1),φ(x2)] =−i
π
m

sgn(x1− x2). (17.41)

In addition to the kinematic term in (17.40), non-zero energetic terms are also permit-
ted at the boundary, provided they are consistent with the residual shift symmetry
φ → φ+constant; these would arise from higher-order terms in the bulk, like the
Maxwell terms considered earlier in (17.16). In an operator language, including the
lowest-order spatial gradient, we obtain the Hamiltonian

Hφ =
mν
4π

∫
dx(∂xφ)2, (17.42)

where ν is a coupling constant with units of velocity, and the prefactor of m has been
chosen so that ν is the actual velocity of φ excitations in (17.43). This interpretation
of ν becomes clearer in the action for the path integral, which is the final form of the
edge theory [300]:

Se =
m
4π

∫
dxdτ

[
−i∂τ φ∂xφ +ν(∂xφ)2

]
. (17.43)

This is a theory of left-moving chiral bosons at velocity ν , and is also known as theU(1)
Kac–Moody theory at level m. At m = 1, we can conclude from our previous analysis
of Luttinger liquids in Chapter 12 that (17.43) is precisely the bosonized version of the
free chiral fermion theory.

At other values of m, Se remains a Gaussian theory, and so it is possible to compute
all correlators on the edge using the methods developed in Chapter 12. In particular, a
useful result that can be obtained by such methods is

⟨φ(x,τ)φ(0,0)⟩=− 1
m

ln(x− iντ)+ · · ·. (17.44)
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We will use this result below.
Quantum Hall systems also have a conserved U(1) charge in the bulk and, as dis-

cussed below, this is important for the stability of the chiral boson theory in (17.43)
towards external perturbations on the edge. From (17.33), the external electromagnetic
potential Aµ couples via the term

SAa =
∫

d3x

[
i

2π
aµ εµνλ ∂ν Aλ

]
. (17.45)

Using a non-zero electrostatic potential Aτ , which is independent of y, and integrating

over y in (17.45) reduces SAa to (i/(2π))
∫

dxdτAτ ∂xφ , and so we may identify the

charge density as

ρ(x) =
1

2π
∂xφ, (17.46)

which is precisely the relation obtained in (12.37) in our discussion of Luttinger liquids.
We can also identify the fate of the quasiparticle operators on the boundary by con-

sidering the adiabatic transport of the quasiparticles via the bulk between two points,
x1 and x2, on the boundary. The present N = 1 Chern–Simons theory is characterized
by m species of quasiparticles with the ℓ= 1,2, . . . ,m. Such a process for a quasiparticle
ℓ would be accompanied by the Berry phase

exp
(

iℓ
∫ (x2,0)

(x1,0)
d⃗x · a⃗

)
= eiℓ(φ(x2)−φ(x1)), (17.47)

where the integral on the left-hand side is along a path in the bulk of the sample, and
the right-hand side follows from (17.39). So we find a bulk–boundary correpondence
between quasiparticles in the bulk and operators

ψℓ = eiℓφ (17.48)

in the gapless theory on the boundary. Using (17.41) and (17.46), we can verify the
commutation relation

[ρ(x1),ψℓ(x2)] =
ℓ

m
δ (x1− x2)ψℓ(x2), (17.49)

which confirms that the quasiparticle ψℓ carries charge ℓ/m. When we realize this topo-
logical state as a fractional quantum Hall state of fermions or bosons (with m odd
and even, respectively), the operator ψℓ has unit charge, and corresponds to adding
or removing the underlying fermion or boson. We also note the commutation relation
(by generalizing the identities in (12.27))

ψℓ(x1)ψℓ′(x2) = exp
(

i
πℓℓ′

m

)
ψℓ′(x2)ψℓ(x1). (17.50)

This is the boundary manifestation of the self/mutual statistics of the correspond-
ing quasiparticles in the bulk; compare (17.50) with (17.30) and (17.31). We can also
compute the two-point correlator of the quasiparticle operators from (17.44):

⟨ψℓ(x1)ψℓ′(x2)⟩ ∼ (x1− x2)
−ℓℓ′/m. (17.51)
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230 17 Chern−Simons Gauge Theories

17.4.1 Z2 Spin Liquids

First, we note that the generalization of the edge theory (17.43) to arbitrary N in the
presence of an external field Aµ follows from (17.33)

Se =
1

4π

∫
dxdτ

[
−iKIJ∂τ φ I∂xφJ +νIJ(∂xφ I)(∂xφJ)+

i
2π

tIAµ εµν ∂ν φ I
]
, (17.52)

where the K matrix is as in (17.1), and νIJ is a positive–definite matrix determining a
set of velocities.

For the Z2 spin liquid, with the K matrix in (17.2), we choose to label the boundary
scalars by θ and ϕ (rather than φ1 and φ2), both defined modulo 2π:

a1
i = ∂iθ , a2

i = ∂iϕ . (17.53)

Then the boundary kinematic action is (dropping the coupling to the external field Aµ )

Se =−
i
π

∫
dxdτ ∂xθ∂τ ϕ , (17.54)

which implies the commutation relation

[ϕ(x1),θ(x2)] = i
π
2
sgn(x1− x2). (17.55)

Following the arguments above, and the ℓ values in (17.32), we can identify eiθ as the
e particle on the boundary, eiϕ as the m particle on the boundary, and eiθ+iϕ as the ε
particle on the boundary.

Remarkably, (17.54) is precisely the kinematics of the Luttinger liquid of spinless
fermions in (12.25). This theory is non-chiral, and has equal numbers of left- and right-
moving excitations. The simplest terms in the Hamiltonian for these edge excitations
are

He =
∫

dx

[
K1

2
(∂xϕ)2 +

K2

2
(∂xθ)2

]
, (17.56)

and this also coincides with the Hamiltonian for the Luttinger liquid.
However, unlike the quantum Hall cases described above for N = 1, the gapless non-

chiral edge states described by He for the K matrix (17.2) are generally not stable. For
the Z2 spin liquid, both e2iϕ and e2iθ are trivial bosonic excitations; this corresponds
to the fact that, in the bulk, two visons or two spinons can fuse into trivial excitations.
Consequently, the general edge Hamiltonian is [20]

He =
∫

dx

[
K1

2
(∂xϕ)2 +

K2

2
(∂xθ)2−λ1 cos(2ϕ)−λ2 cos(2θ)

]
. (17.57)

We have the scaling dimensions dim[λ1] = 2−K and dim[λ2] = 2−1/K, where K is the
Luttinger parameter (see Problem 17.2): so the scaling dimension of either λ1 or λ2 is
positive for all values of K, one of the coupling constants is always relevant, and the
edge spectrum is always gapped. However, it is possible to choose couplings so that
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231 Problems

the edge gap is much smaller than the bulk gap, and so the concept of a separate edge
theory of the Z2 spin liquid makes sense even in the gapped case.

In the presence of additional global symmetries in the underlying lattice model, it is
possible that the cosine terms conspire to leave at least one mode gapless. The symme-
try constraints for the existence of Z2 spin liquids with gapless edge states have been
explored in the literature [114, 147, 161].

Problems

17.1 Quantize the Chern–Simons theory for the Z2 spin liquid on a torus using the K
matrix in (17.2) by the method of Section 17.1. In this manner, obtain (17.15).

17.2 Compute the scaling dimensions of λ1,2 in (17.57) using the correlators in (25.43).
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18 Berry Phases and Chern Numbers

The quantum-mechanical Berry phase is introduced, and applied to a single spin in a
magnetic field, and toanelectronmoving inBlochbands. TheChernnumbersof Bloch
bands are shown to lead to chiral edge states, and a quantized Hall conductivity.

Part III pauses our discussion of fractionalized phases and moves to a different set of
topics that will eventually be important for the continuation of our discussion of frac-
tionalized phases in Part IV. Our focus here is on free fermion models. It might seem
that there is little more to say about such systems beyond that found in undergraduate
text books. But there is a surprising richness in this subject, some of which was only
uncovered in recent years.

From a broader perspective, we are concerned with the geometry of the space of
eigenstates of a Hamiltonian, as the Hamiltonian is changed over a space of “cou-
pling constants.” This geometry is characterized by a Berry connection, and a Berry
flux, which have properties similar to the vector potential and magnetic field in elec-
tromagnetism. The Berry phase is a line integral over the Berry connection. This was
originally discovered as an important contribution to the evolution of thewavefunction
under a Hamiltonian, which varies adiabatically in time. But it is important to keep in
mind that the Berry connection is a geometric characterization that has applications
in numerous physical contexts, quite apart from the adiabatic process.

As we will see in Section 18.3, in applications to crystalline materials, the Bloch
crystalmomentumprovides the space of coupling constants overwhich theBerry phase
can be computed. This leads to a classification of the band structure of crystals in
distinct topological classes, some of which are described in Chapter 20.

18.1 Berry Phases

Consider a general Hamiltonian H(Rµ), which depends on a finite set of parameters
Rµ , µ = 1,2, . . .. Note that Rµ are coupling constants in the Hamiltonian, and are
not connected to the quantum degrees of freedom. Assume that we can determine the
eigenstates

∣∣n,Rµ
〉
of this Hamiltonian for each Rµ :

H(Rµ)
∣∣n,Rµ

〉
= εn(Rµ)

∣∣n,Rµ
〉
, (18.1)

235
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236 18 Berry Phases and Chern Numbers

with energy eigenvalues εn(Rµ), n = 1,2,3, . . ., which we assume are non-degenerate.
The eigenstates in (18.1) are determined only up to an overall phase, and we can pick
another set of eigenstates by a transformation∣∣n,Rµ

〉
→ eiϕn(Rµ )

∣∣n,Rµ
〉
, (18.2)

with arbitrary ϕn(Rµ).
We now define the “Berry connection” as a characterization of the geometry of the

space of quantum states defined by varying the parameter Rµ ; we have

An
µ(Rµ) = i

〈
n,Rµ

∣∣ ∂
∂Rµ

∣∣n,Rµ
〉

(18.3)

at each point in the Rµ parameter space. We write (18.3) more compactly as

An
µ = i

〈
n|∂µ n

〉
, (18.4)

where the dependence on Rµ of An
µ and the eigenstate |n⟩ is implicit, and the ∂µ is

understood to apply to the Rµ dependence. Under the transformation in (18.2), we see
that Aµ transforms as

An
µ → An

µ −∂µ ϕn, (18.5)

that is, An
µ behaves like a vector potential of a U(1) gauge symmetry defined by the

transformation in (18.2).
The geometric characterization of the Berry connection can be made gauge invari-

ant by computing the U(1) gauge flux, which in this context is known as the “Berry
curvature.” First, let us note a few simple identities following from the normalization
of the quantum states, and integration by parts:

⟨n|n⟩= 1,〈
∂µ n|n

〉
+
〈
n|∂µ n

〉
= 0,〈

∂µ n|n
〉
=
〈
n|∂µ n

〉∗
. (18.6)

These identities imply that An
µ is real, and can be written more symmetrically as

An
µ =

i
2
(〈

n|∂µ n
〉
−
〈
∂µ n|n

〉)
. (18.7)

Now we can compute the gauge-invariant Berry curvature of the state |n⟩:

Fn
µν = ∂µ An

ν −∂ν An
µ = i

(〈
∂µ n|∂ν n

〉
−
〈
∂ν n|∂µ n

〉)
. (18.8)

The above analysis shows that Fn
µν is gauge invariant, but the expression in (18.8)

involves gauge-dependent quantities at all the intermediate steps. It is useful, and pos-
sible, to write down Fn

µν in a manner that is explicitly gauge invariant. First, we take
the derivative of (18.1)

∂µH|n⟩+H|∂µ n⟩= ∂µ εn|n⟩+ εn|∂µ n⟩, (18.9)

and then take the overlap with ⟨n′|, where |n′⟩ is any other eigenstate ofH, not the same
as |n⟩: 〈

n′
∣∣∂µH|n⟩= (εn− εn′)

〈
n′|∂µ n

〉
. (18.10)
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237 18.2 Berry Phase of a Spin

Then, we insert the identity ∑n′ |n′⟩⟨n′|= 1 into (18.8) and obtain

Fn
µν = i ∑

n′ ̸=n

⟨n|∂µH|n′⟩⟨n′|∂νH|n⟩−⟨n|∂νH|n′⟩⟨n′|∂µH|n⟩
(εn− εn′)2 , (18.11)

where the n′ = n contribution to (18.8) vanishes. It is now easy to show that (18.11) is
explicitly invariant under (18.2).

This geometric structure of the eigenstates of H(Rµ) is often stated in terms of a
“Berry phase” γn(C) of the state |n⟩ associatedwith a closed curve C in the Rµ parameter
space. This Berry phase is given by

γn(C) =
∮
C

An
µ(Rµ)dRµ

=
∫
S

dSµν Fn
µν . (18.12)

The second line uses the generalized Stokes theorem to convert the integral to one over
a surface S enclosed by the closed curve C.

The Berry phase γn(C) is also called an “adiabatic phase,” because it is an extra
phase accumulated by the wavefunction under the time-dependent Schrödinger equa-
tion upon an adiabatic time-dependent variation of the parameters Rµ around the
closed curve C. More precisely, let us introduce a time-dependent Hamiltonian

H(t)≡H(Rµ(t)) , (18.13)

where the parameters Rµ have now become time dependent, and we are interested in
solving the equation

ih̄
d
dt
|Ψ(t)⟩=H(t) |Ψ(t)⟩ (18.14)

for the time evolution of the wavefunction |Ψ(t)⟩. Consider the case in which the initial
state |Ψ(0)⟩ is the eigenstate |n⟩, and we evolve smoothly and slowly along the curve C
in parameter space so that Rµ(0) = Rµ(T ). Then, the adiabatic theorem states that as
T → ∞

|Ψ(T )⟩= exp
(

iγn(C)−
i
h̄

∫ T

0
εn(Rµ(t))dt

)
|Ψ(0)⟩ , (18.15)

where εn(Rµ) are the instantaneous energy eigenvalues in (18.1). We leave the proof of
this theorem as an exercise.

18.2 Berry Phase of a Spin

An important case of a non-trivial phase is a single spin S in a Zeeman field h with
Hamiltonian

H= h ·S. (18.16)
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238 18 Berry Phases and Chern Numbers

C

tFigure 18.1 Berry phase of a spin moving along the contourC is S times the spherical area enclosed byC .

We consider Zeeman fields with fixed magnitude |h|= h but variable direction, so the
parameter space Rµ is two-dimensional and has the topology of a sphere. We can use
spherical coordinates with

h= h(sinθ cosϕ ,sinθ sinϕ ,cosθ) (18.17)

and so now Rµ ⇒ (θ ,ϕ). For spin S = 1/2, the Hilbert space is also two-dimensional,
with |n⟩ ⇒ |±⟩, and we focus on the state

|−⟩=
(

e−iϕ sin(θ/2)
−cos(θ/2)

)
. (18.18)

This yields the Berry connection

A−θ = ⟨−| ∂
∂θ
|−⟩= 0, A−ϕ = ⟨−| ∂

∂ϕ
|−⟩= sin2(θ/2) . (18.19)

From this we obtain the Berry curvature defined in (18.8):

F−θϕ = S sinθ , (18.20)

for S = 1/2. A similar computation can be performed for general S (see Appendix A.2),
and yields (18.20). From (18.12), and the area element on the sphere, we obtain the
Berry phase illustrated in Fig. 18.1

γ−(C) = S× (Oriented area enclosed by C on a unit sphere) . (18.21)

The oriented area is undetermined modulo 4π, but the phase factor exp(iγ−(C)) is
single-valued for an S integer or a half-integer.

It is also possible to express the spin Berry phase (18.20) in away thatmakes the spin-
rotation invariance manifest. One such expression is (A.38) of Appendix A, involving
an emergent dimension and integral over a two-dimensional spacetime, as in a Wess–
Zumino term. Alternatively, we can use the vector potential of a Diracmonopole at the
center of the unit sphere, A(N), where N is a unit vector representing the orientation
of the spin (as in (A.38)), and

∇∇∇N ×A=N . (18.22)

Then we can write (18.21) as

γ−(C) = S
∮
C
A(N) ·dN . (18.23)
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239 18.3 Berry Curvature of Bloch Bands

An interesting special case is when the field h is restricted to lie in the x–z plane.
Then, the Hamiltonian in (18.16) is real, and so is invariant under a suitable action of
time-reversal symmetry.Nevertheless, the Berry phase can be non-zero for a path C that
maps out a great circle on the sphere; in this case γ−(C) =−2πS, and exp(iγ−(C)) =−1
for half-integer S.

18.3 Berry Curvature of Bloch Bands

We consider a general model of fermions c (assumed spinless for simplicity) moving in
a potential V (r) that is periodic under translations by a Bravais lattice of vectors R

V (r+R) =V (r) . (18.24)

We are interested in the Berry curvature associated with the eigenfunctions of the
Schrödinger equation: (

− h̄2∇∇∇2
r

2m
+V (r)

)
Ψ(r) = EΨ(r). (18.25)

Let us first review some basic aspects of band theory. Bloch’s theorem states that all
eigenfunctions of (18.25) are of the form

Ψn,k(r) = eik·run,k(r), (18.26)

where k is the “crystal momentum,” n is the “band index,” and the Bloch wavefunction
un,k(r) has the same periodicity as the potential V (r):

un,k(r+R) = un,k(r) . (18.27)

The periodicity is usefully expressed in terms of the reciprocal lattice of wavevectors G
that obey

eiG·R = 1 . (18.28)

Then, we can write both V (r) and un,k(r) in the analog of a Fourier series expansion

V (r) = ∑
G

VGeiG·r,

un,k(r) = ∑
G

un,k,GeiG·r. (18.29)

Inserting (18.29) into (18.26), we can see that eigenstates at crystal momenta k and
k+ G are related to each other by a rearrangement of the Fourier series expan-
sion. Assuming the eigenstates at each n and k are non-degenerate, the wavefunctions
Ψn,k+G(r) and Ψn,k(r) must be the same functions of r, apart from an r-independent
phase factor. So, there exists a function θn(k) with which the function

Ψn,k(r)≡ exp(iθn(k))Ψn,k(r) (18.30)
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240 18 Berry Phases and Chern Numbers

is a periodic function of k over the extended Brillouin zone:

Ψn,k+G(r) = Ψn,k(r) , εn(k+G) = εn(k) . (18.31)

The distinct values of the crystal momentum k extend over the first Brillouin zone of
the Bravais lattice, which has the topology of a torus.

We now consider the Berry curvature of the Bloch wavefunction un,k(r) while treat-
ing k as the realization of parameter space Rµ . The parameter space is therefore a
d-dimensional torus, in contrast to Section 18.2, where the parameter space was a
sphere. From (18.25), the analog of (18.1) is now

H(k)un,k(r) = εn(k)un,k(r), (18.32)

where

H(k) = 1
2m

(−ih̄∇∇∇r+ h̄k)2 +V (r). (18.33)

Then the Berry connection in (18.4) is a vector-valued function of crystal momentum
in each band n:

An(k) = i
〈
un,k
∣∣∇∇∇k

∣∣un,k
〉
. (18.34)

We write the Berry curvature in (18.8) in terms of a “magnetic” field bn(k) in crystal
momentum space:

bn(k) = i
〈
∇∇∇kun,k

∣∣× ∣∣∇∇∇kun,k
〉
. (18.35)

Finally, we are in a position to obtain the topological invariant characterizing the
Bloch wavefunction un,k(r). This is obtained by computing the integral of the Berry
curvature over the first Brillouin zone. We restrict ourselves to the spatial dimension
d = 2, where the Berry curvature bn(k) is a scalar (obtained from (18.35) as a vector in
the z direction):

1
2π

∫
1st B.Z.

dkxdky bn(k) =
∮

dk ·An(k)

= i
∮

dk ·
〈
un,k
∣∣∇∇∇k

∣∣un,k
〉
. (18.36)

This is an integral on the boundary of the first Brillouin zone. We now express the inte-
grand in terms of the periodic function in (18.30). Using the fact that for any point on
the boundary k there is a corresponding point k+G, the contributions to the integral
in (18.36) from Ψn,k vanish, and the only non-vanishing contribution is that from the
phase θn(k); so we have

Cn ≡
1

2π

∫
1st B.Z.

dkxdky bn(k) =
1

2π

∮
dk ·∇∇∇kθn(k). (18.37)

The phase θn(k) is only defined modulo 2π, and this establishes that (18.37) evaluates
to an integer. We can identified this integer with the Chern number Cn. Every Bloch
band in two dimensions is characterized by a topological invariant, the value of Cn. In
systems with time-reversal symmetry, and without spin–orbit coupling, we can choose
the Bloch wavefunctions to be real, and then Cn = 0. However, without time-reversal
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241 18.3 Berry Curvature of Bloch Bands

tFigure 18.2 Tight-binding model with fluxπ/2 in each elementary right triangle.

symmetry, Cn can be non-zero, and its value is of great physical importance, as we see
in Section 18.4. We can use (18.11) to present an expression for the value of Cn that is
manifestly gauge invariant:

Cn =
i

2π

∫
1st B.Z.

dkxdky ∑
n′ ̸=n

〈
un,k
∣∣∇∇∇kH(k)

∣∣un′,k
〉
×
〈
un′,k

∣∣∇∇∇kH(k)
∣∣un,k

〉
(εn(k)− εn′(k))2 . (18.38)

We now describe a simple and important example of a band structure that leads to
non-zero Chern numbers; this example appears in our discussion of chiral spin liquids
in Chapter 22, and also in subsequent chapters in Part IV. We consider a tight-binding
model on the square lattice that has a magnetic flux of a half-flux quantum per unit
cell; this the simplest case of a Hofstadter model. The tight-binding model is illustrated
in Fig. 18.2. The nearest-neighbor hoppings t1 have been chosen so that there is a π
flux in each square plaquette of the square lattice. The t1 hoppings are purely real, and
so time-reversal symmetry is not yet broken. To break time reversal, and also to induce
a band gap, we need to include imaginary second-neighbor hoppings of magnitude t2;
their phases are chosen so that each elementary right triangle has a spatially uniform
flux of π/2. We can obtain the band structure of Fig. 18.2 by using a two-site unit cell
of the A and B sublattices (as in Fig. 8.2), where the momentum-space Hamiltonian
is

H f = ∑
a,b

f †
a (k)Mab(k) fb(k) (18.39)

where a,b represent A, B and

M(k) =
(
−2t2 sin(kx + ky)−2t2 sin(kx− ky) −2t1 cos(kx)−2it1 sin(ky)

−2t1 cos(kx)+2it1 sin(ky) 2t2 sin(kx + ky)+2t2 sin(kx− ky)

)
.

(18.40)
The band structure obtained by diagonalizing M is shown in Fig. 18.3. There is a band
gap between the upper and lower bands of 8|t2| at k= (±π/2,0) and, as t2 vanishes, the

https://doi.org/10.1017/9781009212717.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.019


242 18 Berry Phases and Chern Numbers

tFigure 18.3 The upper band of the Hamiltonian in (18.39) for t1 = 1, t2 = 0.1. The lower band has energies that are the
negative of the upper band.

bands meet at Dirac points, as discussed further in Chapter 22. Computing the Chern
number via (18.38) shows that the two bands have Cn =±1, with the sign determined
by the sign of t2. The Chern number is ill-defined at t2 = 0 because of the vanishing
band gap.

An important and remarkable property of bands with a non-zero Chern number is
the existence of gapless edge states within the band gap. Imagine a situation where the
value of t2 slowly changes its value along some spatial direction until it ultimately flips
its sign. Then we have regions of the system with opposite Chern numbers, and they
must be connected via a gapless region, for that is the only way the Chern number of
any band can change. In this case, there will be two gapless modes, corresponding to
the two Dirac nodes at k = (±π/2,0). Consider, next, an infinite strip of finite width
along the x direction. Across each edge of the strip there is a transition from Chern
number ±1 to the empty state, which can be considered the gap of a trivial insulator;
this situations leads a single edge state on each edge.We numerically verify this by exact
diagonalization of a strip of width 200, whose spectrum is shown in Fig. 18.4. We see
two bands of states within the gap. These correspond to left- and right-moving states
on opposite edges of the strip.

There is an explicit analytic argument for the existence of such chiral edge states in
Chapter 19.
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243 18.4 Chern Insulators

tFigure 18.4 Spectrum of a strip of width 200 for the tight-binding model of Fig. 18.2. All eigenstates have definite momentum ky.

18.4 Chern Insulators

Chern insulators are two-dimensional crystalline insulators with occupied bands hav-
ing non-zero Chern numbers. They have the remarkable property that their Hall
conductivity is quantized at zero temperature, and is related to the sum of the Chern
numbers of the occupied bands. This was established in a classic paper by Thouless
et al. [278], and we follow their approach.

We use the Kubo formula to compute the Hall conductivity. In the presence of an
external vector potential A(r), the Hamiltonian in (18.38) is modified to

H(k) = 1
2m

(−ih̄∇∇∇r+ h̄k− eA(r))2 +V (r) . (18.41)

This implies that the electron current operator is (e/h̄)∇∇∇kH(k). Inserting this current
operator into the Kubo formula, and evaluating the current–current correlator for free
fermions, we obtain an expression for the Hall conductivity at a Matsubara frequency
iωm:

σxy(iωm) =
e2

ih̄2ωm
∑

n ̸=n′

∫ d2k
4π2

〈
un,k
∣∣∂kxH(k)

∣∣un′,k
〉〈

un′,k
∣∣∂kyH(k)

∣∣un,k
〉

× f (εn′(k))− f (εn(k))
εn(k)− εn′(k)+ ih̄ωm

, (18.42)

where f (ε) is the Fermi function. At T = 0, with the chemical potential in a band gap,
we can expand in powers of ωn and using (18.38) obtain the d.c. Hall conductivity:

σxy =
e2

h ∑
occupied n

Cn . (18.43)

Thus, the Hall conductivity of a Chern insulator is an integer multiple of the e2/h.
Another argument for the quantization of the Hall conductivity is given in Chapter 19.
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Problem

18.1 Consider a tight-binding model on the square lattice in the presence of a magnetic
field with flux Φ/Φ0 = 1/5 per unit cell. The site i is at ri = (xi,yi), with xi, yi inte-
gers. Begin by using a model with only nearest-neighbor hopping matrix elements
given by

ti,i+x̂ =−tx , ti,i+ŷ =−ty ωxi (18.44)

(and theirHermitian conjugates), with ω = e2πi/5, ri+x̂=(xi+1,yi), ri+ŷ=(xi,yi+1).

(a) These hopping elements have a unit cell of five sites, and so the momentum-
space Hamiltonian H(kx,ky) is a 5×5 matrix. Write down this 5×5 matrix. Its
eigenvalues are ε(kx,ky).

(b) Choose tx = 1.0 and ty = 1.0 (InMathematica, it is important to put the decimal
point – otherwise it will attempt an algebraic evaluation of the eigenvalues.)
Plot the energy eigenvalues when the lattice is placed on a cylinder of circum-
ference L = 50. So we have periodic boundary conditions along the x direction,
and xi = 51 is the same position as xi = 1. The momentum kx is quantized to
the values kx = 2π j/(50), j = 1, . . . ,10 (recall that the first Brillouin zone is
0 < kx ≤ 2π/5, 0 < ky ≤ 2π). Plot all the eigenvalues ε(kx,ky) as a function of
ky alone, with kx taking all the possible quantized values listed. In Mathemat-
ica, this is accomplished by the command
ListPlot[Transpose[Table[Flatten[Table[Eigenvalues[
hof[2 Pi j/50, ky]], {j, 1, 10}]], {ky, 0, 2 Pi, 2 Pi/n}]]],
where hof[kx,ky] yields H(kx,ky), and n is some large integer fixing the num-
ber of points you want to take along the ky axis (I chose n = 500). You should
find that the eigenvalues separate into five bands.

(c) What are the Hall conductivities when the Fermi level is in each of the band
gaps? Using Mathematica, compute the Chern numbers from (18.38).

(d) Compute and plot the eigenvalues in a strip of width L = 50 in the x direc-
tion (with open boundary conditions) and infinite in the y direction. Now ky

remains a good quantum number, but there is no periodicity in the x direction.
So you can think of the system as a one-dimensional crystal along the y direc-
tion, with a unit cell of width 50 sites along the x direction. The Hamiltonian
H1D[ky] is now a 50×50 tridiagonal matrix (i.e., the only non-zero matrix ele-
ments of H1Di, j have |i− j| ≤ 1), which is a function of ky. The near-diagonal
elements are all −tx, and the 50 diagonal matrix elements are 10 copies of
the diagonal matrix elements of hof[kx,ky]. Write a program to generate this
matrix.

(e) Plot all the 50 eigenvalues ε1D(ky) as a function of ky. In Mathematica, this is
accomplished by
ListPlot[Transpose[Table[
Eigenvalues[H1D[ky]], {ky, 0, 2 Pi, 2 Pi/n}]]].
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Comparing with the eigenvalues in (b), you should see additional dispersing
states within the band gaps. These are the edge states. Relate the number of
edge states within each band gap to the Hall conductivities computed in (c).

(f) Repeat (b)–(e) after adding an additional second-neighbor hopping in the x
direction only:

ti,i+2x̂ =−t2 (18.45)

(and its Hermitian conjugate). Choose t2 = 0.5.
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19 Integer QuantumHall States

A theory of non-interacting electrons in the Landau levels of a strong magnetic field
is presented. The theory yields chiral edge states and a quantized Hall conductivity.
A connection is made to anomaly inflow arguments in quantum field theory.

This chapter considers electrons moving in two dimensions in the presence of an
applied magnetic field. This situation is closely related to the Chern insulators stud-
ied in Section 18.4; we imagine focusing on the bottom of the band, and reducing the
strength of the magnetic field so that the flux per unit cell is much smaller than the flux
quantum. In this limit, we can ignore the periodic potential of the lattice, and work
directly with the single-particle Hamiltonian in (19.1) below. In this limit, we will be
able to study many physical properties in explicit detail.

19.1 Non-relativistic Particles

19.1.1 Landau Levels

We consider the single-particle Hamiltonian

H0 =−
1

2M
(∇∇∇− ieA)2 (19.1)

of a particle of mass M moving in two dimensions in the presence of a magnetic field
Bẑ=∇∇∇×A. We work in a gauge for the vector potential that preserves the translational
symmetry along the x direction:

A= (−By,0). (19.2)

Then the eigenstates of H0 are of the form

ψn,k(x,y) =
1√
Lx

eikxϕn,k(y), (19.3)

where n = 0,1,2, . . . labels the energy eigenvalues, and ϕn,k(y) obeys

− 1
2M

d2ϕn,k

dy2 +
1

2M
(k+ eBy)2 ϕn,k(y) = Enϕn,k(y). (19.4)

246
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247 19.1 Non-relativistic Particles

This is just the Schrödinger equation of a shifted harmonic oscillator, allowing us to
determine the eigenstates and energy eigenvalues. The eigenvalues are

En = (n+1/2)ωc , n = 0,1,2, . . . , ωc = eB/M , (19.5)

where ωc is the cyclotron frequency. These are the dispersionless (independent of
k) Landau levels; the independence on k follows from the independence of the
eigenenergies on the shift of the harmonic-oscillator position. We also introduce the
dimensionless coordinate y = y/ℓ, where

ℓ=
1√

Mωc
=

1√
eB

. (19.6)

Then the eigenvalue equation becomes

− 1
2

d2ϕn,k

d y2 +
1
2
(kℓ+ y)2 ϕn,k(y) = (n+1/2)ϕn,k(y) . (19.7)

The eigenfunctions are the harmonic-oscillator eigenstates

ϕn,k(y) =
π−1/4
√

2nn!
Hn(y+ kℓ)exp

(
− (y+ kℓ)2

2

)
, (19.8)

where Hn(y) are the Hermite polynomials.
In a sample of size Lx× Ly, k is quantized in integer multiples of 2π/Lx. And the

shift in the harmonic-oscillator eigenstates implies that the range of allowed values of
k is −Ly/(2ℓ2) to Ly/(2ℓ2). So the degeneracy of each Landau level is (after recalling
Planck’s constant)

Lx

2π
Ly

ℓ2 =
AB
h/e

, (19.9)

where A is the area, and h/e is the flux quantum, that is, the degeneracy is the number
of flux quanta in the sample.

An important observation is that none of these states carry any current:

Ix =−
e

Mi
⟨n,k|∂x− ieAx|n,k⟩

=− e
MLx

∫
dy|ϕn,k(y)|2(k+ eBy)

= 0 . (19.10)

For the computation of the conductivity later, we need the matrix elements:

∫
dyϕn,k(y)∂yϕm,k(y) =

√
M
2
(δm,n+1−δm,n−1) ,∫

dyϕn,k(y)(y+ kℓ)ϕm,k(y) =

√
M
2
(δm,n+1 +δm,n−1) . (19.11)
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248 19 Integer Quantum Hall States

19.1.2 Symmetric Gauge

For future application to the fractional case, it is useful to write down the wavefunction
of the fully filled lowest Landau level in the “symmetric” gauge, where

A=−1
2
r×B (19.12)

and B = −Bẑ. Then, the single-particle wavefunctions in the lowest Landau level are
analytic functions of z = (x+ iy)/ℓ times a Gaussian

φm(x,y) =
1√

2πℓ22mm!
zme−|z|

2/4 . (19.13)

The integer m≥ 0 is the eigenvalue of the angular momentum. From this wavefunction,
we can write the wavefunction of the fully filled lowest Landau level as

Φ(r1,r2, . . . ,rN) ∝ P(z1,z2, . . . ,zN)
N

∏
i=1

e−|zi|2/4, (19.14)

where P(z1,z2, . . . ,zN) is a polynomial in all the zi given by the Slater determinant

P(z1,z2, . . . ,zN) =

∣∣∣∣∣∣∣∣∣∣

1 z1 z2
1 . . . zN−1

1
1 z2 z2

2 . . . zN−1
2

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

1 zN z2
N . . . zN−1

N

∣∣∣∣∣∣∣∣∣∣
= ∏

i< j
(z j− zi) . (19.15)

This particular Slater determinant is the Vandermonde determinant, and the last
expression follows from the requirement that the P vanish whenever any zi = z j.

19.1.3 Hall Conductivity

We compute the conductivity σxy by the Kubo formula.
We introduce an operator cn,k, which annihilates the electron in the Landau-level

state ψn,k(x,y). Then, the electron field operator is

Ψ(x,y) =
∫ dk

2π ∑
n

ψn,k(x,y)cn,k (19.16)

and the electron current operator is

J(x,y) =
1

2Mi

[
Ψ† (∇∇∇− iA)Ψ− (∇∇∇+ iA)Ψ† Ψ

]
. (19.17)
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249 19.2 Relativistic Particles (Graphene)

Then, applying the Kubo formula at a frequency ωn, we obtain

σxy(ωn) =
1

ωn

1
LxLy

∑
k

∑
n,m

[
f (En)− f (Em)

iωn−En +Em

]
(19.18)

×
[∫

dyϕn,k(y)∂yϕm,k(y)
][∫

dyϕn,k(y)(y+ kℓ)ϕm,k(y)
]
,

where f (E) is the Fermi function. In the limit T → 0, we find that only two levels con-
tribute to the sum: the ones just above and below the Fermi level. Carefully evaluating
this expression using the results above, we find

σxy =
νe2

h
, (19.19)

where ν is the number of filled Landau levels.

19.1.4 Chern−Simons term

Wecan express the result of Section 19.1.3 in terms of an effective action for the external
electromagnetic field Aµ . The non-zero Hall conductivity implies a term ∼ σxyAx∂τ Ay

upon integrating out the electrons. Making this gauge invariant (or explicitly com-
puting the one-loop diagram in the presence of a general Aµ ), we find the famous
Chern–Simons term in the external field Aµ for a single filled Landau level:

SA =
i

4π

∫
d3xεµνλ Aµ ∂ν Aλ . (19.20)

Here, we have absorbed the factor of e in the definition of Aµ , and use units with h̄ = 1.
For now, Aµ is a fixed, background, external field, and is not fluctuating. We will meet
Chern–Simons terms of dynamic gauge fieldswhenwe consider the fractional quantum
Hall effect.

19.2 Relativistic Particles (Graphene)

Now we consider a Dirac fermion, with unit Fermi velocity, which describes the low-
energy spectrum of graphene with Hamiltonian

H =−iσσσ · (∇∇∇− iA). (19.21)

The eigenvalue equation can be written as(
0 −i(∂x− iAx)− (∂y− iAy)

−i(∂x− iAx)+(∂y− iAy) 0

)(
ψ1

ψ2

)
= E

(
ψ1

ψ2

)
. (19.22)

This translates into a Schroedinger-like equation for each component:[
−(∇∇∇− iA)2 +(∇∇∇×A)

]
ψ1,2 = E2 ψ1,2. (19.23)
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250 19 Integer Quantum Hall States

The eigenvalues and eigenfunctions are now easily obtained from the solution in
Section 19.1.1:

En = sgn(n)
√

2B|n| , n = . . .−2,−1,0,1,2 . . . . (19.24)

Note that the Landau levels now have both positive and negative energies, as does the
Dirac dispersion in a zero magnetic field. Also note the special Landau level at exactly
zero energy. The degeneracy of each Landau level is still given by (19.9).

The Hall-conductivity computation can be carried out in a manner similar to
Section 19.1.3. A similar computation yields (see Problem 19.1)

σxy = (n+1/2)
e2

2π h̄
(19.25)

when the chemical potential is just above the Landau level with energy En (we have
reinserted h̄ in the last step). So, we find here too that the Hall conductivity increases
by an integer multiple of e2/h every time the Fermi level crosses a Landau level. We can
understand the offset of 1/2 by using particle–hole symmetry. We expect σxy to flip its
sign between the cases where the Fermi level is just above and below the zeroth Landau
level; so we expect that just above and below the zero-energy Landau level, the Hall
conductivity=±e2/(2h), as is the case. Because of the additional valley degeneracy of
the Dirac fermions, the observed Hall conductivity yields integer values (except on the
surface of a topological insulator).

19.3 Edge states

We return to consideration of the non-relativistic Hamiltonian, although very similar
results apply also to the relativistic case. Let us look at the situation in which the sample
is only present for y < 0, and so has a edge at y = 0 (see Fig. 19.1). We consider the
single-particle Hamiltonian

H0 =−
1

2M
(∇∇∇− iA)2 +V (y). (19.26)

As translational symmetry is preserved along the x direction, we can continue to work
with the vector potential in (19.2). The eigenstates are as in (19.3)

ψn,kx(x,y) =
1√
Lx

eikxxϕn(y) (19.27)

Quantum Hall state

Vacuum

x

y

y = 0

tFigure 19.1 Edge of a semi-infinite quantum Hall state at y = 0.
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251 19.3 Edge states

y

V (y)

0 0

En(kx)

kx

µ
ΨL

tFigure 19.2 Energy levels,En(kx) of electrons in a potentialV (y) and a magnetic field. The chemical potential µ is chosen so
that only the n = 0 level is occupied. The left-moving chiral fermions,ΨL, describe the excitations on the y = 0
edge.

and ϕn(y) obeys

− 1
2M

d2ϕn

dy2 +

[
1

2M
(kx +By)2 +V (y)

]
ϕn(y) = En(kx)ϕn(y), (19.28)

with En(kx) the energy eigenvalue that disperses as a function of kx.
More generally, we can take V (y) = 0 in the bulk of the sample, far from the edge,

without loss of generality. Here, the eigenstates in (19.28) are harmonic-oscillator states
centered at y =−kx/B. So we expect the eigenstates at large positive kx to be within the
sample, and insensitive to the edge. But, near the edge of the sample at y = 0, we expect
V (y) to increase rapidly to confine the electrons within the sample. Therefore, as kx

decreases through 0, we expect the eigenstates to approach the edge of the sample, and
for En(kx) to increase. We can estimate the change in En by perturbation theory

En(kx) = (n+1/2)h̄ωc +
∫

dy|ϕ 0
n (y)|2V (y)+ · · · ,

= (n+1/2)h̄ωc +V (kxℓ
2)+ · · · , (19.29)

where ϕ 0
n (y) are the eigenstates for V = 0. See the sketch of energy levels in Fig. 19.2.

A crucial feature of the states distorted by the potential V (y) is that they now carry a
non-zero current. We have

Ix =−
e

MLx

∫
dy|ϕn(y)|2(kx + eBy)

=− e
Lx

∂En(kx)

∂kx
by the Feynman–Hellman theorem,

≈−e
ν̄
Lx

, (19.30)
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252 19 Integer Quantum Hall States

where

ν̄ =
c
B

∂V
∂y

∣∣∣∣
y=kxℓ2

(19.31)

is the drift velocity in the presence of a potential gradient and a magnetic field. This is
the velocity of “skipping orbits” at the edge of the sample.

Now, we consider the situation for the n = 1 case, where only the lowest, n = 0, Lan-
dau level is fully occupied in the bulk. We see from Fig. 19.2 that in such a situation
E0(kx) will necessarily cross the chemical potential once as a function of decreasing
kx. This implies the existence of gapless, one-dimensional, fermionic excitations on the
edge of the sample. The fermions all move with velocity v̄ = dE0(kx)/dkx, and so from
(19.29) are left-moving chiral fermions. Notice that there is no right-moving counter-
part, at least on the edge near y = 0. If the sample had another edge far away at some
y < 0, that edge would support a right-moving chiral fermion.

It is interesting to note that a single left-moving chiral fermion cannot appear by
itself in any strictly one-dimensional system. In the presence of a lattice, the fermion
dispersion E(kx) of such a system must be a periodic function of kx, and no periodic
function can cross the Fermi level only once. But, on the edge of a two-dimensional
system, it is possible for E(kx) to cross the Fermi level just once, as we have shown
above.

It is simple to write down a low-energy effective theory for the left-moving chiral
fermion at the edge of the simple. Using the notation and methods of Chapter 12 on
Luttinger liquids, we have the imaginary action

SL =
∫

dxdτ Ψ†
L

(
∂

∂τ
+ iν̄

∂
∂x

)
ΨL. (19.32)

This is the universal low-energy theory of the edge of a quantum Hall sample at
n=1. Note that, unlike non-chiral Luttinger liquids, there are no marginal interaction
corrections to the free theory. All such interaction corrections involve right-moving
fermions too, which are absent in the present system.

Let us also recall the bosonized version of this chiral theory from (12.34):

LCL =
1

4π
[
ν̄(∂xφL)

2 + i∂xφL∂τ φL
]
, (19.33)

in terms of the chiral boson field φL. This formulation will be more useful for the frac-
tional quantum Hall effect, when the edge states are described by theory similar to
(19.33), but the free-fermion theory in (19.32) will no longer apply.

19.3.1 Quantized Hall Conductance

Let us now compute the Hall conductance in a manner that highlights the crucial role
played by the edge states. We apply a voltage V across the sample. Then, in a current-
carrying steady state, the chemical potential µT on the top edge, and the chemical
potential µB on the bottom edge obey

− eV = µT −µB . (19.34)
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253 19.3 Edge states

We compute the total current in this situation from (19.30)

Ix =−
e
Lx

Lx

∫ dkx

2π ∑
n

∂En(kx)

∂kx
f (En(kx)) , (19.35)

where f (En(kx)) is the mean occupation number of the state ϕn(kx). At T = 0, only the
levels with n < ν contribute, where ν Landau levels are occupied, and the integral over
k can be evaluated exactly to yield

Ix =−ν
e

2π
(µT −µB)

= ν
e2

2π h̄
V. (19.36)

This computation also highlights the connection between the Hall conductance of
the two-dimensional sample and the ordinary longitudinal conductance of the edge
state [40]. In the Landauer approach, we compute the conductance by connecting the
one-dimensional conductor to two reservoirs maintained at a chemical potential dif-
ference eV . Then, the current is carried by the electrons in this energy interval; so we
obtain from (19.32)

I = e
∫ dk

2π
ν̄ [θ(ν̄k)−θ(ν̄k− eV )] =

e2

2π h̄
V, (19.37)

again reinserting h̄ in the last step.Notice that ν̄ cancels out, and the conductance is just
e2/h. This argument also shows that impurities on the edge cannot make a difference;
because the edge fermions are chiral, there is no back scattering, and the transmission
coefficient remains unity.

It is useful to redo the computation of the edge conductance using the bosonized
theory (19.33); this will allow later us to easily extend the result to the fractionalized
case [123]. We already know that the density operator on the edge is ∂xφL/(2π), and so,
by the continuity equation, we conclude that the current operator is I =−ie∂τ φL/(2π).
In the Landauer–Buttiker picture, we need a computation of the linear response of the
Gaussian theory in (19.33) to an external voltageV (x), which reaches values that differ
by V between the two reservoirs. So we write

I(x) =
∫

dx′DR(x− x′,ω → 0)V (x′), (19.38)

where DR is the retarded response function of the chiral edge theory. It is straight-
forward to compute this function for a Matsubara frequency ωn from the Gaussian
action

DR(x− x′, iωn) =
e2

2π

∫ dk
2π

eik(x−x′) kωn

ikωn− ν̄k2 . (19.39)

Analytically, continuing iωn → ω + iη , and performing the momentum integral, we
obtain

DR(x− x′,ω) =
e2

2π
θ(x− x′)

iω
ν̄

ei(ω+iη)(x−x′)/ν̄ . (19.40)
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254 19 Integer Quantum Hall States

Weobserve a one-sided response, with the current at x depending only upon the voltage
at x′ < x, a signature of the chiral nature of the edge theory. Performing the integral of
x′ in (19.38), we obtain the expected quantized result:

I =
e2

2π h̄
V. (19.41)

19.4 Anomaly Inflow Arguments

We have shown how edge states appear by considering a specific potential V (y) acting
on free fermions in amagnetic field. It seems clear that the appearance of the edge states
is a robust phenomenon, which will also apply to more general potentials, and also
survive the introduction of interactions. We now describe “anomaly inflow arguments”
[41], which establish this “topological” stability.

Consider the partition function generalizing (19.26) to a generic Hamiltonian of
electrons c, in the presence of a generic fixed external gauge field Aµ and potential
V (x,y):

Z[Aµ ] =
∫
Dcexp

[
−S(c,Aµ)

]
. (19.42)

We are considering a well-defined problem of electrons confined to a fixed region of
space, and so the partition function should be gauge invariant:

Z[Aµ +∂µ λ ] = Z[Aµ ]. (19.43)

For the bulk of the sample, we have already computed the partition function from a
single filled Landau level in (19.20), and so we write

Z[Aµ ] = Zbulk[Aµ ]Zboundary[Aµ ],

Zbulk[Aµ ] = exp
(
− i

4π

∫
d3xεµνλ Aµ ∂ν Aλ

)
. (19.44)

The key point is that bulk is not gauge invariant up to a boundary term, and it is easy
to show that

Zbulk[Aµ +∂µ λ ] = Zbulk[Aµ ]exp
(
− i

2π

∫
dxdτλ (∂τ Ax−∂xAτ)

)
, (19.45)

where we have retained only the boundary term at y = 0. Consistency with (19.43) now
demands that there be an “anomaly” in the boundary theory at y = 0, Zboundary[Aµ ],
which cancels the bulk anomaly in (19.45). We now show that the chiral Luttinger-
liquid theory defined by (19.32) and (19.33) satisfies this requirement.

The expression in (19.45) shows that the anomaly is associated with the application
of an electric field E = ∂tAx−∂xAt to the boundary theory. In addition there is indeed
something anomalous about the chiral boundary theory in the presence of E: the den-
sity of fermions is not conserved. In the case where E is independent of x, the filled
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fermion states just move up in momentum k via (setting e = 1)

dk
dt

= E. (19.46)

So the change in density ρL = Ψ†
LΨL is

dρL

dt
=

1
2π

dkF

dt
=

E
2π

. (19.47)

For the spatially non-uniform case, this generalizes to an anomalous term in the
equation for the conservation of the fermion current Jµ = (ρL, ν̄Ψ†

LΨL):

∂µ Jµ =
E
2π

. (19.48)

The expression (19.48) can be obtained from the equations of motion for the Fourier
components of ρL in the presence of an electric field, after carefully accounting for the
Schwinger term in the commutator of ρL with itself.

Now let us connect (19.48) to (19.45). We can write the current as

⟨Jµ⟩=−i
δ lnZboundary(Aµ)

δAµ
, (19.49)

and consequently 〈
∂µ Jµ〉= i

δ lnZboundary(Aµ +∂µ λ )
δλ

. (19.50)

Using (19.48), we verify that the λ dependence of Zboundary(Aµ +∂µ λ ) is precisely that
needed to cancel the bulk anomaly of (19.45).

It is useful to also present this result in the language of the chiral boson. The
density is ρL = ∂xφL/(2π), and so the chiral-boson commutator implies the density
commutator

[ρL(x),ρL(y)] =
i

2π
δ ′(x− y). (19.51)

Now, we use the Hamiltonian in the presence of an external potential V (so that E =

−∂xV ),

H =
∫

dx
[
πνF ρ2

L +V ρL
]
, (19.52)

to the equation of motion for ρL which coincides with (19.48).

Problem

19.1 Obtain the Hall conductivity in (19.25) of Dirac fermions by applying the Kubo
formula, as in (19.18) for non-relativistic electrons. See Ref. [202] for expressions
for the wavefunctions and the matrix elements of the current operator.
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20 Topological Insulators and Superconductors

Topological band structures with time-reversal symmetry are described: the Su–
Schrieffer–Heegermodel in one dimension, and the Kane–Melemodel in two dimen-
sions. The theory of topological superconductors in one and two dimensions is
presented, describing their edge states with Majorana fermions.

Chapters 18 and 19 have described free-fermion systems in two spatial dimensions,
which contain protected edge states. These are now understood to be early examples
of distinct types of band topology, which fall under under precisely defined classes
of topological insulators and superconductors by their properties under certain dis-
crete symmetries. In this classification one considers the topological properties of most
general Hamiltonians consistent with some symmetry constraints. The examples in
Chapters 18 and 19 have no symmetry constraints, and this feature partially obscures
the role of symmetry in their properties. The most general Hamiltonian with no sym-
metry will, in general, break time-reversal symmetry, and this was the case with the
models considered in Chapters 18 and 19. Indeed, we found that time-reversal symme-
try breaking was needed to obtain non-zero Chern numbers, and hence protected edge
states. Somewhat unexpectedly, in the modern classification this last feature is disre-
garded, and non-zero Chern numbers are assumed possible whenever a Hamiltonian
is in a class without time-reversal symmetry.

I do not present the complete band topology classification here, and refer the reader
to a number of other reviews [6, 15, 28, 135, 226, 248]. I will only discuss a few
examples that are important for the subsequent discussion of correlated phases. With
the restricted purpose of connecting to the notation of the classification, Table 20.1
presents the 10-fold classification of free-fermion topological insulators and supercon-
ductors in spatial dimension d. This table specifies symmetries of the single-particle
Hamiltonian, which are anti-unitary time-reversal T , anti-unitary particle-hole C, and
unitary sublattice or chiral S; examples of these symmetries are given in the follow-
ing sections. The columns under T , C, S specify the squares of these symmetries when
non-zero, and 0when the symmetries are absent. Themodels considered in Chapters 18
and 19 belong to class A in d = 2 without any discrete symmetries; from Table 20.1 we
see that they are classified as Z – this corresponds to the integer Chern number, and the
integer number of edge states characterizing such systems. Note that for d ≤ 3, d = 2
is the only dimension in which class A has topological states.

256
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257 20.1 Su–Schrieffer–Heeger Model

Table 20.1 10-fold way

Class T C S d = 1 d = 2 d = 3

A 0 0 0 0 Z 0
AIII 0 0 1 Z 0 Z

AI 1 0 0 0 0 0
BDI 1 1 1 Z 0 0
D 0 1 0 Z2 Z 0

DIII −1 1 1 Z2 Z2 Z
AII −1 0 0 0 Z2 Z2
CII −1 −1 1 Z 0 Z2
C 0 −1 0 0 Z 0
CI 1 −1 1 0 0 Z

20.1 Su–Schrieffer–Heeger Model

A simple example of band topology with symmetry is provided by the Su–Schrieffer–
Heeger (SSH) model illustrated in Fig. 20.1. We consider a tight-binding model in one
dimension, with a two-sublattice structure. The fermion operators ciA and ciB anni-
hilate fermions in unit cell i on the A and B sublattice, respectively. So we have the
Hamiltonian

H =−∑
i

[
wc†

iAciB +ν c†
iBci+1,A +H.c.

]
, (20.1)

where w and ν are the real hopping matrix elements shown in Fig. 20.1. We transform
to one-dimensional momentum space, and introduce the two-component fermion

Cp =

(
cAp

cBp

)
. (20.2)

Then, we have

H = ∑
p

C†
pH(p)Cp , (20.3)

where the momentum-space Hamiltonian is

H(p) = dx(p)τx +dy(p)τy +dz(p)τz, (20.4)

tFigure 20.1 The Su–Schrieffer–Heeger model: a one-dimensional lattice of A and B “molecules.” This realizes theZ invariant of
class BDI in d = 1, with protected zero energy edge states for |ν |> |w|.
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258 20 Topological Insulators and Superconductors

with τx,y,z Pauli matrices acting on the sublattice space of (20.2), and the “d
vector”

d(p) =−(w+ν cos(p),ν sin(p),0) . (20.5)

One of the symmetry properties important for topological considerations is a unitary
“sublattice” or “chiral” symmetry S, which anti-commutes with the Hamiltonian:

S = τz,

SH(p)S =−H(p) , (20.6)

because dz(p) = 0. Another symmetry property is the anti-unitary symmetry C, under
which

C = τz,

CH(p)C =−H∗(−p) . (20.7)

It is easy to show that S2 = 1 and C2 = 1. The Hamiltonian also has the product sym-
metry T = CS, under which H(p)∗ = H(−p). By Table 20.1, these symmetries place
the SSH model in class BDI in d = 1, which has a Z topological invariant. Indeed, this
topological invariant is easy to find bymapping theHamiltonian to that of S= 1/2 spin
in a Zeeman field in (18.16). The vector d(p) lies in the x–y plane, and as p extends in
the Brillouin zone 0 ≤ p ≤ 2π, the d vector maps out a closed path in the plane. Pro-
vided there is a band gap, that is, |d(p)| ̸= 0, the topological invariant is the number of
times this path encircles the origin. Alternatively, we can define the unit vector

d̂(p) =
d(p)
|d(p)|

, (20.8)

and then d̂(p) is a path on the equator of the unit sphere of the spin in Section 18.2 –
it is constrained to lie on the equator by S symmetry. The Z topological invariant is
the number of times the equator is encircled. For an analytic expression similar to the
Chern number in (18.37), we define

|d(p)|eiθ(p) = dx(p)+ idy(p) , (20.9)

and then the integer invariant is

C =
1

2π

∫ 2π

0
d p∂pθ(p) . (20.10)

The two eigenstates of H(p) have invariants ±C, as in (18.21). For the expression in
(20.5), C vanishes when |w|< |ν |, and then the band structure is not topological.

Another important consequence of the symmetry in (20.6) is that the eigenvalues of
H(p) come in pairs with opposite signs. For every eigenstate |E⟩ with non-zero energy
E, there is an eigenstate S|E⟩ with energy−E, as follows easily from (20.6). Moreover,
the states |E⟩ and S|E⟩ have to be orthogonal to each other because they are eigenstates
of H(p) with distinct eigenvalues.
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259 20.1 Su–Schrieffer–Heeger Model

Similar to the arguments in Section 18.3, the existence of this invariant implies that
there are protected edge states at the ends of a finite SSH chain. Near the edges, we
have to cut the chain so that the A and B molecules remain intact, and this ensures
that there is S symmetry even for a finite chain. We can see the presence of these edge
states in the limit ν → ∞ from Fig. 20.1. Then, the bulk eigenstates are odd and even
linear combinations ciB and ci+1,A, with eigenvalues ±ν . However, there are isolated
zero-energy eigenstates on the edges, c1A and cLB, on a chain of L unit cells with 2L sites.
It is now easy to see that these zero-energy eigenstates remain exponentially localized
on the edges of the chain as ν is reduced. Gapping these states would require terms
such as c1Ac1A, which violate the S symmetry. There will be some mixing between
the edge states for a finite chain of order exp(−αL), and so the eigenvalues will be
∼ ±exp(−αL). As in Section 18.3, these edge states remain near zero energy as long
as the invariant in (20.10) is non-zero. For an infinite chain, it is actually possible to
determine the wavefunction of the zero-energy eigenstate exactly. Denoting the eigen-
state by the vector (Ai,Bi), i = 1,2, . . . we obtain the zero eigenvalue equations for the
left edge:

wB1 = 0,

νBi−1 +wBi = 0 , i≥ 2,

wAi +νAi+1 = 0 , i≥ 1 . (20.11)

These equations have the solution

Ai = (−w/ν)i−1 , Bi = 0 . (20.12)

This is an exponentially decaying solution provided |ν |> |w|, which is indeed the con-
dition for protected edge states, as we saw in the discussion below (20.10). Note also
that the zero-energy state is polarized exclusively on the A sublattice. Similarly, there
will be a zero-energy state on the right edge, which is polarized exclusively on the B
sublattice.

We noted above that the SSH chain belongs to the class BDI, with a Z invariant,
and so a generalized model can have an arbitrary integer number of edge states. We
can realize such states by coupling an arbitrary number of SSH chains in a manner in
which it preserves S symmetry. We now describe a modification of the SSH chain so
that it is no longer in the class BDI in Table 20.1, but moves to class D. The topological
invariant for class D is Z2, and this leads to a novel structure, the analog of which
we have not encountered in Chapters 18 and 19. We obtain a model in class D by
adding, in the same-sublattice, purely imaginary hopping it shown in Fig. 20.2 [287].
The Hamiltonian H is now the sum of (20.1) with

H1 =−it ∑
i

[
c†

iAci+1,A− c†
iBci+1,B +H.c.

]
. (20.13)

In momentum space, this retains the form in (20.4), but changes the d vector from
(20.5) to
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tFigure 20.2 An extended SSH model, with a purely imaginary hopping it . This realizes theZ2 invariant of class D in d = 1 for
non-zero t .

d(p) =−(w+ν cos(p),ν sin(p),2t sin(p)) . (20.14)

The chiral symmetry in (20.6) now does not apply, but the symmetry in (20.7) continues
to do so; by Table 20.1, this puts the system in class D, as time-reversal symmetry is
also not present.

The unit d vector now no longer lies in the equator, and so the winding number is
not a topological invariant. Nevertheless, one can see from an analysis similar to the
ν ≫ w analysis of class BDI in Fig 20.1, that the zero-energy edge states survive in
the model of Fig. 20.2. These edge states are protected by a Z2 invariant defined as
follows. We notice that the mapping (20.7) sends p to −p, and so it is helpful to focus
on the time-reversal invariant momenta (TRIMs) p = 0,π. The Hamiltonian takes a
very simple form at these TRIMs:

H(p = 0) =−(w+ν)σ x , H(p = π) =−(w−ν)σ x . (20.15)

Let us assume that w > 0 and ν > 0. Then, for w > ν , we notice that the occupied
lower-energy bulk band is the state with σ x = 1 for both p = 0 and p = π. On the other
hand, in the regime where there are edge states, the lower-energy state has σ x = 1 for
p = 0 and σ x =−1 for p = π. This allows us to deduce the Z2 invariant:

ν2 = d̂x(p = 0) d̂x(p = π) , (20.16)

and the protected edge states are present for ν2 =−1. The condition (20.7) requires the
d vector orient along (±1,0,0) for p = 0 and p = π; the invariant (20.16) informs us
whether changing p from 0 to π leads to a d̂(p), which connects opposite poles of the
sphere, or returns to the same pole.

Finally, it is interesting to consider an explicit example that differentiates the Z
invariant of Fig. 20.1 from the Z2 invariant of Fig. 20.2. We consider two copies of
an SSH chain as shown in Fig. 20.3 [287]. When the chains are decoupled with t = 0,
we obtain two protected edge states, one each from each chain. However, when we
introduce a non-zero t, the model falls into class D, and this case has no protected
edge states; this can easily be seen in the expansion from large ν . In other words, the
number of edge states is only protected modulo 2 in class D in d = 1.

tFigure 20.3 Two SSH chains coupled with an imaginary hopping it . This case has no protected edge state for t ̸= 0.
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261 20.2 Kane–Mele Insulators

20.2 Kane–Mele Insulators

We now turn to topological insulators in dimension d = 2. We have already discussed
Chern insulators with a Z invariant in Section 18.4, which are in class A in Table 20.1,
and require broken time-reversal symmetry for a non-zero Chern number. It was
pointed out by Kane and Mele [125, 126] that topological insulators with a Z2 invari-
ant are possible with time-reversal symmetry for spinful fermions with T 2 = −1; this
is class AII in Table 20.1.

Here, I present a brief discussion of the structure of this insulator [164] using the
Chern–Simons theory of Chapter 17. First, let us consider a system in which the
number of spin-up and spin-down electrons are independently conserved (there is no
spin-flip scattering) and there is a bulk U(1)×U(1) symmetry. We imagine we can
apply two independent external gauge fields A↑µ and A↓µ , which can couple to these
electrons. We also allow for time-reversal symmetry. Naively, this would imply that the
Chern numbers of the bands of the electrons are zero. However, this is not the case,
because time reversal flips the particle spin and also the Chern number of a band. So,
we could have a situation in which the spin-up particles occupy a band with Chern
number C↑ = 1, while the spin-down particles occupy a band with Chern number
C↓ = −1. Then, integrating out the electrons, we obtain a Chern–Simons theory for
the gauge fields A↑µ and A↓µ as in (17.1) with the K matrix

K =

(
1 0
0 −1

)
. (20.17)

From the results in Chapter 17, we can see that such a K matrix only allows fermionic
excitations in the bulk, or their composites; therefore, the bulk is trivial. Note also that
|detK| = 1, so there is no degeneracy on the torus. This is just as expected, given the
construction of such a state using free electrons in Chern bands.

The arguments in Chapter 17 and 19 show that the edge of such a system has two
copies of the integer quantum Hall edge, one left-moving with spin up, and the other
right-movingwith spin down. So, we canwrite the edge theory in terms of a left-moving
fermion Ψ↑ and a right-moving fermion Ψ↓:

Se =
∫

dxdτ

[
Ψ†
↑

(
∂

∂τ
+ iν

∂
∂x

)
Ψ↑+Ψ†

↓

(
∂

∂τ
− iν

∂
∂x

)
Ψ↓

]
. (20.18)

An important observation made by Kane and Mele [125, 126] was that the U(1)×
U(1) symmetry is actually not required, and the edge states described by (20.18) survive
even in the presence of a singleU(1) symmetry, provided time reversal is preserved. This
is crucial for realizing this insulator because, with spin–orbit interactions, the number
of spin-up and spin-down electrons is not separately conserved, and there is only a
singleU(1) symmetry associatedwith the conservation of the total number of electrons.
In addition spin–orbit interactions do conserve time-reversal symmetry.
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One way to see this is to check for allowed edge operators that can gap out the
pair of edge states in (20.18). In the absence of any symmetries, we could imagine a
back-scattering term such as

H′e =
∫

dx
[
ν(x)Ψ†

↑(x)Ψ↓(x)+ν∗(x)Ψ†
↓(x)Ψ↑(x)

]
, (20.19)

where we have even allowed for the breaking of translational symmetry on the edge
by a disordered coupling ν(x). Such a term, if present, would gap out the edge states
of (20.18). However, the key observation is that a term such as (20.19) is forbidden in
systems with time-reversal symmetry. The time-reversal operation is anti-unitary and
so

T ν(x)T −1→ ν∗(x), (20.20)

while the electron operator transforms as

T Ψ↑T −1→Ψ↓ , T Ψ↓T −1→−Ψ↑ . (20.21)

Note that T 2 =−1 on the electron operator. Now we can see that (20.19) is not invari-
ant under time reversal. A single-fermion backscattering term is therefore forbidden,
and the edge states remain gapless. In particular, the zero-energy states at momentum
kx = 0 are protected by a Kramers degeneracy.

To see that this insulator has a Z2 invariant, we use an argument similar to that in
Fig. 20.3 for the SSH chain. We take two copies of the insulator just described, with
edge modes Ψ1↑,Ψ1↓ and Ψ2↑,Ψ2↓. Then, it is possible to have a term which gaps out
the edge states and preserves time-reversal symmetry:

H′′e =
∫

dx
[
ν(x)Ψ†

1↑(x)Ψ2↓(x)+ν∗(x)Ψ†
2↓(x)Ψ1↑(x)

−ν∗(x)Ψ†
1↓(x)Ψ2↑(x)−ν(x)Ψ†

2↑(x)Ψ1↓(x)
]
. (20.22)

More generally, this argument shows that only the number of edge modes modulo 2 is
protected, and hence this topological insulator is of Z2 nature.

There have also been studies of the effect of electron–electron interactions on the
edge states of the Kane–Mele insulator [314, 316]. These can lead to back scattering in
the presence of time reversal, but are only relevant for sufficiently strong interactions.

20.3 Odd-Parity Superconductors

A second important class of topological band structure arises in superconductors,
when we consider the Bogoliubov Hamiltonian of the fermionic quasiparticles, similar
to those studied in Sections 4.3 and 9.3. We consider here the case of triplet pairing,
when the spatial wavefunction of the Cooper pair has to have odd parity. In the sim-
plest situation, we can just ignore the spin of the electrons (assuming all electrons are
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spin-polarized in the same direction), and so we consider here the Bogoliubov theory
of pairing of spinless fermions fi on a lattice of sites i. Then, a general Hamiltonian is

H f =−∑
i

µ f †
i fi−∑

⟨i j⟩

(
t f †

i f j + t∗ f †
j fi

)
−∑
⟨i j⟩

(
∆i j f †

i f †
j +∆∗i j f j fi

)
, (20.23)

which has chemical potential µ , nearest-neighbor hopping t, and nearest-neighbor
pairing ∆i j = −∆ ji. We will consider the cases of spatial dimensions d = 1 and d = 2
separately in the following subsections.

20.3.1 Dimension d = 1

We can always choose a gauge in which t is real and positive, but let us take the pairing
to be complex

∆i,i+x̂ = ∆1 + i∆2, (20.24)

with ∆1,2 real. Considering an infinite chain, we can write the Hamiltonian in momen-
tum space using a Nambu spinor

Ψp =

(
fp

f †
−p

)
. (20.25)

Note that the spinless nature of the fermions introduces a redundancy in the Nambu
notation, with

Ψ†
p = ΨT

−pτx, (20.26)

where τx,y,z are Pauli matrices acting on the Nambu space, and T -superscript is a trans-
pose. So Ψp and Ψ−p describe the same fermions, and this will play an important role
in our analysis of edge states. The Hamiltonian is

H f =
1
2 ∑

p
Ψ†

pHBdG(p)Ψp, (20.27)

where the factor of 1/2 is associated with (20.26), and

HBdG(p) = dx(p)τx +dy(p)τy +dz(p)τz, (20.28)

with the d vector

d(p) = (2∆2 sin(p),2∆1 sin(p),−µ−2t cos(p)) . (20.29)

This has the same form as the SSH Hamiltonian in (20.3) with the d vector in (20.14).
From this, we can easily conclude that the topological class is D with a Z2 invari-
ant for ∆1,2 both non-zero, and BDI with a Z invariant when only one of ∆1 and ∆2

are non-zero. We can also see from the topological invariants of these classes that a
topologically non-trivial phase is obtained for |µ|< 2t.

Upon consideration of the edge states, the reality constraint in (20.26) makes an
important difference; rather than obtaining a zeromode of a complex fermion f at each
edge, we obtain a real “Majorana” fermion zero mode at each edge. We can define two
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Majorana fermions on each site by decomposing the operators fi and f †
i intoMajorana

fermions γAi and γBi

fi =
1
2
(γBi + iγAi) , f †

i =
1
2
(γBi− iγAi) . (20.30)

The Majorana fermions anti-commute with distinct labels, and square to unity

γ2
Ai = γ2

Bi = 1 . (20.31)

The operators γAi and γBi act upon the two-dimensional Hilbert space of empty
and occupied states of the fermion fi, and they are equivalent to the Pauli σ x

i and
σ y

i operators on this subspace. The Pauli σ z
i operator is identified with fermion

parity:

iγBiγAi = 2 f †
i fi−1 =±1 . (20.32)

Note, however, that this does not imply that the set of fermions fi map to a set of Pauli
matrices with such a relation; the fermions anti-commute for different i, while the Pauli
matrices commute.

We now insert (20.30) into (20.23), and write the lattice Hamiltonian in terms of the
Majorana fermions, working in the case ∆2 = 0 for simplicity. For a chain of length L,
we obtain

H f =−
µ
2

L

∑
i=1

(1+ iγBiγAi)+
i
2

L−1

∑
i=1

[(∆1 + t)γAiγB,i+1 +(∆1− t)γB,iγA,i+1] . (20.33)

We now observe the similarity between the inter-site term in (20.33) and the SSH
Hamiltonian in (20.1), and highlight this is Fig. 20.4. We can compute the edge
modes of H f using an analysis that parallels that of the SSH Hamiltonian (20.1)
in Section 20.1. The main difference is that the complex fermion eigenmodes of a
real symmetric matrix are now replaced by the Majorana fermion eigenmodes of an
imaginary antisymmetric matrix. We will not enter into details, apart from point-
ing out the solvable model with a Majorana zero mode localized exactly on the
edge of the chain noted in Fig. 20.4, which is similar to the w = 0 edge mode in
Fig. 20.1.

20.3.2 Dimension d = 2

Here, we consider superconductors described by (20.23) on the square lattice, which
break time-reversal symmetry in “p+ ip” pairing, with

∆i,i+x̂ = ∆ , ∆i,i+ŷ = i∆ (20.34)

tFigure 20.4 Pictorial represenation of the Majorana Hamiltonian in (20.33). There is an exact Majorana zero mode localized on the
A site on the left edge for µ = 0 and∆1 =−t . Compare Fig. 20.1 for the SSH model.
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where real ∆ > 0. The Nambu spinor representation and Fourier transform of H f pro-
ceeds just as in (20.25), (20.27), and (20.28), apart from the replacement of p by a vector
ppp. The reality condition in (20.26) also continues to apply. The d vector in (20.29) is
now given by

d(ppp) = (2∆sin py,2∆sin px,−µ−2t cos px−2t cos py) . (20.35)

The first two components of d(ppp) describe odd-parity pairing, which is px+ ipy pairing
in the continuum. Note

HT
BdG(−ppp) =−τx HBdG(ppp)τx, (20.36)

which establishes consistency with (20.26), and shows the presence of particle–hole C
symmetry of class D in d = 2 in Table 20.1.

The eigenvalues of HBdG(ppp) are ±|d(ppp)| and these describe two particle–hole sym-
metric fermion bands; only the lower one is occupied in the ground state. We can
compute the Chern number of this band by the usual methods of band theory for
fermions without pairing, as discussed in Section 18.3. Alternatively, we can think of
HBdG(ppp) of fictitious spin 1/2 in the presence of a ppp-dependent “Zeeman” field d(ppp).
From the expression for the Berry phase of spin 1/2 in Section 18.2, we then obtain
the Chern number as a measure of the number of times d(ppp) wraps the sphere in spin
space. Using either method, we obtain the Chern number

ν =
1

4π

∫
d2 p

d(ppp)
|d(ppp)|3

·
(

∂d(ppp)
∂ px

× ∂d(ppp)
∂ py

)
. (20.37)

This Chern number is non-zero for |µ| < 4t, when the third component of (20.35)
changes sign in the Brillouin zone. We focus on the regime with µ−4t > 0 and small,
where a continuum limit is possible.

As in Section 18.4, we can now conclude that there is a single edge state associated
with the lower occupied band. However, there is a crucial difference in the present sit-
uation with paired fermions arising from the redundancy in (20.26). This redundancy
implies that the edge mode contains only half the degrees of freedom of the edge mode
of a Chern insulator.

An elegant way to extract half the fermion degrees is to express the physics in terms
of Majorana fermions. For an ordinary Chern insulator, we can write the edge theory
as

HCI,edge = ∑
p

νF pη†
pηp, (20.38)

where ηp is a canonical “complex” fermion of a one-dimensional momentum p. Let
us write this Hamiltonian using Majorana fermions γ1p and γ2p, which obey the
momentum-space generalization of relations near (20.31)

γ†
ap = γa,−p,

γa,−pγb,p′ + γb,p′γa,−p = 2δabδpp′ , (20.39)
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with a,b = 1,2. Then, using

ηp =
1
2
(γ1p + iγ2p) , (20.40)

the edge theory of the Chern insulator can be written as

HCI,edge =
1
4 ∑

p
νF p (γ1,−pγ1p + γ2,−pγ2p) . (20.41)

Now we return to the edge theory associated with the HBdG in (20.27) with the d
vector in (20.35). If we ignore the constraint in (20.26), the analysis would proceed
just as in the Chern insulator, and we would end up with the theory in (20.41). A full
analysis can proceed by writing (20.27), (20.35) in terms of Majorana fermions, and
then analyzing the edge structure in that approach. However, we can quickly obtain
the answer by noting that (20.26) projects out half the degrees of freedom, and that
should also be the case on edge. And it is easy to pull out half the degrees of freedom
in (20.41) simply by dropping one species of the Majorana fermion; so we obtain the
theory of the edge state of HBdG:

Hedge =
1
4 ∑

p
νF pγ−pγp, (20.42)

expressed in terms of a single chiral Majorana fermion γp in one spatial dimension.
In a more complete analysis, the dropped Majorana fermions would appear on the
opposite edge of the sample.

In real space and imaginary time, the action of the chiral Majorana theory is

Sedge =
1
4

∫
dxdτ γ

(
∂

∂τ
− iνF

∂
∂x

)
γ, (20.43)

where γ(x,τ) is a Grassman field.
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21 Parton Theories

This chapter provides a unified bird’s-eye view of the fractionalized phases studied in
this book. The all-in-one tool used to construct such phases is the partonmethod. All
the important phases with anyonic excitations are obtained by placing the partons in
topological bands.

Part IV continues the discussion of phases with fractionalized excitations and emergent
gauge fields that were studied earlier in Part II. This part will expand the library of such
phases by applying the results of Part III on free-fermion band topology.

This chapter provides a unified bird’s-eye view of the fractionalized phases studied
in this book. The all-in-one tool used to construct such phases is the parton method.
We first met this in Chapter 14 when we fractionalized the XY order parameter Ψ into
two bosonic partons ϕ , and then in Chapter 15, where we fractionalized the spin oper-
ators into bosonic partons sα

i (recalled in Appendix D); these fractionalizations led
to the theory of the Z2 spin liquid. The fractionalization methods have similarities to
early work in the particle-theory literature [25, 58, 311], although the latter did not
include the spin Berry phases (see Appendix C). It is also possible to fractionalize spin
operators into fermionic partons, and we will use this method in Part IV. A significant
advantage of fermionic partons is that it is possible for the partons to acquire one of
the non-trivial band topologies we described in Part III – we will see that this band
topology of partons has a profound and interesting feedback on the structure of the
fractionalized phase itself.

It should be noted that the existence of a particular parton construction is not a guar-
antee that the associated fractionalization occurs in a particular microscopic model.
But experience has shown that the parton method is usually the simplest and most
direct way of completely understanding the structure of a phase once one has some
other evidence of the nature of the fractionalization.

21.1 Spin Fractionalization into Bosonic Partons

Let us now summarize the phases studied by fractionalizing the spin into bosonic
partons in Part II; see Fig. 21.1. We discuss the three possibilities in Fig. 21.1 in turn:

• The simplest state formed by bosons is a superfluid, realized by Bose condensation,
as discussed in Chapter 3. When bosonic partons condense, we obtain a magnet-
ically ordered state, as described in Section 15.4.1 for the triangular lattice. The
bosonic partons carry both a gauge charge and a spin quantum number; the Bose
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270 21 Parton Theories

tFigure 21.1 The correspondence between the phases of bosons, and the phases of spin systems obtained by expressing the spins in
terms of bosonic partons. The Wess–Zumino–Witten (WZW) model is a theory of a five-component field representing
the Néel and valence bond solid orders.

condensation fully higgses the gauge symmetry, and the spin index leads to broken
spin-rotation symmetry.

• It is possible for pairs of bosons to form molecules, and for the molecular bosons to
condense. The Qi j variables in Chapter 15 are molecules of bosonic partons, and we
found two distinct possibilities upon their condensation. If the condensation pattern
was such that the U(1) gauge symmetry was broken to Z2, then we obtained the Z2

spin liquid of Chapter 15. On the other hand, if the paired-parton condensate left a
“staggered” U(1) gauge theory unbroken, we obtain gapless spin liquids described
by the CP1 model, is be discussed in Chapter 28.

• The last possibility in Fig. 21.1 is a route that is not studied in this book. If the
bosonic partons form a suitable symmetry-protected topological (SPT) state, then
the spin system realizes a chiral spin liquid [106]. We study the chiral spin liquid
using fermionic partons in Chapter 22, as noted below in Section 21.2.

21.2 Spin Fractionalization into Fermionic Partons

Next, we turn to phases obtained by decomposing spins into fermionic partons. Here,
the possibilities turn out to be quite rich, thanks to the band topologies studied in
Part III, and are listed in Fig. 21.2.

• The simplest state for fermions is the Fermi liquid studied in Chapter 2. With
fermionic partons, we obtain a spinon Fermi surface. The spinon quasiparticles on
the Fermi surface experience strong gauge fluctuations, and this leads to a Fermi
surface where the excitations are not quasiparticles. We examine the spinon Fermi
surface state in Chapter 34.

• Fermions can also form paired Bardeen–Cooper–Schrieffer (BCS) states, studied in
Chapter 4.With fermionic partons, we obtain aZ2 spin liquid, which can bematched
to Z2 spin liquids obtained from bosonic partons, as we noted in Section 15.4.3.

https://doi.org/10.1017/9781009212717.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.022


271 21.2 Spin Fractionalization into Fermionic Partons

tFigure 21.2 The correspondence between the phases of fermions and the phases of spin systems obtained by expressing the spins
in terms of fermionic partons. The SU(2 quantum chromodynamics (QCD) andU(1) quantum electrodynamics
(QED) theories have spinons with a massless Dirac spectrum coupled to emergent gauge fields.

• An interesting possibility is for fermions is to form a band insulator with band topol-
ogy in class A of Table 20.1, and this leads to the Chern insulator of Section 18.4. We
see in Chapter 22 that fermionic partons in a Chern insulator realize a chiral spin
liquid.

• Next, we consider fermions forming a paired superfluid in class D of Table 20.1
so that the Bogoliubov quasiparticles are in bands with a non-zero Chern num-
ber. With fermionic partons, this possibility leads to a remarkable state discussed
in Chapter 23, which has “Ising” anyons with non-abelian statistics. Such a state
has Ising topological order (ITO), and is realized in spin systems without spin-
rotation symmetry (e.g., in the presence of spin–orbit interactions), as also discussed
in Chapter 23.

• Fermions can form semi-metals with the spectrum of massless Dirac particles, as in
graphene. When fermionic partons have a massless Dirac dispersion, the coupling
to the gauge field is important, and we obtain strongly coupled relativistic gauge
theories. The nature of such gauge theories for the square lattice are discussed in
Chapter 28. There has also been interestingwork on such gauge theories on the trian-
gular and kagome lattices [268, 270], which could well be the low-energy description
of models like (15.49) near the point where the phases in Fig. 1.8 and Fig. 14.4 meet.

• Finally, fermions with random interactions in a Sachdev–Ye–Kitaev (SYK) model
can form a non-Fermi liquid without quasiparticle excitations, as discussed in Chap-
ter 32. When fermionic partons form a SYK liquid, a gapless spin liquid is obtained,
which is examined in Chapter 33.
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272 21 Parton Theories

tFigure 21.3 Fractional quantum Hall (FQH) states obtained by the decomposition of the electron into three fermionic partons.

21.3 QuantumHall States

Let us now turn to quantum Hall states. The integer quantum Hall state was discussed
in Chapter 19, and some fractional quantum Hall states are described in Chapter 24.
We summarize in Fig. 21.3 how these fractional states can be obtained by the parton
method. We assume the electron is fully spin polarized, and ignore its spin. Then the
electron c is fractionalized into a product of three fermionic partons, ψ1, ψ2, and ψ3.
The possibilities noted in Fig. 21.3 are:

• When all three fermionic partons occupy fully filled Landau levels in integer quan-
tum Hall (IQH) states, we obtain the most commonly observed Laughlin and Jain
fractional quantum Hall states, as described in Chapter 24.

• When the ψ1, ψ2 fermionic partons occupy fully filled Landau levels, but the par-
ton ψ3 moves in a vanishing average magnetic field and forms a Fermi liquid, we
obtain the Halperin–Lee–Read (HLR) compressible Hall state. The interaction of
the gauge field with the Fermi surface excitations is important, as discussed in
Section 34.3.

• An interesting possibility is that the ψ3 fermion of the HLR state pairs to form a
superfluid in class D of Table 20.1. This leads to the non-abelian Moore–Read state,
and is discussed in Section 24.4.

21.4 Correlated Metals

Finally, we turn to correlated metallic phases, which will be the focus of Part V. A
commonly used approach here is to fractionalize the electron into the product of a
bosonic parton and a fermionic parton. Possible phases are listed in Fig. 21.4.
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273 21.4 Correlated Metals

tFigure 21.4 Fractionalization of the electron into a boson b and fermion f . The spin of the electron can reside either on the
fermion (denoted fα ) or on the boson (denoted bα ). We do not use these popular electron fractionalizations in this
book, and instead advocate the paramagnon fractionalization in Section 31.4.

• Placing the spin of the electron on the fermionic parton, and condensing the bosonic
parton, leads to aFermi liquid. This is one of the rationales behind the “vanilla” state
[10] discussed in Section 9.3.

• Rather than condensing the bosonic parton, we can consider the possibility that the
bosons form a normal liquid at intermediate temperatures. This has been used as a
starting point for a model for the pseudogap metal phase of the cuprate supercon-
ductors [153]. We argue in Section 31.4 that writing the electron as a product of a
fermion and a boson is not a well-behaved fractionalization for the t–J model with
t≫ J. Section 31.4 also presents arguments that a better approach is one which frac-
tionalizes the paramagnon of Section 9.4. The paramagnon fractionalization theory
leads directly to a fractionalized Fermi liquid (FL*) model for the pseudogap metal
(see Fig. 31.9b). We see in Section 31.4 that the paramagnon fractionalization the-
ory has a resemblance to the successful three-fermionic partonmethod for fractional
quantum Hall states noted in Section 21.2.

• Another possibility is that the electronic spin resides on the bosonic partons, and
these partons pair-condense to form a Z2 spin liquid, as noted in Section 21.1 and
Chapter 15. The fermionic partons are spinless, and can form a metallic Fermi
surface state. The resulting state is called a “holon metal” in the context of the
underdoped cuprates, and is noted briefly in Section 31.4 (see Fig. 31.8).

The discussion above of metallic phases with electron fractionalization is in the context
of the single-band t–J model. The discussion of the metallic phases of Kondo lattice
models in Chapters 30 and 31 also involves a “hybridization” or “slave” boson, which
we denote P. From the perspective of this chapter (and this book) the P boson should
not be viewed as a parton, but as a molecular bound state of an electron cα in one
band, and a fermionic spinon fα in a separate band.
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22 The Chiral Spin Liquid

The chiral spin-liquid state of quantum antiferromagnets is obtained by expressing
the spin operator in terms of Schwinger fermions, and placing these fermions in a
band structure with a non-zero Chern number.

This chapter describes a case of parton band topology from Section 21.2.
We return to the S = 1/2 antiferromagnet on the square lattice, considered earlier in

Chapter 15 for the theory of the Z2 spin liquid:

H= ∑
i, j

Ji jSi ·S j, (22.1)

where Si are spin-1/2 quantum spin operators on the sites i of the square lattice. As dis-
cussed near (9.18), we can, equivalently, consider this as a theory of hard-core bosons
Bi, with the operator correspondence

Bi = Si− , B†
i Bi−1/2 = Siz , (22.2)

so that an occupied (empty) boson state is a spin-up (-down) state.
In contrast to the Schwinger-boson representation used in Chapter 15, we will now

employ the Schwinger-fermion representation

Si =
1
2

f †
iα σσσαβ fiβ , (22.3)

where fiα are canonical fermions and the σa, a = x,y,z, are the usual 2× 2 Pauli
matrices. The fermions obey the constraint

∑
α

f †
iα fiα = 1 , for all i. (22.4)

The subsequent steps closely parallel those of Chapter 15; we decouple the fermion
quartic terms to obtain a free-fermion mean-field Hamiltonian, and then examine
the gauge structure of the fluctuations. We find here that the fermions can choose
to acquire a mean-field Hamiltonian with non-trivial band topology (class A from
Table 20.1), and this has strong consequences for the anyon structure of the resulting
spin-liquid state: specifically, a non-zero Chern number in the spinon bands leads to a
Chern–Simons term in the gauge theory of the spin liquid [304].
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275 22.1 Mean-Field theory

22.1 Mean-Field theory

Rather than explicitly carrying out the mean-field computation, we outline the basic
steps:

• We use simple identities to write the exchange interaction on each link as

−
Ji j

2

(
f †
iα f jα

)(
f †

jβ fiβ

)
. (22.5)

• We decouple this interaction with a Hubbard–Stratonovich field Qi j:

Ji j

2
|Qi j|2−Qi j

(
f †
iα f jα

)
−H.c. (22.6)

• We examine a saddle point in which we set Qi j = ti j, and examine fluctuations in the
phases of the Qi j.

Computations of this type lead to mean-field Hamiltonians for the fα spinons in the
following form:

H f = ε0 ∑
i

f †
iα fiα −∑

i< j

(
ti j f †

iα f jα + t∗i j f †
jα fiα

)
. (22.7)

Here, ti j has become the spinon hopping, and ε0 is the saddle point of the Lagrange
multiplier imposing the constraint (22.4); we will find ε0 = 0 for the cases we consider
here.

For most choices of the hopping matrix elements in (22.7), the f fermions acquire
a Fermi surface, and we obtain a spin liquid with a “spinon Fermi surface.” The cou-
pling between the emergent gauge field and the spinon Fermi surface leads to many
singular effects, which are discussed further in Chapter 34. Here, we consider the case
with the hopping matrix elements ti j shown in Fig. 18.2, with nearest-neighbor hop-
ping of magnitude t1 and purely imaginary second-neighbor hopping of magnitude t2,
for which there is no Fermi surface and the spinon excitations are gapped. The imag-
inary diagonal hopping matrix elements imply that time-reversal symmetry has been
spontaneously broken.

For t2 = ε0 = 0, the Hamiltonian in (18.39) has Dirac nodes at k = (±π/2,0). We
focus on the vicinities of these points by writing k = (±π/2+ qx,qy) and expand for
small qx,qy. We also introduce Pauli matrices τx, τy, τz in the sublattice space. Then we
can write the Hamiltonian as

H f = f † [±2t1qxτx +2t1qyτy∓4t2τz] f , (22.8)

where we don’t write out the spin (α,β ), sublattice (a,b), or valley (momenta near
(±π/2,0)) indices on the spinons f . (Note that because of the spin label in (22.7), the
present case has 2 copies of the model considered in Section 18.3.) This is the Hamilto-
nian for two-componentDirac fermions withmasses±4t2.We introduce the relativistic
notation with fermion fields defined by ψ = f , ψ̄ ≡ ψ†τz, and γµ = (τz,−τy,τx), and
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276 22 The Chiral Spin Liquid

then the imaginary time Lagrangian corresponding to the Dirac fermion near one of
the valleys in H f is

L f = ψ̄γµ ∂µ ψ +Mψ̄ψ , (22.9)

where we have absorbed the Fermi velocity 2t1 by rescaling time, and M =±4t2.
We make a number of important observation from L f :

• For t2 = 0, in the π-flux state, the spinon spectrum is gapless, and the low-energy
excitations are described by four species of massless two-componentDirac fermions:
two species from the valleys at (±π/2,0), and two species from the spin index α .

• For t2 ̸= 0, the Dirac fermions acquire a “mass” (a “gap”) by breaking time-reversal
symmetry.

• The lower band is fully occupied, while the upper band is empty; this ensures the half-
filling condition at ε0 = 0. Aswe showed in Section 18.3, for t2 ̸= 0, the occupied band
has a non-zeroChern number±1 (sign determined by the sign of t2). The unoccupied
has the opposite Chern number.

22.2 Gauge Fluctuations

As in Chapter 15, the most important feature determining the structure of fluctuations
is the gauge symmetry under which

f †
iα → f †

iα exp(iρi(τ)) ,
Qi j→ Qi j exp(−iρi(τ)+ iρ j(τ)) . (22.10)

However, the nature of the long-wavelength limit in the theory of the gauge fluctuations
is now simpler than the bosonic spinon case in Chapter 15. Because of the opposite
signs in the transformation of Qi j in (22.10), we can write the fluctuations as

Qi j = ti j exp
(

i
∫ r j

ri
dr ·a(r)

)
, (22.11)

and then the vector field a transforms as a → a+ ∇∇∇ρ , just like the vector poten-
tial of a U(1) gauge field. As in Chapter 15, we obtain the time component of the
gauge field from the fluctuations of the Lagrange multiplier imposing the constraint
in (22.4). Using gauge invariance, we can now simply describe the consequences of
long-wavelength gauge fluctuations on the spinons: the Lagrangian L f is modified to

L f = ψ̄γµ(∂µ − iaµ)ψ +Mψ̄ψ . (22.12)

So, we have a U(1) gauge field aµ coupled to four species of Dirac fermions with mass
M.

The massless case M = 0 of the π-flux state has a number of subtleties which we
consider in Chapter 28, and we limit ourselves to the case where M ̸= 0. In this case, we
can integrate spinons out, and by a close parallel of the computations in Section 18.4we
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277 22.3 Edge States

find that the unit Chern number of the filled spinon band leads to aU(1)Chern–Simons
gauge theory for aµ at level m = 2:

La =
2i
4π

∫
d3xεµνλ aµ ∂ν aλ . (22.13)

The m = 2 arises from the sum over the spin indices of the spinons.
The Lagrangian La describes the chiral spin liquid, and we can deduce its properties

from Chapter 17: the fα spinons are “semions” with statistical angle π/2, and there is
a two-fold degeneracy on the torus.

22.3 Edge States

The chiral spin liquid has protected edge states. We can deduce the edge theory from
the general Chern–Simons theory considerations in Section 17.4, but let us employ a
more direct approach here.

The filled spinon band has Chern number 1, and so prior to imposing gauge con-
straints, this band has free-fermion edge states, as we described in Section 18.3 and
Fig. 18.4. Because of the additional spin index here, there are two copies of the edge
states in Fig. 18.4. By gauge invariance, the gauge field couples minimally to the edge
fermions just as in the bulk; so in its bosonized form analogous to (19.33), we can write
the edge theory as

Ledge =
1

4π ∑
α

[
ν̄(∂xφα)

2 + i∂xφα ∂τ φα
]
+

i
2π ∑

µ,ν=x,τ
∑
α

εµν aµ ∂ν φα , (22.14)

where α =↑,↓ is a spin index, and the last term couples the gauge field to the fermion
current on the edge. The integral over the aµ gauge field now yields the constraint
φ↑+φ↓ = constant. So we write φ↑ = −φ↓ = φ , and obtain the final form of the edge
theory:

Ledge =
2

4π
[
ν̄(∂xφ)2 + i∂xφ∂τ φ

]
. (22.15)

This is exactly the edge theory obtained in Section 17.4 on the Chern–Simons theories
for m = 2.

The spinon operators on the edge are clearly e±iφ . From these spinon operators, we
can obtain the spin-flip (or boson B creation) operator

S+ = f †
↑ f↓ ∼ eiφ↑e−iφ↓ = e2iφ . (22.16)

It is also interesting to consider the spin density in the z direction (or the boson-number
operator):

1
2

(
f †
↑ f↑− f †

↓ f↓
)
=

1
4π
(
∂xφ↑−∂xφ↓

)
=

1
2π

∂xφ. (22.17)

The underlying antiferromagnet has SU(2) symmetry, and so we expect the correlators
of S± and Sz to be equal to each other.And from the correlators of the m= 2 edge theory
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278 22 The Chiral Spin Liquid

discussed earlier, we can indeed verify that their two-point correlators both decay as
(x1− x2)

−2.

22.4 SU(2) Gauge Theory

The Schwinger-fermion representation of spin operators in (22.3) actually has a larger
gauge SU(2) gauge symmetry. For the present chiral spin liquid, the SU(2) gauge theory
leads to the same state as theU(1) gauge theory, as I now show.However, wewill be able
to exploit the SU(2) gauge approach to obtain new spin-liquid phases in Chapter 28.

First, let us recall (22.3), and let us also define the Nambu pseudospin operators

T i =
1
2

(
f †
i↓ f †

i↑+ fi↑ fi↓, i
(

f †
i↓ f †

i↑− fi↑ fi↓

)
, f †

i↑ fi↑+ f †
i↓ fi↓−1

)
. (22.18)

For amore transparent presentation of the symmetries, it is useful to write the fermions
as 2×2 matrices:

f i =

(
fi↑ − f †

i↓
fi↓ f †

i↑

)
. (22.19)

This matrix obeys the relation

f †
i = σ yf T

i σ y. (22.20)

We can now write the spin and Nambu pseudospin operators as

Si =
1
4
Tr(f †

i σσσ f i) , T i =
1
4
Tr(f †

i f iσσσ) . (22.21)

The unit f occupancy constraint in (22.4) can be stated as the vanishing of the
pseudospins on each site:

T i = 0 . (22.22)

Now we can see that the full gauge symmetry generated by the constraints is SU(2)
[152], because the constraint (22.22) and Si are invariant under

SU(2)g : f i→ f iUg(i) , (22.23)

where Ug(i) is a SU(2) matrix (U†
g Ug = 1, det(Ug) = 1), which can depend upon space

and time. This is distinct from the global SU(2) spin-rotation symmetry, which acts as

SU(2)s : f i→Usf i , (22.24)

with Us space and time independent.
Turning to the spin model, we now ask whether it is possible to obtain a mean-field

Hamiltonian similar to (22.7) that is invariant under SU(2) gauge transformations. We
begin by writing down a general Hamiltonian invariant under the global SU(2)s spin
rotation in (22.24):

Hf =−∑
i< j

Tr
(
f †

i f jui j

)
, (22.25)
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279 22.4 SU(2) Gauge Theory

tFigure 22.1 Unit cell of the saddle-point Hamiltonian,Hf in (22.27) with all imaginary hoppings. All fluxes are the same as those
in Fig. 18.2.

where ui j is a 2×2 matrix. Requiring (22.25) to be Hermitian using (22.20) we obtain
the restriction

ui j =−σ yu∗i jσ y . (22.26)

Finally, we also require that the SU(2)g gauge symmetry is unbroken in the mean-field
Hamiltonian (22.25), and this constrains ui j to be proportional to the unit matrix.
Then, the only solution to (22.26) is that ui j is a purely imaginary diagonal matrix, and
(22.25) becomes

Hf =−i ∑
i< j

t̄i jTr
(
f †

i f j

)
=−i ∑

i< j
t̄i j

(
f †
iα f jα − f †

jα fiα

)
, (22.27)

where the t̄i j are real numbers. This is of the form of our earlier mean-fieldHamiltonian
in (22.7), but the ti j in Fig. 18.2 are not purely imaginary. However, it is not difficult to
perform a U(1) gauge transformation to the ti j in Fig. 18.2 so that all hopping terms
are purely imaginary. The result is shown in Fig. 22.1, and the reader can verify that
all the U(1) fluxes in Fig. 22.1 are identical to those in Fig. 18.2.

The subsequent analysis of fluctuations proceeds as for the U(1) gauge theory. We
consider fluctuations in which t̄i j → t̄i j exp(iai j), where ai j is now the spatial compo-
nent of a SU(2) gauge field. Integrating out the fermions yields a Chern–Simons term
for the SU(2) gauge field, but it is now at level m = 1, unlike the level m = 2 for the
U(1) gauge theory; this is because there is now only a single flavor of an SU(2) gauge-
charged fermion, and the α index on fα has been absorbed into an SU(2) color index.
I now refer the reader to analyses of non-abelian Chern–Simons theories [170], from
which it is known that the present Chern–Simons theory is the same as that obtained
in Section 22.2, that is, the SU(2) theory at Chern–Simons level 1 is the same as the
U(1) theory at Chern–Simons level 2.
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23 Non-Abelian Ising Anyons

We begin with a fermionic spinon theory of the Z2 spin liquid, and show that it trans-
forms into a newphasewhen the fermionic spinons have a non-trivial band topology.
The band topology leads to Majorana zero modes bound to visons, and hence to
non-abelian topological order.

The non-abelian Ising topological order (ITO) phase was discovered by Kitaev [134]
using an exactly solvable model on the honeycomb lattice. This is a model of spin-1/2
electrons on the sites of a honeycomb lattice, interacting via Ising-type spin–spin cou-
plings with a bond-dependent orientation. Strong spin–orbit couplings are required
to obtain such interactions in practice, and there are materials, such as α-RuCl3,
whose spins are described by a Hamiltonian that contains the terms of the Kitaev
Hamiltonian.

Rather than considering the exactly solved model, we consider a general and simple
theory that can have an ITO phase. We proceed by decomposing the spin-1/2 electrons
into fermionic spinons, as in Chapter 22 on chiral spin liquids. We assume there is a
spinon-pair condensate, and so the U(1) gauge symmetry has been broken down to
Z2, as was the case for bosonic spinons in Chapter 15. Finally, because of the strong
spin–orbit interactions, which do not conserve spin, we drop the spin indices on the
spinons entirely. So, as in the Chapters 15 and 16 on Z2 spin liquids, we end up with a
Z2 gauge theory coupled to spinons fi on some lattice of sites i, similar to (16.8). We
therefore consider the following Hamiltonian, on the square lattice for simplicity

H = H f +HZ2 ,

H f =−∑
i

µ f †
i fi

−t ∑
⟨i j⟩

Zi j

(
f †
i f j + f †

j fi

)
−∑
⟨i j⟩

Zi j

(
∆i j f †

i f †
j +∆∗i j f j fi

)
,

HZ2 =−K ∑
□

∏
⟨i j⟩∈□

Zi j−g∑
ℓ

Xℓ. (23.1)

Here i, j denotes the sites of a square lattice, ⟨i j⟩ denotes a nearest-neighbor pair of
sites, and ℓ denotes a link of the square lattice. Note that the fermionic matter Hamil-
tonian in (23.1) is the same as (20.23) in Section 20.3 on topological superconductors.
The Z2 gauge theory has operators Zℓ, Xℓ acting on qubits on every link ℓ. The spinons
have a nearest-neighbor hopping t, and a nearest-neighbor pairing ∆i j = −∆ ji, which
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281 23.1 Visons and Majorana Zero Modes

we specify shortly. Because of the pairing, the U(1) gauge invariance has broken down
to Z2, and H is invariant under a Z2 gauge transformation similar to (16.4)

fi→ ρi fi , Zi j→ ρiZi jρ j, (23.2)

with ρi =±1 and Xℓ invariant.
Generally, because of the spinon pairing, the spinon Hamiltonian H f (with Zi j = 1)

is gapped. Then, for g≪ K, the Z2 gauge fluctuations are weak, and we can assume
that we can safely integrate the spinons out. In this manner, we recover the Z2 spin
liquid we have already studied in Chapters 15 and 16, with the f spinons realizing the
ε quasiparticle. And, as before, the m particles are excitations carrying Z2 flux of −1.

However, the above conclusion is too facile. The band topology of the f spinons can
be in a non-trivial class D for the case of p+ ip pairing:

∆i,i+x̂ = ∆ , ∆i,i+ŷ = i∆ , (23.3)

just as in (20.34) and discussed in Section 20.3.2, and also noted in Fig. 21.2. This
requires the absence of time-reversal symmetry, which can arise either from spon-
taneous or explicit breaking in the underlying spin Hamiltonian. We showed in
Section 20.3.2 that the class D band topology led to protected chiral Majorana edge
modes. Such edge modes are also present here, and indeed are a distinctive prop-
erty of the ITO phase. However, the band topology also has an important influence
on the properties of the visons in the Z2 gauge theory, and completely changes their
topological properties; this is described below in Section 23.1.

Note also that for g≫ K the Z2 gauge theory is confining, and we obtain a “trivial”
phase with the f spinons confined.

23.1 Visons andMajorana Zero Modes

The most dramatic consequence of the Chern number of the spinon bands is the result-
ing structure of the vison excitations of the Z2 gauge theory. I show here that each
well-separated vison harbors a Majorana zero mode. This has the remarkable con-
sequence of inducing non-abelian statistics among multiple visons, as discussed in
Section 23.2.

We consider the eigenmodes of the spinon Hamiltonian H f in a fixed background
of the Z2 gauge field Zi j. Kitaev presented a rigorous treatment of a general class of
such H f in Appendix C of Ref. [134]. Employing a Pfaffian invariant similar to that
appearing in the one-dimensional case in Section 20.3.1, he established the existence
of a Majorana mode with each vison, which approaches zero energy as the visons are
well separated from each other. Below, a less rigorous argument is presented, which
employs the continuum limit near the bottom of the fermion band at µ =−4t.

First, we note some general properties of H f . Consider a lattice of M sites, with
periodic boundary conditions (so there are no edges). We have a general Zi j, so there
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282 23 Non-Abelian Ising Anyons

is no translational symmetry. We can diagonalize H f by a unitary transformation U
among the spinon operators of the form

f1

f2
...

fM

f †
1

f †
2
...

f †
M


= U



η1

η2
...

ηM

η†
1

η†
2
...

η†
M


, (23.4)

where ηs are a new set of canonical fermions, obeying ηsη†
s′ +η†

s′ηs = δss′ . In terms of
these new fermions, H f takes the simple form

H f =
M

∑
s=1

εs
(
2η†

s ηs−1
)

(23.5)

for some eigenvalues εs. The eigenmodes H f come in pairs with opposite signs, as can
easily be shown to be the case from its general form. There are a total of 2M states in
the Hilbert space described by (23.5), as there are in the underlying lattice with M sites.

Now consider H f for the case where Zi j = Zi j,ν describes a pair of well-separated
visons as in Fig. 16.2: that is, Zi j,ν has ∏ℓ∈□ Zℓ =−1 only for the plaquette□ containing
a vison, and is unity otherwise. As discussed in Chapter 16, this flux configuration
requires a branch-cut connecting the two visons. Now, the claim is that, provided the
bulk spinon band structure has a non-zero Chern number, one of the εs will approach
zero exponentially rapidly as the separation between the visons becomes large. Let us
call this special, very small, eigenvalue ε0. Then, it is convenient to split η0 into its
Majorana components, as in (20.30):

γ1 = η0 +η†
0 (23.6)

γ2 =−i(η0−η†
0 ) , (23.7)

so that H f can be written as

H f = iε0 γ1γ2 + high-energy terms. (23.8)

The further claim of the vison capturing a Majorana zero mode is that the operators
γ1 and γ2 are separately localized around the two visons, which means γ1 is a linear
combination of the spinon fi and f †

i operators around the first vison, while γ2 is a
linear combination of the spinon operators around the second vison.

We now establish these claims in the continuum limit by focusing on the vicinity of
the first vison (say). We place this vison at the origin of coordinates in a plane, and
use polar coordinates r,θ . We see below that the the radial equation is a continuum
generalization of the zero-mode equation for the Su–Schrieffer–Heeger (SSH) model
in (20.11), and also has a simple zero-mode solution as a decaying exponential.
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283 23.1 Visons and Majorana Zero Modes

We assume that the presence of a vison can be accounted for by a radial dependence
in µ(r) and ∆(r) (we shift µ by 4t so the condition to be in the bulk topological phase
is µ > 0 and small). We take a µ(r) < 0 for small r, so that the “core” region is non-
topological, while we take µ(r) > 0 for large r so that the bulk is topological. In the
continuum limit, valid for small µ , we can write HBdG in (20.27), (20.28), and (20.35)
in polar coordinates (r,θ) as

HBdG =
1
2

 −µ(r) 2∆(r)eiθ
(

∂
∂ r

+
i
r

∂
∂θ

)
−2∆(r)e−iθ

(
∂
∂ r
− i

r
∂

∂θ

)
µ(r)

 . (23.9)

This acts on a wavefunction Ψ(r,θ). Apart from the vison core, accounted for above by
µ(r) and ∆(r), we also have to account for the “branch-cut” of Zi j =−1 in Zi j,ν ema-
nating from the core of the vortex. This branch-cut imposes anti-periodic boundary
conditions on Ψ in the angular direction:

Ψ(r,θ +2π) =−Ψ(r,θ) . (23.10)

Remarkably, (23.9) turns out to have a zero-energy eigenmode Ψ0(r,θ) for precisely
such boundary conditions. Let us write an eigenfunction of HBdG in the form

Ψ(r) =
1√
r

(
−eiθ/2g1(r)
e−iθ/2g2(r)

)
. (23.11)

The boundary conditions (23.10) are now satisfied, and the eigenvalue equation at
energy E becomes

µ(r)g1(r)+2∆(r)
dg2

dr
=−Eg1(r),

2∆(r)
dg1

dr
+µ(r)g2(r) = Eg2(r). (23.12)

In general, the eigenmodes of (23.12) come in pairs with energy ±E, associated with
the particle–hole symmetry g1(r)↔ g2(r). However, there is a special lone eigenvalue
at E = 0 that has

g1(r) = g2(r) ∝ exp
(
−1

2

∫ r

0

µ(r′)
∆(r′)

dr′
)
, (23.13)

which is the continuum analog of the zero-mode solution of the SSH model in (23.12).
We can now write down a Majorana zero-mode operator γ associated with this

eigenmode:

γ =
∫

d2r ig1(r)
[
−eiθ/2 f (r,θ)+ e−iθ/2 f †(r,θ)

]
, (23.14)

where f (r,θ) is the continuum limit of the spinon operator fi. Note that γ changes the
fermion parity; it either increases or decreases the fermion number by unity. As the
fermion number is only conserved modulo 2 in the paired phase in the bulk, it is only
the fermion parity that is significant. Note also that the zero-modeMajorana in (23.14)
obeys γ† = γ .
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284 23 Non-Abelian Ising Anyons

Finally, the most important property of the Majorana fermion γ is that it is localized
exclusively near the single vison we focused on. It does not have a component on the
distant vison at the other end of the branch-cut.

23.2 Non-Abelian Statistics

Wenow consider a situationwith 2N well-separated visons. By the arguments above, we
expect that the low-energy subspace described by N complex fermions ηs, s = 1, . . . ,N,
has 2N states. Let us write these states as

|n1,n2, . . . ,nN⟩ , (23.15)

with ns = 0,1 measuring the number of complex ηs fermions. Associated with these N
complex fermions are 2N Majorana (near-)zero modes localized separately near each
of the visons. Let us assume that the N complex fermions have been chosen so that the
2N Majoranas γs localized near the 2N visons are given by

γ2s−1 = ηs +η†
s ,

γ2s =−i
(
ηs−η†

s
)
. (23.16)

For the anyonic wavefunctions we have met so far, exchange (or braiding) of a pair of
anyons lead to a statistical phase factor acquired by the single-component wavefunc-
tion. Here, we show that the exchange of a pair of visons leads to a non-trivial unitary
transformation in the 2N-dimensional Hilbert space in (23.15). Moreover, upon per-
forming successive braiding operations, the final transformation depends upon the
order of the operations. In other words, a non-abelian representation of the braid
group is realized by the states in (23.15).

We do compute the complete unitary transformation here, but focus only its
non-abelian part. There is an additional abelian phase factor associatedwith the “topo-
logical spin,” which we ignore – see Ref. [134] for more details. But the non-abelian part
of the unitary transformation can be computed by a simple argument due to Ivanov
[117]. Consider the simplest non-trivial case with four visons, shown in Fig. 23.1. The
low-energy subspace now consists of the four states |n1,n2⟩. Let us braid the visons γ1

and γ2 as shown in Fig. 23.1. For the choice of Zi j branch-cuts associated with each

tFigure 23.1 Four visons and their Majorana zero modes γs, and branch-cuts inZi j .
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285 23.2 Non-Abelian Statistics

vison shown, we observe that γ1 intersects a branch-cut, while γ2 does not. This implies
that under this braiding operation

γ1→−γ2,

γ2→ γ1. (23.17)

The unitary operator implementing this operation is

U12 =
1√
2
(1+ γ1γ2) ; (23.18)

that is, U12γ1U†
12 =−γ2, U12γ2U†

12 = γ1. Similarly, for clockwise exchanges of neighbor-
ing vortices we have

Us,s+1 =
1√
2
(1+ γsγs+1) . (23.19)

We can now work out the actions of Us,s+1 on the four-dimensional Hilbert space
|n1,n2⟩. We find [6]

U12 |n1,n2⟩= eiπ(1−2n1)/4 |n1,n2⟩ ,

U23 |n1,n2⟩=
1√
2
|n1,n2⟩+ i

(−1)n1
√

2
|1−n1,1−n2⟩ ,

U34 |n1,n2⟩= eiπ(1−2n2)/4 |n1,n2⟩ . (23.20)

The novel feature is the action of U23; this leads to a 2×2 braiding matrix, which will
not commute with other braiding operations.

Ultimately, the key features leading to non-abelian statistics are the “halfing” of the
spinon f into Majoranas γs bound at the vortices and the familiar −1 picked up by a
spinon when crossing the vison branch-cut.

It is useful to also work out the fusion rules implied by the above, and compare to
the Z2 spin liquid. In the present model, the Z2 spin liquid is obtained when the spinon
bands have a zero Chern number. Then, the spinons realize the ε particle, the visons
are the m particle, and a bound state of m and ε is the bosonic e spinon.

For the ITO phase, the vison binds half a ε spinon, that is, a Majorana, to form a
quasiparticle usually referred to as the σ particle. So, the quasiparticle content of the
ITO is 1, ε , and σ , and there is no e particle. The fusion rules are:

ε× ε = 1, (23.21)

ε×σ = σ , (23.22)

σ ×σ = 1+ ε. (23.23)

The first rule is as in aZ2 spin liquid. The second rule shows that bringing a spinon close
to the σ particle associated with γ1 just flips the fermion parity with n1→ 1−n1. The
third rule shows that the vison branch-cuts annihilate each other, and for the fusion of
σ particles γ1,2 we are left with the two-dimensional Hilbert space |n1⟩.

The expressions (23.21)–(23.23) are also rules for the operator product expansion
for the c = 1/2 Ising conformal field theory (CFT) in 1+1 dimensions, and hence the
name ITO. This is an example of the close connection between 2+1-dimensional anyon
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phases, and 1+1-dimensional CFTs, and we also saw examples of this connection in the
chapter on abelian Chern–Simons gauge theory. Indeed, these are the simplest cases of
a deep and general connection established by Witten [312].

23.3 Connections to Odd-Parity Superconductors

We have presented the Majorana zero modes above as features of the vison excitations
of Z2 gauge theory. But as we saw in Chapter 15, there is an intimate connec-
tion between Abrikosov vortices of superconductors and visons in Z2 spin liquids.
And, indeed, Majorana zero modes can also be present in the vortices of odd-parity
superconductors with spin–orbit coupling [6].

To see this explicitly here, we consider a vortex in a superconductor in which the
pairing field is changed from ∆0 to ∆0eiθ around a vortex, with θ the polar angle around
the vortex center. We have to discretize this on a lattice, and a natural choice is

∆i j = ∆0,i jei(θ̃i+θ̃ j)/2. (23.24)

A crucial point here is that we have to choose θ̃i = θi modulo 2π so that there is no
branch-cut between any pair of sites i and j for a given ∆i j; this ensures a smooth
continuum limit to a single-valued ∆0eiθ . In other words, θ̃i needs to be multi-valued to
ensure that the physical pairing field ∆i j is single-valued and smooth. Now we perform
a gauge transformation of the fermions:

fi→ fieiθi/2, (23.25)

where we make a single-valued gauge choice for the value of θi at each lattice site i.
Then we see from (23.1) that ∆i j = ∆0,i j apart from a branch-cut of −1 across every
bond in which there is a jump in the value of θi by 2π. This can be absorbed into a Zi j,
which is precisely that of a vison at the core of the vortex.
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24 Fractional QuantumHall States

The theories of the fractionalized quantum Hall states are developed by fractionaliz-
ing the electron into three fermionic partons, and placing the fermionic partons into
Landau levels. This is shown to yield a description of the abelian Laughlin and Jain
states, and also of the non-abelian Moore–Read state.

We return to the problem considered in Chapter 19 of electrons of density ρ moving in
two dimensions in a large magnetic field of strength B. Each Landau level can accom-
modate a density of electrons ρ = B/Φ0, where Φ0 = h/e is the flux quantum, and so
we define the filling fraction as

ν =
ρ

B/Φ0
. (24.1)

We considered integer values of ν in Chapter 19, and here we describe a class of
fractional quantum Hall states that appear at certain rational values of ν < 1.

In keeping with our discussion of Z2 spin liquids in Chapter 15, and of chiral spin
liquids in Chapter 22, and as promised in Chapter 21, we describe the fractional quan-
tum Hall states by fractionalizing the electron into “partons,” which are fermionic. We
describe the parton construction and its mean-field theory in Section 24.1. Then we
turn to a description of fluctuations using the Chern–Simons gauge theory framework
of Chapter 17. However, before we embark on this, we first revisit the integer quantum
Hall states, and place them in the context of Chern–Simons theories with an emergent
gauge field in Section 24.3.1.

24.1 Partons

We consider here states in which the electron c (assumed spinless) fractionalizes into
three fermionic “partons,” ψp, p = 1,2,3 [117]:

c(r) = ψ1(r)ψ2(r)ψ3(r) . (24.2)

This parton construction is best understood by discretizing continuous space to a
lattice of sites i:

ci = ψ1iψ2iψ3i . (24.3)
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288 24 Fractional Quantum Hall States

Then on each site i there are two possible states, either zero or one electron; we identify
the empty (full) electron state with the empty (full) ψi so that

c†
i |0⟩= ψ†

1iψ
†
2iψ

†
3i |0⟩ . (24.4)

This correspondence is achieved by imposing two constraints, which we choose as

ψ†
1iψ1i = ψ†

3iψ3i , ψ†
2iψ2i = ψ†

3iψ3i . (24.5)

The constraints in (24.5) reduce the eight possible states of the fermions on each site
to the two physical states.

As in our study of spin liquids, this decomposition introduces a gauge redundancy.
There are two U(1) gauge symmetries corresponding to (24.5) under which

ψ1→ eiρ1ψ1 , ψ3→ e−iρ1ψ3 (24.6)

and

ψ2→ eiρ2ψ2 , ψ3→ e−iρ2ψ3 . (24.7)

(More properly, there is actually a SU(3) gauge redundancy, but we will ignore this,
because the U(1)×U(1) theory turns out to be sufficient to capture the topological
order properly.) We can now proceed with the usual Hubbard–Stratonovich decom-
positions of the electron Hamiltonian and obtain an effective theory of the ψ partons
coupled to two U(1) gauge fields b1µ and b2µ . Also including a vector potential Aµ for
the applied magnetic field, which we choose to apply on the ψ3 fermion, the spatial
gradient terms of the parton theory have the form

1
2m1

ψ†
1 (∇∇∇− ib1)

2 ψ1 +
1

2m2
ψ†

2 (∇∇∇− ib2)
2 ψ2

+
1

2m3
ψ†

3 (∇∇∇+ ib1 + ib2− ieA)2 ψ3 . (24.8)

Depending the structure of the saddle point we are examining, the fermion masses
m1,2,3 can be different from each other. Let us define the net fields experienced by the
three partons:

B1ẑ= ⟨∇∇∇×b1⟩ ,
B2ẑ= ⟨∇∇∇×b2⟩ ,
B3ẑ=−⟨∇∇∇×b1⟩−⟨∇∇∇×b2⟩+ e∇∇∇×A. (24.9)

Clearly, we have

eB = B1 +B2 +B3 , (24.10)

where Bẑ= ∇∇∇×A. Note also that the densities of all partons are equal to the electron
density ρ1,2,3 = ρ .

The main idea here is to choose the values of B1,2,3 so that each parton fully occu-
pies an integer number of Landau levels, and so there is gap in the parton excitation
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spectrum; this ensures that fluctuations about this mean-field state are not too strong.
If the partons fully occupy Np Landau levels, then, using (24.1) and (24.10), we obtain

1
ν
=

1
N1

+
1

N2
+

1
N3

. (24.11)

The filling of the Landau levels indicates there is likely a gap to all excitations at such
values of ν . However, we do have to ensure that gauge fluctuations about the saddle
point are not singular and do not destabilize the mean-field saddle point above.

24.1.1 Laughlin State

The simplest case arises when all partons fully occupy a single Landau level. Then we
must have

ρ =
B1

eΦ0
=

B2

eΦ0
=

B3

eΦ0
. (24.12)

From (24.1), (24.10), and (24.12) we therefore deduce

ν =
1
3
. (24.13)

From (24.2), and theVandermonde determinant wavefunction in (19.15) for the integer
quantum Hall state, we obtain the celebrated Laughlin wavefunction at ν = 1/3:

Ψ(z1,z2 . . .zN) =

[
∏
j>i

(z j− zi)
3

]
∏

i
exp
(
−|zi|2/4

)
. (24.14)

24.1.2 Jain States

The other important set of fractional quantum Hall states are the Jain states; the
Laughlin and Jain states account for the vast majority of the states observed in exper-
iments. The Jain states are obtained when not all the integers N1,2,3 in (24.11) are set
equal to unity. One set of Jain fractional states are obtained when partons ψ1 and ψ2

occupy a single Landau level, while the parton ψ3 occupies N Landau levels. Then
(24.12) is replaced by

ρ =
B1

eΦ0
=

B2

eΦ0
=

NB3

eΦ0
. (24.15)

and (24.1), (24.10), and (24.15) yield the filling fraction

ν =
N

2N +1
. (24.16)

The wavefunction is now

Ψ(z1,z2, . . . ,zN) =

[
∏
j>i

(z j− zi)
2

]
[χN(z1,z2 . . . ,zN)]∏

i
exp
(
−|zi|2/4

)
, (24.17)

where χN is the wavefunction of the state with N Landau levels occupied. Note that χN

is not an analytic function of the zi, and also contains dependence on z∗i from the higher
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Landau levels. In numerical studies, these non-analytic terms are usually dropped by
projecting the wavefunction to the lowest Landau level.

24.2 Edge Theory of the Fractional QuantumHall States

We now use the parton construction to obtain the theory of gapless excitations on the
edge. We have already described the edge theory of the integer quantum Hall state
in Chapter 19 using the free-electron theory, and we recall its bosonized version in
Section 24.2.1. This bosonized approach generalizes readily to the fractional quantum
Hall states, along the lines of the chiral spin liquid discussed in Chapter 22. We will
consider the bulk theory of the fractional quantum Hall states in Section 24.3.

24.2.1 Integer Quantum Hall States

We consider an integer quantum Hall state with N occupied Landau levels. From
Chapter 19, we know that each Landau level has a chiral fermion edge state. We can
bosonize each edge state into a chiral boson φ I . Then, the edge state theory will have
the canonical form of (17.52), with the action

Se =
1

4π

∫
dxdτ

N

∑
I,J=1

[
−iKIJ∂τ φ I∂xφJ +νIJ(∂xφ I)(∂xφJ)+

i
2π

tIAµ εµν ∂ν φ I
]
, (24.18)

and

KIJ = δIJ , tI = 1 for all I, (24.19)

and some velocities νIJ .
The following discussion does not explicitly consider the coupling to the external

gauge field Aµ for simplicity. The gauge field re-instated in Section 24.3, where we also
specify the tI .

24.2.2 Laughlin State

We have three fully occupied lowest Landau levels of the three partons, and each has
a chiral fermion edge state, which we bosonize into an edge chiral boson φ1,2,3, as in
(19.33). As in the case of the chiral spin liquid in Chapter 22, we have the coupling
to the gauge fields associated with the gauge invariances in (24.6) and (24.7), which
we denoted b1µ and b2µ , respectively, below (24.7). In this manner, we obtain the edge
Lagrangian

Ledge =
1

4π

3

∑
p=1

[
ν̄p(∂xφp)

2 + i∂xφp∂τ φp
]

+
i

2π ∑
µ,ν=x,τ

εµν b1µ [∂ν φ1−∂ν φ3]+
i

2π ∑
µ,ν=x,τ

εµν b2µ [∂ν φ2−∂ν φ3] . (24.20)
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After performing the integral over b1µ and b2µ we can set φ1 = φ2 = φ3 = φ , and we
obtain the N = 1 edge theory with m = 3:

Ledge =
3

4π
[
ν̄(∂xφ)2 + i∂xφ∂τ φ

]
. (24.21)

The quasiparticle operators on the edge are eiφ and e2iφ , carrying U(1) electro-
magnetic charges 1/3 and 2/3, respectively. From (24.2), we see that the electron
creation/annihilation operator is e±3iφ . And, finally, the electron density equals the
density of any of the partons, and so the electron-density operator is (∂xφ)/(2π).

24.2.3 Jain States

The edge states of the partons ψ1 and ψ2 remain as in the Laughlin state. But for the
parton ψ3, we now have N edge states from the N filled Landau levels; we represent
these by chiral bosons φ3,s, where s = 1, . . . ,N. So we have the edge Lagrangian

Ledge =
1

4π

2

∑
p=1

[
ν̄p(∂xφp)

2 + i∂xφp∂τ φp
]

+
1

4π

N

∑
s=1

[
ν̄3,s(∂xφ3,s)

2 + i∂xφ3s∂τ φ3,s
]

+
i

2π ∑
µ,ν=x,τ

εµν b1µ

[
∂ν φ1−

N

∑
s=1

∂ν φ3,s

]

+
i

2π ∑
µ,ν=x,τ

εµν b2µ

[
∂ν φ2−

N

∑
s=1

∂ν φ3,s

]
. (24.22)

After performing the integral over b1µ and b2µ , we solve the constraints by introducing
N chiral bosons φ I , with I = 1, . . . ,N and

φ1 = φ1

φ2 = φ1

φ3,1 = φ1−
N

∑
s=2

φs

φ3,s = φs , s = 2, . . . ,N (24.23)

Then the edge action takes the canonical form in (24.18) for some velocity νIJ and the
K matrix given by

K11 = 3;

K1I = KI1 =−1, I = 2, . . . ,N;

KII = 2, I = 2, . . . ,N;

KIJ = 1, I = 2, . . . ,N, J = 2, . . . ,N, I ̸= J. (24.24)
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292 24 Fractional Quantum Hall States

We write the explicit forms for N = 2,3,4 with ν = 2/5,3/7,4/9 as

K =

(
3 −1
−1 2

)
, K =

 3 −1 −1
−1 2 1
−1 1 2

 ,

K =


3 −1 −1 −1
−1 2 1 1
−1 1 2 1
−1 1 1 2

 . (24.25)

It can be verified that det(K) = 2N+1. Now the quasiparticle operators are eiφ I
and the

electron-density operator is (∂xφ1)/(2π). The electron operators can be constructed
from (24.2) and (24.23), and this leads to the operators e2iφ1+iφs

with s ≥ 2, and
e3iφ1−i∑N

s=2 φ2
; it can be verified that all these operators have the same scaling dimension.

24.3 Bulk Gauge Theory of the Fractional QuantumHall States

Now we follow the same strategy as on the boundary, and derive the Chern–Simons
gauge theory in 2+1 dimensions. We will find that it is in accord with the bulk–edge
correspondence postulated in Section 17.4.

24.3.1 Integer Quantum Hall States

As in Section 24.2, we pause in our analysis of fractional states to recast the dis-
cussion of the integer quantum Hall states in Chapter 19 in the framework of the
Chern–Simons theories of Chapter 17.

In our original treatment in Chapter 19, we considered electrons without any emer-
gent gauge fields, and coupled the electrons directly to the external gauge field Aµ .
However, in Section 17.3, we found it convenient to couple the external gauge field
Aµ to the fluxes of an emergent gauge field aI

µ as determined by the vector tI . We will
now reformulate the low-energy theory of Chapter 19 so that Aµ couples instead to an
emergent gauge field.

We do this by coupling the electrons in the Ith Landau level to a separate emergent
gauge field aI

µ . Then, if we integrate out the electrons in the Landau levels, we obtain
a Chern–Simons term (i/(4π))KIJεµνλ aI

µ ∂ν aJ
λ with same K matrix as in (24.19). Then,

taking the variation of the effective action with respect to the Ith gauge field, we obtain
the current of the electrons in the Ith Landau level:

jI
µ =

1
2π

εµνλ ∂ν aI
λ . (24.26)

So we can regard aI
µ as an emergent gauge field accounting for the conservation of the

current within each Landau level ∂µ jI
µ = 0. Furthermore, (24.26) allows us to write the

coupling to the external gauge Aµ ∑I jI
µ in terms of the coupling of Aµ to aI

µ . Putting this
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293 24.3 Bulk Gauge Theory of the Fractional Quantum Hall States

together, we obtain precisely the bulk Chern–Simons theory in (17.33) with N emergent
gauge fields, and the K matrix and tI exactly as in (24.19). We can also verify from
the expressions in Chapter 17 that the Hall conductivity and statistical angles have the
expected values, and there is no ground-state degeneracy on the torus because detK = 1.

24.3.2 Laughlin State

As in Section 24.3.1, we couple each parton Landau level to a U(1) gauge field apµ ,
p= 1, . . . ,3. Upon integrating out the partons, we obtain a Chern–Simons term at level
1 for each gauge field. The current jpµ of the parton ψp is then expressed in terms of
apµ just as in (24.26).

Next we (i) impose the constraints following from (24.6) and (24.7), j1µ = j3µ , and
j2µ = j3µ by gauge fields b1µ and b2µ ; and (ii) couple the current j1µ , which equals
the electron current, to the external gauge field Aµ . In this manner, we obtain the
Lagrangian

LCS =
i

4π

3

∑
p=1

εµνλ apµ ∂ν apλ +
i

2π
εµνλ Aµ ∂ν a1λ

+
i

2π
b1µ εµνλ ∂ν(a1λ −a3λ )+

i
2π

b1µ εµνλ ∂ν(a2λ −a3λ ). (24.27)

Performing the integral over b1µ and b2µ , we can set apµ = aµ , and obtain the Chern–
Simons theory of the Laughlin state with N = 1 and m = 3:

LCS =
3

4π
εµνλ aµ ∂ν aλ +

i
2π

εµνλ Aµ ∂ν aλ .

Using (17.35), this yields the Hall conductivity σxy = e2/(3h).

24.3.3 Jain States

The procedure parallels that implemented for the Laughlin state above, and maps to
the corresponding edge-state theory.

Now we introduce bulk gauge fields a1µ , a2µ , and a3,sµ with s = 1, . . . ,N. Then, as in
(24.27), we have

LCS =
i

4π

2

∑
p=1

εµνλ apµ ∂ν apλ +
i

4π

N

∑
s=1

εµνλ a3,sµ ∂ν a3,sλ

+
i

2π
εµνλ Aµ ∂ν a1λ

+
i

2π
b1µ εµνλ ∂ν

(
a1λ −

N

∑
s=1

a3,sλ

)

+
i

2π
b2µ εµνλ ∂ν

(
a2λ −

N

∑
s=1

a3,sλ

)
. (24.28)
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294 24 Fractional Quantum Hall States

After performing the integral over b1µ and b2µ , we solve the constraints by introducing
N gauge fields aI

µ , with I = 1, . . . ,N, which are related to a1µ , a2µ , and a3,sµ just as for
φ in (24.23). Then we obtain the Chern–Simons theory in its conventional form:

LCS =
i

4π
εµνλ aI

µ KIJ ∂ν aJ
λ +

i
2π

tIAµ εµνλ ∂ν aI
λ , (24.29)

with the same K matrix as in (24.24) and tI = δI1. Now computing tT K−1t we obtain
from (17.35) the Hall conductivity σxy = (N/(2N +1))e2/h.

24.4 Moore–Read State

Here, we consider a novel state that forms at the filling fraction ν = 1/2. We approach
this filling by taking the N → ∞ limit of the Jain state in (24.16). From (24.12), we
obtain B3 = 0, and so the ψ3 parton is in a zero effective magnetic field. As in all the
Jain states, the ψ1 and ψ2 partons fully occupy single Landau levels. At the mean-
field level, we expect the ψ3 partons to form a Fermi surface. Such a mean-field state
has gapless excitations, and does not display a quantized Hall effect. The fluctuations
of the emergent gauge fields have to be included, and they have singular effects on the
fermions at the Fermi surface. This novel Halperin–Lee–Read state is discussed further
in Section 34.3.

However, another interesting possibility is the Moore–Read state, which is obtained
when the ψ3 fermions thatmove in a net zero field forman odd-parity superfluid in class
D, as in Section 20.3.2 and in Chapter 23. Indeed, the state formed by the ψ3 fermions
is closely analogous to the state formed by the f spinons in Chapter 23. The condensate
of ψ3 pairs will higgs the b1µ +b2µ gauge field down to Z2, and the vortices in the ψ3-
pair condensate will display non-abelian statistics. And, as described in Section 20.3.2,
there will be chiral Majorana edge states. We also have to consider the edge theory
associated with the ψ1 and ψ2 integer quantum Hall states. This is the same as in the
chiral spin-liquid state of Chapter 22, with the b1µ −b2µ U(1) gauge field playing the
same role as the aµ field. To summarize, the edge theory of the Moore–Read state is
the sum of the edge theories in Chapters 22 and 23.
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25 Dualities of XY Models and U(1) Gauge Theories

We describe the duality of the XY model in two dimensions to a Coulomb gas of vor-
tices, and the analogous duality of the U(1) gauge theory in three dimensions to
a Coulomb gas of monopoles. This leads to the Dasgupta–Halperin particle–vortex
duality of the critical point of the XY model in three dimensions.

In our discussion of bosons at integer filling on a d-dimensional lattice in Chapter 8,
we showed that their superfluid–insulator transition was described by the field theory
of a complex scalar field ψ in D = d +1 spacetime dimensions with the action

Sψ =
∫

dd+1x
[
|∂µ ψ|2 + r|ψ|2 +u|ψ|4

]
. (25.1)

The same theory also describes the thermal phase transition of the classical XY model
on a D-dimensional lattice with sites i and the partition function

Z = ∏
i

∫ 2π

0
dθi exp

(
K
π ∑
⟨i j⟩

cos(θi−θ j)

)
. (25.2)

We also discussed extensions of (25.2) in Chapter 14 as a model for fractionalization
in D = 3.

For the case d = 1, we applied Luttinger liquid theory to a quantum gas of bosons
at integer filling in one dimension in Section 12.3. We obtained a dual description in
terms of a sine-Gordon field theory for the field ϕ , where e2iϕ was the vortex operator.
Here, we present a different derivation of this duality, starting from (25.2), and then
generalize this duality to higher dimensions.

25.1 XY model inD = 1

First, we consider the simplest case of the classical XY model in one dimension, when
there is no ordered phase at any temperature.

The lattice partition function is

Z = ∏
i

∫ 2π

0

dθi exp

(
K
π ∑

i
cos(θi−θi+1)

)
, (25.3)
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296 25 Dualities ofXY Models andU(1) Gauge Theories

where

K ≡ πJ
T

(25.4)

in terms of the “exchange interaction” J and the temperature of the classical model T .
We also define the complex order parameter

ψ = eiθ . (25.5)

Anticipating that there is no ordered phase at any T , let us work in the low-T limit,
T ≪ J. Then, we expect that θi varies slowly with i, and we can take the continuum
limit to write

Z =

∫
Dθ(x)exp

(
− K

2π

∫
dx
(

dθ
dx

)2
)
. (25.6)

As this is a Gaussian action, we can easily evaluate the correlation functions of the
order parameter

⟨ψ(x)ψ∗(0)⟩= exp
(
− π

K

∫ dk
2π

(1− cos(kx))
k2

)
= exp

(
−π|x|

2K

)
. (25.7)

So the correlation length is

ξ =
2K
π

=
2J
T
, (25.8)

which diverges only at T = 0. We also expect exponential decay of correlations at
very high T , and so the low-T and high-T limits are smoothly connected without an
intervening phase transition.

25.1.1 Quantum Interpretation

We can also interpret (25.6) as the Feynman path integral of a particle with mass K/π
and coordinate θ , moving on a unit circle with imaginary time x. The Hamiltonian of
this quantum particle is (h̄ = 1)

H =− π
2K

d2

dθ 2 . (25.9)

So the eigenenergies are

En =
πn2

2K
, n = 0,±1,±2, . . . . (25.10)

In terms of these eigenstates |n⟩, the correlation function in (25.7) can we written as
(for x > 0)
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297 25.2 Vortices in theXY Model inD = 2

⟨ψ(x)ψ∗(0)⟩= ⟨0|ψ exp(−Hx)ψ∗ |0⟩
= ⟨−1|exp(−Hx) |−1⟩
= exp(−E−1x), (25.11)

which agrees with Eq. (25.7).
This quantum interpretation is also easily extended to the D-dimensional XY model

in (25.2). We introduce an integer-valued boson-number operator ni on each site i of a
d = D−1-dimensional lattice. This is conjugate to the XY “rotor” variable θi:

[θi,n j] = iδi j . (25.12)

Then, the Hamiltonian of the quantum rotor model is

Hr = h∑
i

n2
i −

K
π ∑
⟨i j⟩

cos(θi−θ j). (25.13)

The imaginary Feynman path integral ofHr, after discretizing the time direction, leads
back to (25.2).

25.2 Vortices in the XY Model inD = 2

Now, we turn to the quantum Bose gas in d = 1, considered in Section 12.3. At integer
filling, this is described by the quantum rotor Hamiltonian in (25.13) in d = 1, and
hence the classical XY model in D = 2.

First, we carry out precisely the same analysis as that carried out above in D = 1. We
will ultimately show that such an analysis yields the correct results as T → 0 even in
D = 2. However, unlike D = 1, the results apply only below a critical temperature TKT .

The continuum theory analog of (25.6) is

Z =
∫
Dθ(x)exp

(
− K

2π

∫
d2x(∇xθ)2

)
. (25.14)

The correlator in (25.7) now maps to

⟨ψ(x)ψ∗(0)⟩= exp
(
− π

K

∫ Λ d2k
4π2

(1− cos(kx))
k2

)
≈ exp

(
− 1

2K
ln(Λ|x|)

)
, |x| → ∞

= 1/(Λx)1/(2K). (25.15)

So, at low T , the two-point correlator decays only as a power law. On the other hand,
we know from the high-temperature expansion that, at sufficiently high T , the two-
point correlator must decay exponentially. These differences are resolved by a vortex
unbinding transition at TKT .
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25.2.1 Duality Transform in D = 2

We recall the partition function

Z = ∏
i

∫ 2π

0
dθie−S , (25.16)

where the action is the XY model

S =−K
π ∑
⟨i, j⟩

cos(θi−θ j). (25.17)

Our treatment below follows the classic paper José et al. [120].
It is convenient to write this in a lattice gauge theory notation:

S =−K
π ∑

i,µ
cos(∆µ θi), (25.18)

where µ extends over x,τ , the two directions of spacetime. Here, ∆µ defines a discrete
lattice derivative with ∆µ f (xi)≡ f (xi + µ̂)− f (xi), with µ̂ a vector of unit length.

Now we introduce the Villain representation

e−K(1−cos(θ))/π ≈
∞

∑
n=−∞

e−K(θ−2πn)2/(2π), (25.19)

which is clearly valid for large K. We will use it for all values of K; this is permitted,
because the right-hand side preserves an essential feature for all K – periodicity in θ .
Then we can write the partition function as

Z = ∑
miµ

∏
i

∫ 2π

0

dθi

2π
e−S , (25.20)

with

S =
K
2π ∑

i,µ
(∆µ θi−2πmiµ)

2, (25.21)

where the miµ are independent integers on all the links of the square lattice. Now we
need the exact Fourier series representation of a periodic function of θ :

∞

∑
n=−∞

e−K(θ−2πn)2/(2π) =
1√
2K

∞

∑
p=−∞

e−π p2/(2K)−ipθ . (25.22)

Note that both sides of the equation are invariant under θ → θ +2π. Then, (25.20) can
be rewritten as (ignoring overall normalization constants)

Z = ∑
piµ

∏
i

∫ 2π

0

dθi

2π
e−S , (25.23)

with

S =
π

2K ∑
i,µ

p2
iµ + ipiµ ∆µ θi. (25.24)
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Again, the piµ are an independent set of integers on the links of the square lattice. The
advantage of (25.24) is that all the integrals over the θi factorize, and each θi integral
can be performed exactly. Each integral leads to a divergence-free constraint on the piµ
integers:

∆µ piµ = 0. (25.25)

We can view piµ as the number current of a boson (particle) moving in D = 2 lattice
spacetime. The divergence-free constraint shows that the number of these particles is
conserved. We can solve this constraint by writing piµ as the “curl” of another integer-
valued field h j̄, which resides on the sites j̄ of the dual lattice:

piµ = εµν ∆ν h j̄. (25.26)

Then, the partition function becomes that of a “height” or “solid-on-solid” (SOS)
model:

Z = ∑
h j̄

e−S , (25.27)

with

S =
π

2K ∑̄
j,µ

(
∆µ h j̄

)2
. (25.28)

This can also describe the statistical mechanics of a two-dimensional surface upon
which atoms are being added discretely on the sites j̄, and h j̄ is the height of the atomic
surface.

We are now almost at the final, dual, form of the original XY model in (25.18).
We simply have to approximate the discrete height field h j̄ by a continuous field ϕ j̄.
Formally, we can do this by writing, for any function f (h),

∞

∑
h=−∞

f (h) =
∫ ∞

−∞
dϕ f (ϕ/π)

∞

∑
h=−∞

δ (ϕ −πh)

=
1
π

∞

∑
p=−∞

∫ ∞

−∞
dϕ f (ϕ/π)e2ipϕ

=
1
π

∞

∑
p=−∞

∫ ∞

−∞
dϕ f (ϕ/π)e(lny)p2+2ipϕ

=
1
π

∫ ∞

−∞
dϕ f (ϕ/π)

[
1+2

∞

∑
p=1

yp2
cos(2pϕ)

]
(25.29)

for y = 1. We now substitute (25.29) into (25.28), and then examine the situation for
y→ 0; this is the only “unjustified” approximation we make here. It is justified more
carefully by José et al. [120] using renormalization-group arguments, who show that
all of the basic physics is apparent already at small y. In such a limit we can write the
exact result (25.29) as approximately

∞

∑
h=−∞

f (h)≈ 1
π

∫ ∞

−∞
dϕ f (ϕ/π)exp(2ycos(2ϕ)) . (25.30)
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Substituting (25.30) into (25.28), we find that our final dual theory of the XY model is
the sine-Gordon theory, as obtained earlier in Section 12.3 by different methods:

Z = ∏̄
j

∫
dϕ j̄ e−SsG , (25.31)

with

SsG =
1

2πK ∑̄
j,µ

(
∆µ ϕ j̄

)2−2y∑̄
j

cos(2ϕ j̄). (25.32)

If we now expand in powers of y, and integrate out ϕ , we obtain the partition function
of a plasma of vortices and anti-vortices:

Z =
∞

∑
N=0

y2N

(N!)2

N

∏
i=1

∫
dx+idx−i exp

(
K

2N

∑
j ̸=k=1

p j pk ln |x j− xk|

)
, (25.33)

where x j = x+ j and p j = 1 for j = 1, . . . ,N (representing the vortices) and x j = x−, j−N

and p j =−1 for j = N +1, . . . ,2N (representing the anti-vortices). So we can identify

V± = e±2iϕ (25.34)

as the vortex/anti-vortex operators. These vortices are the same objects as those
discussed in Section 7.1.

25.2.2 Mappings of Observables

We begin with the boson current Jµ . This can obtained by coupling the XY model to a
fixed external gauge field Aµ by replacing (25.18) with

S =−K
π ∑

i,µ
cos(∆µ θi−Aiµ), (25.35)

and defining the current

Jiµ =
δS

δAiµ
. (25.36)

Note that because the chemical potential of the bosons is i times the time component
of the vector potential (in Euclidean time), the boson-density operator is i times Jτ
(this factor of i must be kept in mind in all Euclidean path integrals). Then, carrying
through the mappings above we find that the sine-Gordon action is replaced by

SsG =
1

2πK ∑̄
j,µ

(
∆µ ϕ j̄

)2−2y∑̄
j

cos(2ϕ j̄)+
i
π

Aµ εµν ∆ν ϕ j̄. (25.37)

So now we can identify the current operator

Jiµ =
i
π

εµν ∆ν ϕ j̄ . (25.38)

Note that this current is automatically conserved: that is, ∆µ Jµ = 0.
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Another useful observable is the vorticity. A little thought using the action (25.21)
shows that we can identify

ν j̄ = εµν ∆µ miν (25.39)

as the integer vorticity on site j̄. So we extend the action (25.21) with a fixed source
field λ j̄ to

S =
K
2π ∑

i,µ
(∆µ θi−2πmiµ)

2 + i2πλ j̄εµν ∆µ miν . (25.40)

Now, every vortex/anti-vortex in the partition function at site j̄ appears with a factor
of e±i2πλ j̄ . For the duality mapping we need an extended version of the identify (25.22)

∞

∑
n=−∞

e−K(θ−2πn)2/(2π)+i2πnλ =
1√
2K

∞

∑
p=−∞

e−π(p−λ )2/(2K)−i(p−λ )θ , (25.41)

which holds for any real λ , θ , and K. Then we find that (25.32) maps to

SsG =
1

2πK ∑̄
j,µ

(
∆µ ϕ j̄

)2−2y∑̄
j

cos(2ϕ j̄−2πλ j̄). (25.42)

We therefore observe that each factor e±i2πλ j̄ appears with a factor of ye±2iϕ . So we
identify y with the vortex “fugacity,” and confirm that V± = e±2iϕ is the vortex/anti-
vortex operator.

25.2.3 Renormalization-Group Analysis

We now discuss some important properties of the sine–Gordon field theory SsG in
(25.42) as a function of the dimensionless coupling K and the vortex fugacity y.

First, we note that SsG at y = 0 is precisely the dual theory of the low-temperature
theory in (25.14). We can compute correlators of the operators eipθ and eipϕ in such a
phase as before and obtain〈

eipθ(x)e−ip′θ(0)〉∼ δpp′/xp2/2K ,
〈
eipϕ(x)e−ip′ϕ(0)〉∼ δpp′/xp2K/2; (25.43)

similar results were obtained earlier in Sections 12.2 and 12.3. Note that the correlator
of the vortex operator e2iϕ is ∼ exp(−2K ln(|x|)), which is precisely the exponential of
the vortex/anti-vortex interaction energy.

Note that these correlators are both power laws, indicating that the theory is scale
invariant along the line y = 0 (indeed it is conformally invariant). From (25.43) we see
that this is a line of critical points along which the exponents vary continuously as a
function of the dimensionless parameter K. The technology of renormalization-group
scale transformations can therefore be applied freely at any point along this line. We
can talk of scaling dimensions of operators, and the results (25.43) show that

dim[eipθ ] =
p2

4K
, dim[eipϕ ] =

p2K
4

. (25.44)
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302 25 Dualities ofXY Models andU(1) Gauge Theories

Using this, and the scaling dimensions (25.44) for p = 2, we immediately obtain the
scaling dimension dim[y] = 2− K along the y = 0 line. This can be written as a
renormalization-group flow equation under the rescaling Λ→ Λeℓ:

dy
dℓ

= (2−K)y. (25.45)

So, the critical fixed line y=0 is stable for K<2. However, this flow equation is not
the complete story, especially when K approaches 2. For |K− 2| ∼ |y| we see that the
term on the right-hand side is not linear in the small parameter y, but quadratic. To
be consistent, then, we also have to consider other terms of order y2 that might arise
in the flow equations. As we see below, there is a renormalization of K that appears at
this order.

The flow equations at order y2 are generated by decomposing the field ϕ(x) into a
background slowly varying component ϕ<(x) and a rapidly varying component ϕ>(x),
which are integrated out to order y2:

ϕ(x) = ϕ<(x)+ϕ>(x), (25.46)

where ϕ< has spatial Fourier components at momenta smaller than Λe−ℓ, while ϕ> has
components between Λe−ℓ and Λ. Inserting (25.46) into (25.42), to linear order in y,
we generate the following effective coupling for ϕ<:

y
∫

d2x⟨cos(2ϕ<(x)+2ϕ>(x))⟩0

= y
∫

d2xcos(2ϕ<(x))
〈

ei2ϕ>(x)
〉

0

= y
∫

d2xcos(2ϕ<(x))e−2⟨ϕ2
>⟩0

≈ y
(

1−K
dΛ
Λ

)∫
d2xcos(2ϕ<(x)), (25.47)

where the subscript 0 indicates an average with respect to the free y= 0 Gaussian action
of ϕ>, and dΛ=Λ(1−e−ℓ).When combinedwith a rescaling of coordinates x→ xe−ℓ to
restore the cutoff to its original value, it is clear that (25.47) leads to the flow equation
(25.45). The same procedure applies to quadratic order in y. As the algebra is a bit
cumbersome, I only schematically indicate the steps. We generate terms such as

y2
∫

d2x1d2x2 cos(2ϕ<(x1)±2ϕ<(x2))exp(∓4⟨ϕ>(x1)ϕ>(x2)⟩0)

= y2
∫

d2x1d2x2 cos(2ϕ<(x1)±2ϕ<(x2))exp(∓ f (x1− x2)dΛ) , (25.48)

where f (x1 − x2) is some regularization-dependent function that decays on the spa-
tial scale ∼Λ−1. For this last reason we may expand the other terms in (25.48) in
powers of x1− x2. The terms with the + sign then generate a cos(4ϕ) interaction; we
ignore this term as the analog of the arguments used to obtain (25.45) shows that this
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303 25.2 Vortices in theXY Model inD = 2

tFigure 25.1 RG flows of the sine-Gordon theorySsG. The thick fixed line corresponds to the low-temperature phase of theXY
model,T < TKT .

term is strongly irrelevant for K ∼ 2. The terms with the − sign generate gradients on
ϕ< and therefore lead to a renormalization of K. In this manner we obtain the flow
equation

dK
dℓ

=−δy2, (25.49)

where δ is a positive, regularization-dependent constant (it also depends upon K, but
we can ignore this by setting K = 2 in δ at this order).

A fairly complete understanding of the properties of SsG follows from an analysis
of (25.45) and (25.49). The flow trajectories are shown in Fig. 25.1. They lie along the
hyperbolae 4δy2− (2−K)2 = constant.

To facilitate the integration of the flow equations (25.45) and (25.49) we change
variables to

y1,2 =
√

δy∓ (K/2−1). (25.50)

Then (25.45) and (25.49) become

dy1

dℓ
= y1(y1 + y2),

dy2

dℓ
= −y2(y1 + y2).

It is clear from these equations that one integral is simply y1y2 =C, whereC is a constant
determined by the initial conditions; the first equation is then easily integrated to give

tan−1 y1(ℓ)√
C
− tan−1 y1(0)√

C
=
√

Cℓ. (25.51)

By the usual scaling argument, the characteristic inverse correlation length ξ−1 in the
disordered phase is of order e−ℓ

∗
, where ℓ∗ is the value of ℓ over which y1 grows from

an initial value of order

ε ∼ T −TKT

TKT
≪ 1 (25.52)
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304 25 Dualities ofXY Models andU(1) Gauge Theories

to a value of order unity. From the initial conditions, we expect the constant C to also
be of order ε , and so let us choose C = ε ; then a straightforward analysis of (25.51)
gives us

ξ−1 ∼ exp
(
− π

2
√

ε

)
. (25.53)

This singularity, and the flow analysis above, are characteristic of a “Kosterlitz–
Thouless” transition.

25.3 U(1) Gauge Theory with Monopoles inD = 3

AU(1) gauge theory with aMaxwell action is a Gaussian theory, and so its spectrum is
easily determined: we have a gapless photon with one polarization. This single photon
can also be written as a gapless scalar field in D = 3, as we see below.

However, in applications related to an emergent gauge field aµ arising from fraction-
alization of lattice degrees of freedom, we have to allow for monopole configurations
of aµ in the spacetime path integral. We can write this schematically as an action

Sa =
∫

d3x
[

K
2
(
εµνλ ∂ν aλ

)2− y
(
Ma +M†

a
)]

, (25.54)

where y is the monopole fugacity, analogous to the vortex fugacity in (25.42).
We perform duality transforms closely analogous to those carried out above by plac-

ing the continuum theory (25.54) on a cubic lattice in spacetime with an action that is
2π periodic in the lattice aµ . Then, just in the XY model, monopoles are automatically
included in the lattice integral. So we consider

Za = ∏
i,µ

∫ 2π

0
daiµ exp

(
K ∑

□
cos
(
εµνλ ∆ν aiλ

))
, (25.55)

It is useful to first write down the lattice Hamiltonian form of (25.55), which we do in
Section 25.3.1. Then, we sproceed to the duality transform of (25.55) in Section 25.3.2.

25.3.1 Quantum Hamiltonian

The mapping of (25.55) to a quantum Hamiltonian parallels that of the mapping from
the XY model in (25.2) to the quantum rotor model in (25.13). Now, we have rotor
angular variables aiα , α = x,y, on the links of a square lattice. Its canonically conjugate
integer-valued field is eiα , the electric field:

[aiα ,e jβ ] = iδi jδαβ . (25.56)

Then, the needed quantum Hamiltonian is

Ha = h∑
iα

e2
iα −K ∑

□
cos
(
εαβ ∆α aiβ

)
. (25.57)
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305 25.3 U(1) Gauge Theory with Monopoles inD = 3

It is easy to show that the divergence of the electric field commutes withHa at all sites i.
We impose the Gauss law constraint

∆α eiα = 0. (25.58)

Now we can obtain a path integral for Ha and obtain the theory (25.55) (see Prob-
lem 25.1).

25.3.2 Duality

As in the XY model, we proceed by replacing the exponent of the cosine in (25.55) by a
periodicGaussian, and then perform an exact integral over the aµ . Now the divergence-
free condition in (25.25) is replaced by a curl-free condition

ελνµ ∆λ p jµ = 0, (25.59)

where p j̄µ is an integer-valued field on the links of the dual lattice. The constraint is
solved by writing p j̄µ as the gradient of a height field h j̄ now on the sites of the dual
lattice:

p j̄µ = ∆µ h j̄. (25.60)

This is very similar to the situation for the D= 2 XY model in (25.26), and the remaining
analysis is then the same as in this model.We replace the height field h j̄ by a real-valued
field ϕ ∼ 2πh, where the convention differs by a factor of 2 from D = 2. Then we obtain
finally the dual version of (25.54): a sine-Gordon theory in D = 3

SsG =
1

8π2K ∑̄
j,µ

(
∆µ ϕ j̄

)2−2y∑̄
j

cos(ϕ j̄), (25.61)

where y is the monopole fugacity. We can also obtain, using the same arguments as for
the XY model, the operator correspondence

eiϕ ∼Ma . (25.62)

So monopoles play the same role in the D = 3 U(1) gauge theory as vortices in the
D = 2 XY model.

We note that at y = 0, (25.61) is the theory of a gapless scalar field, which is the
promised dual form of the U(1) gauge theory without monopoles.

25.3.3 Confinement

We can now perform a renormalization-group analysis of the D = 3 theory (25.61)
along the lines of Section 25.2.3 for D = 2. The main important observation here is
that the free-photon theory at y = 0 is always unstable, which means there is no range
of values of K for which there is a fixed line at y = 0 as in D = 2. The renormalization-
group flow predicts that y is unstable towards large values, implying a dense plasma of
monopoles (similar to the vortex plasma for K < 2 in D= 2). Such a phase will not have
a gapless photon excitation. Instead, it is analogous to the confining phase of the Z2
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306 25 Dualities ofXY Models andU(1) Gauge Theories

gauge theory discussed earlier, where the proliferation of visons lead to confinement
of electric charges; here, the proliferation of monopoles leads to electric confinement.

25.4 Particle–Vortex Duality of the XY model inD = 3

The initial analysis in D = 3 tracks that in D = 2; everything in Section 25.2.1 until
(25.25) also applies in D = 3. However, the solution of the divergence-free condition
on the boson-number current, piµ , now takes the form

piµ = εµνλ ∆ν h j̄λ , (25.63)

where h j̄µ is now an integer-valued field on the links of the dual lattice. Then, promot-
ing h j̄µ to a continuous field a j̄µ/(2π) (which replaces ϕ/π in (25.30)), the sine-Gordon
theory in (25.31) and (25.32) is replaced by

Z = ∏̄
j,µ

∫
da j̄µ e−S , (25.64)

with

S =
1

2K ∑̄
j,µ

(
εµνλ ∆ν a j̄λ

)2−2y∑̄
j

cos(a j̄µ)). (25.65)

Notice that the first term has the form of a Maxwell term in electrodynamics, and
is invariant under gauge transformations. We can also make the second term gauge
invariant by introducing an angular scalar field ϑ j̄ on the links of the dual lattice. Then,
we obtain the action of scalar electrodynamics on a lattice, which is the the final form
of the lattice dual theory:

Z = ∏̄
j

∫
dϑ j ∏̄

j,µ

∫
da j̄µ e−Sqed , (25.66)

with

Sqed =
1

2K ∑̄
j,µ

(
εµνλ ∆ν a j̄λ

)2−2y∑̄
j

cos(∆µ ϑ j̄−a j̄µ). (25.67)

Clearly, we have not changed anything, apart from an overall constant in the path inte-
gral; we can absorb the ϑ by a gauge transformation of a j̄µ , and then the ϑ j̄ integrals
just yield a constant prefactor.

25.4.1 Mapping of Observables

The mappings in Section 25.2.2 have direct generalizations to D = 3.
By coupling the XY model to an external vector potential Aµ , we find that the boson-

current operator is given by (replacing (25.38))

Jiµ =
i

2π
εµνλ ∆ν a j̄λ . (25.68)
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307 25.4 Particle–Vortex Duality of the XY model inD = 3

So the boson current maps to the electromagnetic flux of the dual scalar quantum
electrodynamics (QED) theory.

It is also useful to consider the two-point correlator of the boson field ψ by
performing the duality mapping on

⟨ψ(R1)ψ∗(R2)⟩=
1
Z∏

i

∫ 2π

0

dθi exp

(
K
π ∑

i
cos(θi−θi+1)+ i∑

i
miθi

)
. (25.69)

We have introduced the fixed-integer-valued field mi, which is given above by

mi = δi,R1 −δi,R2 . (25.70)

From the duality mapping, we can now see that mi corresponds to the charge of Dirac
monopole insertions in the U(1) gauge field aµ ; the total aµ flux carried by the Dirac
monopole at R1 (R2) is 2π (−2π). This follows from the generalization of (25.25) here
to

∆µ piµ = mi (25.71)

and the expression in (25.63), piµ = εµνλ ∆ν a j̄λ/(2π). So ψ(R) is the monopole oper-
ator,Ma(R), at the spacetime point R, which is analogous to the statement in D = 2
that e2iϕ was the vortex operator.

25.4.2 Universal Continuum Theory

The connection described so far may appear specialized to particular lattice XY mod-
els. However, it is possible to state the particle–vortex mapping in rather precise and
universal times as an exact correspondence between two different field theories, as was
first argued by Dasgupta and Halperin [59].

In direct boson perspective, we have already seen that the vicinity of the superfluid–
insulator transition is described by a field theory for the complex field ψ ∼ eiθ :

Zψ =
∫
Dψ e−Sψ ,

Sψ =
∫

d3x
[
|∂µ ψ|2 + r|ψ|2 +u|ψ|4

]
. (25.72)

In the dual-vortex formulation, we can deduce a field theory from (25.67) for the
complex field ϕ ∼ eiϑ :

Zϕ =
∫
DϕDaµ e−Sϕ ,

Sϕ =
∫

d3x
[
|(∂µ − iaµ)ϕ |2 + s|ϕ |2 +ν |ϕ |4 + 1

2K

(
εµνλ ∂ν aλ

)2
]
. (25.73)

Note that there is no monopole fugacity term in (25.73) analogous to that in (25.54).
We showed thatMa is the operator ψ in the XY model Zψ , and so monopole sources
are forbidden by the global U(1) symmetry ψ → ψeiθ of the XY model.

The precise claim is that the universal theory describing the phase transition in Sψ ,
as the parameter r is tuned across a symmetry-breaking transition at r = rc, is identical
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to the theory describing the phase transition in Sϕ as a function of the tuning param-
eter s. A key observation is that the duality reverses the phases in which the fields are
condensed; in particular the phases are

• XY order: In Sψ : ⟨ψ⟩ ̸= 0 and r < rc. However, in Sϕ : ⟨ϕ⟩= 0 and s > sc.

• XY disorder: In Sψ : ⟨ψ⟩= 0 and r > rc. However, in Sϕ : ⟨ϕ⟩ ̸= 0 and s < sc.

We can also extend this precise duality to include the presence of an arbitrary
spacetime-dependent external gauge field Aµ . In the particle theory, this couples
minimally to ψ , as expected:

Zψ [Aµ ] =
∫
Dψ e−Sψ ,

Sψ =
∫

d3x
[
|(∂µ − iAµ)ψ|2 + r|ψ|2 + u

2
|ψ|4

]
, (25.74)

while in the vortex theory, the coupling follows from (25.68):

Zϕ [Aµ ] =
∫
DϕDaµ e−Sϕ ,

Sϕ =
∫

d3x
[
|(∂µ − iaµ)ϕ |2 + s|ϕ |2 + ν

2
|ϕ |4 + 1

2K

(
εµνλ ∂ν aλ

)2

+
i

2π
εµνλ Aµ ∂ν aλ

]
. (25.75)

The last term is a “mutual” Chern–Simons term. The equivalence between (25.74) and
(25.75) is reflected in the equality of their partition functions as functionals of Aµ

Zψ [Aµ ] = Zϕ [Aµ ], (25.76)

after a suitable normalization, and mappings between renormalized couplings away
from the quantum critical point. This is a powerful non-perturbative connection
between two strongly interacting field theories, and holds even for large and spacetime-
dependent Aµ . It maps arbitrary multi-point correlators of the particle current to
associated correlators of the electromagnetic flux in the vortex theory. In particular,
by taking one derivative of both theories with respect to Aµ , we have the operator
identification

ψ∗∂µ ψ−ψ∂µ ψ∗ =
1

2π
εµνλ ∂ν aλ (25.77)

between the particle and the vortex theories.
Also, as established in Section 25.4.1 the field operator ψ in the theory Zψ corre-

sponds to a Dirac monopole “background insertion”Ma in the field aµ in Zϕ :

ψ ∼Ma . (25.78)

Let us now consider the nature of the excitations in the XY-ordered and-disordered
phases in turn.
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309 25.4 Particle–Vortex Duality of the XY model inD = 3

XY Order
In the particle theory, r < rc, the ψ field is condensed. So the only low-energy excitation
is the Nambu–Goldstone mode associated with the phase of ψ . We write ψ ∼ eiθ , and
the effective theory for θ is

S =
ρs

2

∫
d3x(∂µ θ −Aµ)

2, (25.79)

where ρs is the helicity modulus, and we have included the form of the coupling to the
external field Aµ by gauge invariance.

In the vortex theory, s > sc, and so ϕ is uncondensed and gapped. Let us ignore the ϕ
field to begin with. Then, the only gapless fluctuations are associated with the photon
aµ , and its low-energy effective action is

S =
∫

d3x
[

1
8π2ρs

(
εµνλ ∂ν aλ

)2
+

i
2π

εµνλ Aµ ∂ν aλ

]
. (25.80)

In 2+1 dimensions, there is only one polarization of a gapless photon, and this corre-
sponds precisely to the gapless θ scalar in the boson theory. Indeed, it is not difficult to
prove that (25.79) and (25.80) are exactly equivalent, using a Hubbard–Stratanovich
transformation, which is essentially a continuous version of the discrete angle–integer
transforms we have used in our duality analysis so far.

Turning to gapped excitations, in the vortex theory we have ϕ particles and anti-
particles. They interact via a long-range force mediated by the exchange of the gapless
photon. For static vortices, this interaction has the form of a Coulomb interaction
∼ ln(r) in 2+1 dimensions. In the boson theory, this logarithmic interaction precisely
computes the interaction between vortices in the XY ordered phase.

XY disorder
This phase is simplest in the ψ theory: there are gapped particle and anti-particle exci-
tations, quanta of ψ , which carry total Aµ charge Q = 1 and Q = −1, respectively.
These excitations only have short-range interactions (associated with u).

The situation in the vortex theory is subtle, but ultimately yields the same set of
excitations. The ϕ field is condensed. Consequently, by the Higgs mechanism, the aµ
gauge field has a non-zero “mass” and has a gap – so there is no gapless photon mode,
as expected. But where are the excitations with quantized charges Q = ±1? These are
vortices in vortices. In particular, Sϕ has solutions of its saddle-point equations that
are Abrikosov vortices, as discussed in Section 7.2. Because ϕ is condensed, any finite
energy solution of ϕ must have the phase winding of ϕ exactly match the line integral
of aµ . In particular, we can look for time-independent vortex saddle-point solutions
centered at the origin in which

ϕ(x) = f (|x|)eiϑ(x), (25.81)
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where the angle ϑ winds by 2π upon encircling the origin. The saddle-point equations
show that f (|x| → 0)∼ |x|, while

f (|x| → ∞) =

√
−s
ν

. (25.82)

Under these conditions, it is not difficult to show that finiteness of the energy requires∮
dxi∂iϑ =

∮
dxiai =

∫
d2xεi j∂ia j (25.83)

on any contour far from the center of the vortex. As the phase ϑ must be single-valued,
we have from (25.77) and (25.83) that

Q =
1

2π

∫
d2xεi j∂ia j =±1 (25.84)

in the Abrikosov vortex/anti-vortex, as required. So the important conclusion is that
the Q =±1 particle and anti-particle excitations of the Mott insulator are the vortices
and anti-vortices of the dual-vortex theory.

There is another way to run through the above vortices-in-vortices argument. Let
us apply the mapping from (25.74) to (25.75) to the vortex theory. In other words, let
us momentarily think of ϕ as the boson and aµ as an external source field. Then the
particle-to-vortex mapping from (25.74) to (25.75) applied to (25.75) yields a theory
for a new dual scalar ψ̃ , and a new gauge field bµ controlled by the action

Sψ̃ =
∫

d3x
[
|(∂µ − ibµ)ψ̃|2 + r̃|ψ̃|2 + ũ

2
|ψ̃|4 + 1

2K̃

(
εµνλ ∂ν bλ

)2

+
i

2π
εµνλ aµ ∂ν bλ

1
2K

(
εµνλ ∂ν aλ

)2
+

i
2π

εµνλ Aµ ∂ν aλ

]
. (25.85)

Now we can exactly perform the Gaussian integral over aµ ; to keep issues of gauge
invariance transparent, it is convenient to first decouple the Maxwell term using an
auxilliary field Pµ :

Sψ̃ =
∫

d3x
[
|(∂µ − ibµ)ψ̃|2 + r̃|ψ̃|2 + ũ

2
|ψ̃|4 + 1

2K̃

(
εµνλ ∂ν bλ

)2

+
i

2π
εµνλ aµ ∂ν bλ

K
2

P2
µ − iεµνλ Pµ ∂ν aλ +

i
2π

εµνλ Aµ ∂ν aλ

]
. (25.86)

We can now perform the integral over aµ , and obtain a delta-function constraint that
sets

Pµ = bµ +Aµ −∂µ α, (25.87)

where α is an arbitrary scalar corresponding to a gauge choice; so we have

Sψ̃ =

∫
d3x
[
|(∂µ − ibµ)ψ̃|2 + r̃|ψ̃|2 + ũ

2
|ψ̃|4 + 1

2K̃

(
εµνλ ∂ν bλ

)2

+
K
2
(bµ +Aµ −∂µ α)2

]
. (25.88)
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The last term in (25.88) implies that the bµ gauge field has been “Higgsed” to the value
bµ =−Aµ +∂µ α . Setting bµ to this value, we observe that α can be gauged away, and
then Sψ̃ reduces to the original particle theory in (25.74). So applying the particle-to-
vortex duality to the vortex theory yields back the particle theory.

Problems

25.1 1 Write down the phase-space path integral for Ha in (25.57), treating the aiα as
coordinates, and the eiα as momenta. Impose the Gauss law constraint (25.58)
by a Lagrange multiplier, which is the time component of the U(1) gauge field
aiτ . Then, integrate out the eiα , discretize the resulting path integral in time, and
obtain the theory (25.55).

2 Modify the Gauss law constraint to (26.3), and obtain the partition function in
(26.4).
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26 Applications of Dualities to Spin Liquids

The gauge theory of the gappedU(1) spin liquid is dualized to a heightmodel, where
the monopole Berry phases lead to offsets in the heights. The height model is always
in a flat phase, and this describes confining valence-bond solid states for half-integer
spin antiferromagnets. The confinement transitions of even and odd Z2 spin liquids
are described by mappings generalizing the Dasgupta–Halperin duality.

In our bosonic parton treatment of spin liquids on the square lattice in Chapter 15,
we found in Section 15.3.1 a mean-field saddle point with gapped bosonic spinons and
an emergent U(1) gauge field. The U(1) gauge field had a photon excitation, and we
deferred consideration of its consequences. We now return to this model, and apply the
lessons of duality from Chapter 25.

We also re-examine the Z2 spin liquids in Chapter 15 and 16 by embedding them in
a U(1) gauge theory (we did the reverse in Chapters 14 and 15), which will allow us
to apply the dualities of Chapter 25. This enables us to obtain a deeper understanding
of Z2 spin liquids and their phase transitions, while reproducing some of the results of
Chapter 16 by different methods. We also connect to the Chern–Simons formulation
of Z2 spin liquids in Section 17.2.1.

26.1 U(1) Spin Liquids

Let us consider the theory of the U(1) gauge fluctuations about the square-lattice sad-
dle point of Section 15.3.1 after the gapped spinons have been integrated out.We expect
that monopole insertions are allowed in the path integral, and so, by the arguments in
the previous chapter, we conclude that the U(1) gauge field should be confining. So we
appear to have obtained a gapped, trivial state of the antiferromagnet with no broken
symmetries. This finding runs afoul with the Hastings–Oshikawa theorem [105, 194]
that such states are not possible, at least for spin S = 1/2. So it is too simplistic to use
the naive action for the U(1) gauge theory, and it must be modified in some way.

The required modification becomes apparent when we reason in a manner similar
to the Z2 gauge theory, where we had run into a similar problem in Section 16.5.2. We
found there that the solution was to introduce the “odd” gauge theory, with the Gauss
law contraint Gi = −1 on each site. This −1 arises from the fact that the spinons in
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313 26.1 U(1) Spin Liquids

the ground state also carry a unit Z2 gauge charge. The same is true for the U(1) spin
liquid, where we had found below (15.28) that the bosonic spinons carry charges +1
and −1 on the two sublattices, and there are 2S spinons in the ground state on each
site, as in (15.4).

So the required U(1) gauge theory has the same Hamiltonian we met in Sec-
tion 25.3.1

Ha = h∑
iα

e2
iα −K ∑

□
cos
(
εαβ ∆α aiβ

)
, (26.1)

with the commutation relations

[aiα ,e jβ ] = iδi jδαβ . (26.2)

The gauge field takes values on a unit circle aiα ≡ aiα +2π, and so the eigenvalues of the
electric field eiα are the integers. The modified Gauss law from the background spinon
charges is

∆α eiα = 2Sηi, (26.3)

where ηi = 1 (ηi =−1) on sublattice A (B).
The path-integral formulation of the partition function of Ha yields the following

on a cubic lattice in spacetime (see Problem 25.1)

Z̃a = ∏
jµ

∫ 2π

0

da jµ

2π
exp

(
K ∑

□
cos
(
εµνλ ∆ν a jλ

)
− i2S∑

j
η ja jτ

)
. (26.4)

The new term is the Berry phase proportional to 2S. An explicit derivation [229, 239]
of the from (26.4), starting from the individual spin Berry phase in Section 18.2, is
presented in Appendix C. We now apply the duality transformations of the previ-
ous chapter to (26.4), and obtain a theory for the monopolesMa. We find that the
monopoles also acquire a Berry phase, and this leads to non-trivial transformation
of the monopoles under the symmetries of the lattice. And consequently, in the con-
fining phase where the monopoles proliferate, we show that there has to be a broken
lattice symmetry for half-integer S, leading to consistency with theHastings–Oshikawa
theorem.

26.1.1 Duality Mapping

We now proceed with a duality mapping that parallels that in Section 25.3.2. We first
rewrite the partition function in 2+ 1 spacetime dimensions by replacing the cosine
interaction in (26.4) by a Villain sum [121, 289] over periodic Gaussians:

Za = ∑
{q j̄µ}

∏
jµ

∫ 2π

0

da jµ

2π
exp

(
−K

2 ∑
□

(
εµνλ ∆ν a jλ −2πq j̄µ

)2

− i2S∑
j

η ja jτ

)
, (26.5)
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314 26 Applications of Dualities to Spin Liquids

tFigure 26.1 Specification of the non-zero values of the fixed field b0
j̄µ . The circles are the sites of the direct lattice, j, while the

crosses are the sites of the dual lattice, j̄; the latter are also offset by half a lattice spacing in the direction out of the
paper (the µ = τ direction). The b0

j̄µ are all zero for µ = τ,x, while the only non-zero values of b0
j̄y are shown

above. Notice that the b0 flux obeys (26.7).

where the q j̄µ are integers on the links of the dual cubic lattice, which pierce the pla-
quettes of the direct lattice. Throughout this section we use the index j̄ to refer to sites
of this dual lattice, while j refers to the direct lattice on sites on which the spins are
located.

We will now perform a series of exact manipulations on (26.5), which lead to a dual
interfacemodel [86, 217, 218]. This dual model has only positive weights – this fact, of
course, makes it much more amenable to a standard statistical analysis. This first step
in the duality transformation is to rewrite (26.5) by the Poisson summation formula:

∑
{q j̄µ}

exp

(
−K

2 ∑
□

(
εµνλ ∆ν a jλ −2πq j̄µ

)2

)

= ∑
{b j̄µ}

exp

(
− 1

2K ∑̄
j

b2
j̄µ − i∑

□
εµνλ b j̄µ ∆ν a jλ

)
, (26.6)

where b j̄µ (like q j̄µ ) is an integer-valued vector field on the links of the dual lattice (here,
and below, we drop overall normalization factors in front of the partition function).
Next, we write the Berry phase in a form more amenable to duality transformations.
We choose a “background” b j̄µ = b0

j̄µ flux that satisfies

εµνλ ∆ν b0
j̄λ = η jδµτ , (26.7)

where j is the direct lattice site in the center of the plaquette defined by the curl on the
left-hand side. Any integer-valued solution of (26.7) is an acceptable choice for b0

j̄µ ,
and a convenient choice is shown in Fig 26.1. Using (26.7) to rewrite the Berry phase
in (26.5), applying (26.6), and shifting b j̄µ by the integer 2Sb0

j̄µ , we obtain a new exact
representation of Za in (26.5):

Za = ∑
{b j̄µ}

∏
jµ

∫ 2π

0

da jµ

2π
exp

(
− 1

2K ∑̄
j,µ
(b j̄µ −2Sb0

j̄µ)
2

−i∑
□

εµνλ b j̄µ ∆ν a jλ

)
. (26.8)

https://doi.org/10.1017/9781009212717.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.027


315 26.1 U(1) Spin Liquids

0 1/4

3/4 1/2

0

0 01/4

1/4

1/4

1/23/4

(a)

+1/8 –1/8

+1/8

+1/8

+1/8

+1/8

+1/8–1/8 –1/8

–1/8

–1/8

–1/8

(b)

(c)

W

WW

WX

X X

Y Y

Y Y

Z

Z

Z

Z

X

tFigure 26.2 Specification of the non-zero values of the fixed fields (a)X j̄ , (b)Y jµ , and (c) εµνλ ∆νY jλ introduced in (26.10).
The notational conventions are as in Fig. 26.1. Only the µ = τ components ofY jµ are non-zero, and these are
shown in (b). Only the spatial components of εµνλ ∆νY jλ are non-zero, and these are oriented as in (c) with
magnitude 1/4. The four dual sublattices,W ,X ,Y ,Z, are also indicated in (c). Note thatXW = 0,XX = 1/4,
XY = 1/2, andXZ = 3/4.

The integral over the a jµ can be performed independently on each link, and its only
consequence is the imposition of the constraint εµνλ ∆ν b j̄λ = 0.We solve this constraint
by writing b j̄µ as the gradient of a integer-valued “height” h j̄ on the sites of the dual
lattice, and so obtain

Zh = ∑
{h j̄}

exp

(
− 1

2K ∑̄
j,µ
(∆µ h j̄−2Sb0

j̄µ)
2

)
. (26.9)

I emphasize that, apart from an overall normalization, we have Zh = Za exactly. This
is the promised 2+1-dimensional interface, or height, model in almost its final form.
The same height model was obtained in Section 25.3.2, but without the b0

j̄µ term, that
is, with S = 0.

The physical properties of (26.9) become clearer by converting the “frustration” b0
j̄µ

in (26.9) into offsets for the allowed height values. This is done by decomposing b0
j̄µ

into curl and divergence free parts and writing it in terms of new fixed fields X j̄ and
Y jµ , as follows:

b0
j̄µ = ∆µX j̄ + εµνλ ∆νY jλ . (26.10)

The values of these new fields are shown in Fig 26.2. Inserting (26.10) into (26.9), we
can now write the height model as [218]

Zh = ∑
{h j̄}

exp

(
− 1

2K ∑̄
j

(
∆µ h j̄−2S∆µX j̄

)2

)
. (26.11)
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316 26 Applications of Dualities to Spin Liquids

Finally, as in Section 25.3.2, we replace the height field h j̄ by a real-valued field ϕ ∼
2π(h−2SX ) to obtain our modified sine-Gordon theory

SsG =
1

8π2K ∑̄
j,µ

(
∆µ ϕ j̄

)2−2y∑̄
j

cos
(
ϕ j̄−4πSX j̄

)
, (26.12)

where y is the monopole fugacity. From the operator correspondence

Ma ∼ eiϕ , (26.13)

we conclude that the monopole

Ma j̄ has Berry phase e−i4πSX j̄ . (26.14)

This is the main result of this subsection. For S = 1/2, we see from Fig. 26.2a that
monopoles have Berry phases 1, i, −1, −i on the four dual sublattices of the square
lattice. From the symmetry transformations of this Berry phase for S = 1/2 (shown
later in (26.39)), we can see that it has the same symmetries as the valence-bond solid
(VBS) order parameter OV BS that we met in Section 16.5.2 on odd-Z2 gauge theories.
This implies the operator correspondence

Ma ∼OV BS , for half-integer S (26.15)

and that the monopole plasma phase has VBS order for such S.

26.1.2 Phases of the Height Model

Rather than working with the sine-Gordon theory (26.12), it is instructive to work out
the phases of the theory by returning to the height model (26.11), and making contact
with the height-model literature.

We define a new height variable

H j̄ ≡ h j̄−2SX j̄ (26.16)

and then the partition function is simply

Zh = ∑
{h j̄}

exp

(
− 1

2K ∑̄
j

(
∆µ H j̄

)2

)
. (26.17)

The Y jµ have dropped out, while the X j̄ act only as fractional offsets (for S not an
even integer) to the integer heights. From (26.16) we see that for half-odd-integer S
the height is restricted to be an integer on one of the four sublattices, an integer plus
1/4 on the second, an integer plus 1/2 on the third, and an integer plus 3/4 on the
fourth; the fractional parts of these heights are as shown in Fig 26.2a; the steps between
neighboring heights are always an integer plus 1/4, or an integer plus 3/4. For S an odd
integer, the heights are integers on one square sublattice, and half-odd integers on the
second sublattice. Finally, for even-integer S, the offset has no effect and the height
is an integer on all sites. We discuss these classes of S values in turn in the following
subsections.
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317 26.1 U(1) Spin Liquids

S-Even Integer
In this case, the offsets 2SX j̄ are all integers, and (26.11) is just an ordinary three-
dimensional height model that we already discussed in Section 25.3.3, which has
been much studied in the literature [82, 85, 121]. Unlike the two-dimensional case,
three-dimensional height models generically have no roughening transition, and the
interface is always smooth [82, 85]. With all heights integers, the smooth phase breaks
no lattice symmetries. So square-lattice antiferromagnets with an S-even integer can
have a paramagnetic ground state with a spin gap and no broken symmetries. The
smooth interface corresponds to confinement in the dual compact U(1) gauge the-
ory [207]: consequently, the za of Z are confined, and the elementary excitations are
S = 1 quasiparticles, similar to the φα of Sφ . This is in accord with the exact ground
state for an S = 2 antiferromagnet on the square lattice found by Affleck et al., the
Affleck–Kennedy–Lieb–Tasaki (AKLT) state [3].

S-Half-Odd Integer
Now, the heights of the interface model can take four possible values, which are inte-
gers, plus the offsets on the four square sublattices shown in Fig 26.2a. As for the
S-even integer case above, the interface is always smooth, which means that any state
of (26.11) has a fixed average interface height

H ≡ 1
Nd

Nd

∑̄
j=1

⟨H j̄⟩, (26.18)

where the sum is over a large set of Nd dual lattice points that respect the square-lattice
symmetry. Any well-defined value for H breaks the uniform shift symmetry of the
height model under which H j̄ → H j̄ ± 1. In the present context, only the value of H
modulo integers is physically significant, and so the breaking of the shift symmetry
is not important by itself. However, after accounting for the height offsets, we now
prove that any smooth interface must also break a lattice symmetry with the develop-
ment of VBS order; this means that Za in (26.5) describes spin-gap ground states of the
lattice antiferromagnet, which necessarily have spontaneous VBS order.

The proof of this central result becomes clear upon a careful study of the manner
in which the height model in (26.11) and (26.16) implements the 90◦-rotation symme-
try about a direct square-lattice point. Consider such a rotation under which the dual
sublattice points in Fig 26.2c interchange as

W → X , X → Y, Y → Z, Z→W. (26.19)

The terms in the action in (26.16) will undergo a 90◦ rotation under this transformation
provided the integer heights h j̄ transform as

hW → hX , hX → hY , hY → hZ , hZ → hW −1. (26.20)

Notice the all-important−1 in the last term – this compensates for the “branch-cut” in
the values of the offsetsX j̄ as one goes around a plaquette in Fig 26.2c. From (26.20), it
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0 1/4 0 1/4

–1/4 –1/2 –1/4

0 1/4

1/2

0 1/4tFigure 26.3 Mapping between the quantum dimer model and the interface modelZh in (26.11). Each dimer on the direct lattice
is associated with a step in height of±3/4 on the link of the dual lattice that crosses it. All other height steps are
±1/4. Each dimer represents a singlet valence bond between the sites. Such a mapping of the quantum dimer
model to the interface model only works on bipartite lattice, in contrast to the mapping to the odd-Z2 gauge theory
in Fig. 16.8, which applies on any lattice.

is evident that the average height H→H−1/4 under the 90◦-rotation symmetry under
consideration here. Hence, a smooth interface with a well-defined value of H always
breaks this symmetry.

We now make this somewhat abstract discussion more physical by presenting a sim-
ple interpretation of the interfacemodel in the language of the S= 1/2 antiferromagnet
[327]. From Fig 26.2a it is clear that nearest-neighbor heights can differ either by 1/4 or
3/4 (modulo integers). Tominimize the action in (26.11), we should choose the interface
with the largest possible number of steps of±1/4. However, the interface is frustrated,
and it is not possible to make all steps±1/4 and at least a quarter of the steps must be
±3/4. Indeed, there is a precise one-to-one mapping between interfaces with the min-
imal number of ±3/4 steps (we regard interfaces differing by a uniform integer shift
in all heights as equivalent) and the dimer coverings of the square lattice; the proof
of this claim is illustrated in Fig 26.3. We identify each dimer with a singlet valence
bond between the spins, and so each interface corresponds to a quantum state with
each spin locked in a singlet valence bond with a particular nearest neighbor. Fluctu-
ations of the interface in imaginary time between such configurations correspond to
quantum-tunneling events between such dimer states, and an effective Hamiltonian for
this is provided by the quantum dimer model [222].

The nature of the possible smooth phases of the interface model are easy to deter-
mine from the above picture and by standard techniques from statistical theory [218,
327]. As a simple example, the abovemapping between interface heights and dimer cov-
erings allows one to deduce that interfaces with average height H = 1/8,3/8,5/8,7/8
(modulo integers) correspond to the four-fold degenerate bond-ordered states in
Fig 26.4a. To see this, select the interface with h j̄ = 0 for all j̄: this interface has the same
symmetry as Fig 26.4a, and a simple computation summing over sites from (26.16)
shows that this state has an average height H = −(0 + 1/4 + 1/2 + 3/4)/4 = −3/8
for S = 1/2. The remaining three values of H correspond to the three other states
obtained by successive 90◦ rotations of Fig 26.4a. In a similar manner, interfaces
with H = 0,1/4,1/2,3/4 (modulo integers) correspond to the four-fold degenerate
plaquette bond-ordered states in Fig 26.4b. A simple example of such an interface
is the “disordered-flat” state [223] in which h j̄ = 0 on all sites j̄, except for the W
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319 26.2 GappedZ2 Spin Liquids

(a) (b)tFigure 26.4 Sketch of the two simplest possible states with bond order for S = 1/2 on the square lattice: (a) the columnar and
(b) plaquette VBS states. Here, the distinct line styles encode the different values of ⟨⃗Si · S⃗ j⟩ on the links.

sublattices, which have X j̄ = 0; for these sites we have h j̄ fluctuate randomly between
h j̄ = 0 and h j̄ = 1, and independently for different j̄. The average height of such an
interface is H = −((0+ 1)/2+ 1/4+ 1/2+ 3/4)/4 = −1/2 for S = 1/2, and the map-
ping to dimer coverings in Fig 26.3 shows easily that such an interface corresponds to
the state in Fig 26.4b. All values of H other than those quoted above are associated
with eight-fold degenerate bond-ordered states with a superposition of the orders in
Fig 26.4a and b.

All these phases are expected to support non-zero spin quasiparticle excitations that
carry spin S = 1, but not S = 1/2. Despite the local corrugation in the interface con-
figuration introduced by the offsets, the interface remains smooth on the average, and
this continues to correspond to confinement in the dual compact U(1) gauge theory
[207]. Consequently the spinons are confined in pairs.

S-Odd Integer
This case is similar to that of the S-half-odd integer, and we will not consider it in
detail. The Berry phases again induce bond order in the spin-gap state, but this order
only leads to a two-fold degeneracy with nematic order. This has possible relevance to
the pnictide superconductors [295].

26.2 GappedZ2 Spin Liquids

I have already presented a fairly complete theory of Z2 spin liquids in Chapter 15, and
of their confinement transitions, in Chapter 16.

The deconfined topological phase, with an emergent Z2 gauge field, and gapped e,
ε , m, anyons is stable. When we include lattice symmetries, Z2 spin liquids come in two
varieties, odd and even, depending upon the spinon occupations of the ground state:
they have a Gauss law constraint Gi =−1 and Gi = 1, respectively.

We also discussed the confinement transitions of the Z2 spin liquid, driven by the
condensation of visons (the m particle). For even-Z2 spin liquids, the confinement tran-
sition is in the universality class of 2+1 Ising model (more precisely, it is the Ising*
theory), and the confining phase is trivial with no broken symmetries. On the other
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320 26 Applications of Dualities to Spin Liquids

hand, for odd-Z2 spin liquids, the confining phase has VBS order, and the critical
theory is in the XY* class.

Here, we will re-examine these properties of the Z2 spin liquid from the perspective
of U(1) gauge theories and their duality transforms discussed in Section 26.1. This
yields (i) an explicit derivation of the Chern–Simons gauge theory formulation of the
Z2 spin liquid that we wrote down in (17.2), and (ii) a new perspective on the critical
theory of the confinement transition of the odd-Z2 spin as a paradigm of deconfined
criticality that we discussed at the end of Section 16.5.2.

We already saw in our discussion of the bosonic parton theory of spin systems in
Chapter 15 that theZ2 gauge theory arises by the condensation of a charge-2Higgs field
in a U(1) gauge theory; we also saw a simpler version of this connection in Chapter 14
on a classical XY model. So a natural candidate for our discussion of Z2 spin liquids is
to extend the U(1) gauge theory above by introducing a lattice Higgs field with U(1)
charge 2:

Hi = eiΘi (26.21)

and extending the Hamiltonian theory in (26.1) and (26.2) to

HH =−K ∑
□

cos
(
εαβ ∆α aiβ

)
+h∑

i,α
e2

iα

−L∑
iα

cos(∆α Θi−2aiα)+ h̃∑
i

N̂2
i . (26.22)

Here, N̂i is the conjugate integer-valued number operator to Θi:

[Θi, N̂ j] = iδi j . (26.23)

Note that (26.22) is invariant under the gauge transformation

aiα → aiα +∆α fi , Θi→Θi +2 fi . (26.24)

The extension of the Gauss law constraint in (26.3) is

∆α eiα −2N̂i = 2Sηi. (26.25)

The above theory is simply the Hamiltonian version of the theory (14.21) of the clas-
sical XY model, in the limit of small J2 where we ignore the gapped ϕ excitations, and
after we set the right-hand side of the Gauss law (26.25) to zero.

We describe the properties of the theory in (26.22) in the remainder of this section.
First, in Section 26.2.1 we will show that, in the limit of large L, the U(1) gauge theory
in (26.22) reduces to the previously considered Z2 gauge theories in Chapter 16, with
the mapping of the Gauss law constraint

Gi = exp(i2πSηi) . (26.26)

Then, we apply the duality transforms to (26.22) for the even and odd cases in
Sections 26.2.2 and 26.2.3, respectively.
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321 26.2 GappedZ2 Spin Liquids

26.2.1 Mapping to Z2 Gauge Theory

We now present an argument that is the close analog of that in Section 14.2.3. Let us
choose the gauge Θi = 0, and consider the L term in the Hamiltonian on a single link;
dropping site and link indices, we have the Hamiltonian

H1 = he2−Lcos(2a) , [a,e] = i. (26.27)

This is the Hamiltonian for a rotor with angular coordinate a, in the presence of a
potential −Lcos(2a). At large L, the rotor will be localized near a = 0,π. So there be a
doublet of low-energy levels with a small spacing 2g, corresponding to even and odd
combinations of the localized states near a = 0,π. As this doublet is well separated
from the higher excited states for large L, we project the Hamiltonian on this dou-
blet. We introduce Pauli operators X , Z, which act on this doublet, and the low-energy
Hamiltonian is then

H1 ≈−gX . (26.28)

The ground state ofH1 consists of linear combinations of states |e⟩ with e even, while
the first excited state has e odd. So, in the projected space, we have the correspondence

X ↔ exp(iπη e) , (26.29)

where η =±1. Similarly, for the Pauli Z operator we have

Z↔ exp(iπη̃ a) . (26.30)

Now we apply these mappings to the full lattice theory in (26.22). We choose η = ηi

and η̃ = ηi on the x-directed links, and η̃ = −ηi on the y-directed links. Then HH

maps directly to the Z2 gauge theory of Chapter 16, with the K term corresponding
to products of the Z operators on plaquettes, and (26.28) to the transverse field term.
Moreover, the constraint (26.25) maps onto the value of Gi in (26.26).

The discrete-time path-integral version of this theory is (14.36) without the matter
field φ at J2 = 0.

26.2.2 Even-Z2 Gauge Theory

Let us analyze the properties of the U(1) gauge theory (26.22) in a continuum theory
for the case Gi = 1.

We impose the constraint in (26.25) by a Lagrange multiplier aiτ , which serves as
a time component of the gauge field. The continuum limit is expressed in terms of a
U(1) gauge field aµ (µ = x,y,τ) and the Higgs field H, and takes the form of a standard
relativistic theory of the Higgs field with the Lagrangian density

LU(1) = LH +Lmonopole,

LH = |(∂µ −2iaµ)H|2 +g|H|2 +u|H|4 +K(εµνλ ∂ν aλ )
2,

Lmonopole =−y
(
Ma +M†

a
)
. (26.31)
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tFigure 26.5 Phase diagram of theU(1) gauge theory in (26.31), and the correspondence to the phases of the even-Z2 gauge
theory (compare Fig. 16.7). This is also the transition between phases A+B and D in Figs. 14.2 and 14.3 for the classical
XY model. The vison fieldΦ represents a 2π vortex inH , corresponding to p =±1 in Fig. 26.6. The above is also
the phase diagram of the theory for the visons in (26.34), as a function of g̃; this vison theory shows that the critical
point is described by the Ising∗ Wilson–Fisher conformal field theory.

This is precisely the theory (14.24) of the classical XY model, in the limit of large s2

when ϕ can be ignored. The gauge invariance in (26.24) has now been lifted to the
continuum

aµ → aµ +∂µ f , H→ He2i f . (26.32)

We allow for Dirac monopole instantons in which the U(1) gauge flux changes by 2π.
These are represented schematically by the source term Lmonopole, and such instantons
are present because of the periodicity of the gauge field on the lattice.

The two phases ofLU(1) correspond to the two phases of the even-Z2 gauge theory as
sketched in Fig. 26.5; compare to Fig. 16.7 obtained directly for the Z2 gauge theory,
and to the transition between phases A+B and D in Figs. 14.2 and 14.3 for the classical
XY model. For g > gc, we have no Higgs condensate, ⟨H⟩= 0, and then LU(1) reduces
to a pure U(1) gauge theory with monopole sources in the action; we know from Sec-
tion 25.3 that this theory is confining, and this corresponds to the confining phase of
the Z2 gauge theory. For g < gc, we realize the Higgs phase with ⟨H⟩= H0 ̸= 0, which
corresponds to the deconfined phase of the Z2 gauge theory. Because of the presence
of a gauge field, such a condensate does not correspond to a broken symmetry. But the
Higgs phase is topological because there is a stable point-like topological defect, real-
izing the vison of the deconfined phase of the Z2 gauge theory. This defect is similar to
the finite-energy Abrikosov vortex of the Landau–Ginzburg theory, and is sketched in
Fig. 26.6; the phase of H winds by 2π p around the core of the defect (p is an integer),
and this traps aU(1) gauge flux of π p. However, because of the presence of monopoles,
the flux is conserved onlymodulo 2π, and so there is only a single±π flux defect, which
preserves time-reversal symmetry. This π flux is clearly the analog of the Z2 flux of −1
for the vison.

Let us now apply the Dasgupta–Halperin duality to (26.31). While applying this
duality, we view aµ temporarily as a background gauge field, and obtain the dual the-
ory of the scalar H. From the results in the previous chapter, we obtain a dual theory in
which H is replaced by a dual scalar Φ and a dual gauge field bµ . Remarkably, demon-
strating the power of this approach, we can also represent Lmonopole in terms of Φ. It is

https://doi.org/10.1017/9781009212717.027 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.027


323 26.2 GappedZ2 Spin Liquids

tFigure 26.6 Structure of an Abrikosov vortex saddle point of (26.31). The Higgs field magnitude |⟨H⟩| → 0 as r→ 0. Far from
the vortex core, |⟨H⟩| → |H0| ̸= 0, and the phase ofH0 winds by 2π p, where p is an integer. There is a gauge
flux trapped in the vortex core; far from the core, the gauge field screens the Higgs field gradients, and so the energy of
the vortex is finite. The trapped flux is defined only modulo 2π because of the monopole source term, and so
ultimately all odd values of p, map to the same vortex (the vison). The dashed line indicates the Berry phase picked up
by a particleψ with unit aµ U(1) gauge charge; in theZ2 gauge theory,ψ can be either the e or ε anyon.

clear that the field Φ represents the π flux vortex (vison) illustrated in Fig. 26.6, because
it is the vortex around which H winds by 2π. A monopole insertion carries flux 2π, and
so turns out to correspond here to the operator Φ2:

Ma ∼Φ2 . (26.33)

In this manner, we obtain the following theory, which is the particle-vortex dual of
(26.31), including the monopole insertion [119, 230]

Ld,U(1) = LΦ +Lcs+Lmonopole,

LΦ = |(∂µ − ibµ)Φ|2 + g̃|Φ|2 + ũ|Φ|4,

Lcs =
i
π

εµνλ aµ ∂ν bλ ,

Lmonopole =−y
(
Φ2 +Φ∗2

)
. (26.34)

Note here that we have retained the aµ gauge field explicitly because the gapped spinon
excitations (the e and ε particles) carry a unit aµ charge. It is also possible [230] to
explicitly derive (26.34) by carrying out the duality transformation on the lattice using
a Villain form of the original lattice gauge theory in (26.22).

Now we can obtain one of our promised results. In the topological phase, g < gc, the
field Φ is gapped. So we can drop the Φ fluctuations, and this phase described by the
Chern–Simons theory

Lcs =
i

4π
εµνλ aI

µ KIJ∂ν aJ
λ , K =

(
0 2
2 0

)
, (26.35)

with a1
µ = aµ and a2

µ = bµ . This is precisely the K matrix asserted in (17.2).
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324 26 Applications of Dualities to Spin Liquids

As long as the spinons (the e and ε particles) are gapped, we can integrate out the aµ
gauge field, and obtain a field theory for the transition in Fig. 26.5. The integral over
aµ fixes the bµ gauge field to fluxes of 0 and π, that is, bµ is a Z2 gauge field, and Φ
carries a bµ Z2 gauge charge. Reassuringly, the terms in Lmonopole are invariant under
Z2 gauge transformations. Near the critical point, we can neglect the gapped bµ Z2

gauge field, and the critical theory is simply LΦ +Lmonopole at bµ = 0.
The important feature here is that the monopole term is strongly relevant at the

critical point. For y > 0 (say), Lmonopole prefers the real part of Φ over the imaginary
part of Φ: so effectively, at low energies, Ld,U(1) is actually the theory of a real (and not
complex) scalar. The phase where Φ is condensed, corresponding to the proliferation
of Z2 flux in the Z2 gauge theory, is the confining phase, as illustrated in Fig. 26.5.
And the phase where Φ is gapped is the deconfined phase; this is a gapped real particle
carrying Z2 flux, the vison.

A result that can be obtained from (26.34) is the universality class of the
confinement–deconfinement transition. We integrate out the always gapped imaginary
part of Φ, and then Ld,U(1) becomes the Wilson–Fisher theory of the Ising transition
in 2+1 dimensions, as already noted in Section 16.5 by other methods. So the phase
transition is in the Ising universality class. Strictly speaking, as we already noted in
Section 16.5, the transition is actually is in the Ising∗ universality class [252, 308]. This
differs from the Ising universality by dropping operators that are odd under Φ→−Φ,
because the topological order prohibits the creation of single visons.

26.2.3 Odd Z2 gauge theory

We now extend the analysis of Section 26.2.2 to the odd-Z2 gauge theory, in which Gi

defined in (26.26) obeys

Gi =−1 (26.36)

on all sites i.
In the path-integral formulation, the extension of the theory in (26.31) to the odd

case is [119, 230]

So,U(1) =
∫

d3x
(
LH +Lmonopole

)
+SB,

LH = |(∂µ −2iaµ)H|2 +g|H|2 +u|H|4 +K(εµνλ ∂ν aλ )
2,

Lmonopole =−y
(
Ma +M†

a
)
,

SB = i∑
i

ηi

∫
dτAiτ . (26.37)

The key new feature here (compared to the even case in (26.31)) is the spatially oscillat-
ing Berry phase term in SB (see Appendix C), which requires us to take the continuum
limit with great care. As in (26.31), we have the theory (14.24) of the XY model, in the
limit of large s2 when ϕ can be ignored; the Berry phase SB is the U(1) parent of the
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325 26.2 GappedZ2 Spin Liquids

Z2 Berry phase in (14.35), and the latter follows from the former by setting Aiτ = 0,π,
and using (14.31).

A full computation of the dual from of (26.22) was presented in Refs. [119, 230].
That computation is not presented here, but the dual theory is deduced by using some
general arguments similar to those in Section 26.2.2. First, as before, we perform the
Dasgupta–Halperin transformation to replace H by a dual vison field Φ and a U(1)
gauge field bµ .We then ask about the proper continuum action for Φ. This was actually
already worked out in Section 16.5.2, where we showed that Φ acquired non-trivial
transformations under lattice symmetries. In particular, we found that

Tx : Φ→ eiπ/4Φ∗ ; Ty : Φ→ e−iπ/4Φ∗ ; Rπ/2 : Φ→Φ∗ , (26.38)

where Tx,y are the translations by a unit lattice spacing, and Rπ/2 is the symmetry
of rotations about a dual lattice point. The transformations in (26.38), and their
compositions, realize a projective symmetry group, which is the 16-element non-
abelian dihedral group D8 [114]. As in Section 26.2.2, it is still the case that the
monopole operatorMa ∼Φ2 as in (26.33). So, from (26.38), we deduce the monopole
transformations

Tx :Ma→ iM∗
a ; Ty :Ma→−iM∗

a ; Rπ/2 :Ma→M∗
a . (26.39)

It is reassuring to note that these are also the transformations implied by the monopole
Berry phases and the identification in (26.14) for the U(1) gauge theory [99, 218, 256,
261]. Note that under the vison D8 operations in (26.38), Tx and Ty anti-commute:

TxTy =−TyTx , acting on Φ (26.40)

(as we also saw in (16.25) in our earlier discussion of the odd-Z2 gauge theory), while
they commute under the monopole operations in (26.39).

TxTy = TyTx , acting onMa. (26.41)

Using these symmetries, we can now obtain the generalization of the dual theory
in (26.34) to the odd case. Only allowing terms that are invariant under the above
symmetries, we obtain

Lod,U(1) = LΦ +Lcs +Lmonopole,

LΦ = |(∂µ − ibµ)Φ|2 + g̃|Φ|2 + ũ|Φ|4,

Lcs =
i
π

εµνλ aµ ∂ν bλ ,

Lmonopole =−y4
(
Φ8 +Φ∗8

)
. (26.42)

We recall here that the gapped spinon excitations (the e and ε particles) carry a unit aµ
charge. The important new feature of (26.42) is thatLmonopole now involves eight powers
of the vison field operator (compared to two powers for the even case in (26.34)). This
implies that only quadrupled monopoles are permitted in the action, with fugacity y4,
in contrast to single monopoles in (26.34). All smaller monopoles cancel out of the
action due to quantum interference arising from Berry phases from SB in (26.37).
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326 26 Applications of Dualities to Spin Liquids

tFigure 26.7 Phase diagram of theU(1) gauge theory in (26.37), which describes the physics of the odd-Z2 gauge theory.
Compare to Fig. 26.5 for the even-Z2 gauge theory, and Fig. 16.11 obtained directly for the odd-Z2 gauge theory.
The transition above is also that between the fractionalized phase and bond order in Fig. 14.4 for theXY model with
the Berry phase in (14.35). The vison fieldΦ represents a 2π vortex inH . The theory for the visons is (26.42), with
the tuning parameter g̃. Monopoles are suppressed at the deconfined critical point at g = gc, and consequently
there is an emergent criticalU(1) photon described by the deconfined critical theoryLH in (26.37); in the dual
representation of the doubly degenerate visons, the critical theory is theXY ∗ Wilson–Fisher CFT, described byLΦ in
(26.42). In contrast, monopoles are not suppressed at g = gc in the even-Z2 gauge theory phase diagram of
Fig. 26.5. This phase diagram is the earliest example of deconfined criticality, and a numerical study appeared in
Ref. [119].

The phase diagram of Lod,U(1) is modified from Fig. 26.5 to Fig. 26.7 (the latter
should be compared to Fig. 16.11 of the odd-Z2 gauge theory). The topological phase
has a gapped Φ excitation. A crucial difference from the even-Z2 gauge theory is that
this excitation is doubly degenerate: Lmonopole is sufficiently high order that the degen-
eracy between the real and imaginary parts of Φ is no longer broken (unlike in (26.34)).
So the vison is a complex relativistic particle, unlike the real particle in Section 26.2.2.
This double degeneracy in the vison states is a feature linked to the D8 symmetry and
the anti-commutation of Tx and Ty: it is not possible to obtain vison states that form a
representation of the algebra of Tx and Ty without this degeneracy.

Turning to the confined phase where Φ is condensed, the non-trivial transformations
in (26.38) imply that lattice symmetries must be broken. The precise pattern of the
broken symmetry depends upon the sign of y4, and the two possibilities are shown in
Fig. 26.7.

Finally, we address the confinement–deconfinement transition in Fig. 26.7, which
is also the transition between the bond-ordered and fractionalized phases in Fig. 14.4
for the XY model with the Berry phase in (14.35). In (26.42), Lmonopole is an irrelevant
perturbation to LΦ, and the critical point of LΦ is the XY∗ Wilson–Fisher CFT [119,
230, 256, 261], a conclusion we also reached in Section 16.5.2 (contrast this with the
Ising∗ Wilson–Fisher CFT in Fig. 26.5 for the even-Z2 gauge theory). Undoing the
duality mapping back to (26.37), we note that the XY ∗Wilson–Fisher CFT undualizes
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327 26.2 GappedZ2 Spin Liquids

precisely toLH . So, SB andLmonopole in (26.37) combine to render each other irrelevant
in the critical theory; the Berry phases in SB suppress the monopole tunneling events.
Consequently, the resulting U(1) gauge theory, LH , retains a critical photon; this is
the phenomenon of deconfined criticality [119, 230, 256, 261], as the monopoles do
turn relevant once we are in the VBS phase with g > gc. The embedding of the Z2

gauge theory into the U(1) gauge theory is now not optional; it is necessary to obtain
a complete description of the critical theory of the phase transition in Fig. 26.7. And
the critical theory is LH in (26.37), the abelian Higgs model in 2+1 dimensions, which
describes a critical scalar coupled to a U(1) gauge field, that is, the naive continuum
limit of the lattice U(1) gauge theory yields the correct answer for the critical theory,
and monopoles and Berry phases can be ignored. This should be contrasted with the
even-Z2 gauge theory case in Section 26.2.2, where monopoles were relevant.

In closing, we note that the above phase diagram also applies to quantum dimer
models on the square lattice [119, 230]. The extension to quantum dimer models on
other lattices have also been considered [84, 114, 180, 181, 182, 290].
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27 Boson–Fermion and Fermion–Fermion Dualities

The duality between relativistic Dirac fermions and relativistic bosons in 2+1 dimen-
sions is derived by using different parton constructions for the superfluid–insulator
transition of lattice bosons. A fermion–fermion duality is obtained by describing the
transition from a Chern insulator to a trivial insulator using a decomposition of the
electron into threepartons. The fermion–fermionduality is applied toobtain theDirac
composite-fermion theory of the quantum Hall states near a half-filled Landau level.

This chapter describes new classes of dualities in three dimensions, which generalize
the particle–vortex Dasgupta–Halperin duality we obtained initially in Section 25.4.2.
This is a duality between relativistic bosons on both sides of the critical point of the
XY model, and hence is a boson–boson duality.

Here, we obtain dualities between relativistic bosons and fermions, and also a
fermion–fermion duality. The strategy starts with a lattice model that exhibits a con-
tinuous quantum phase transition. Then, by applying different parton constructions to
the lattice model, we obtain apparently different continuum field theory descriptions
of the transition. By an appeal to universality, we are able to deduce dualities between
the continuum theories.

We use these dualities in Section 27.4 to shed additional light on the fractional
quantum Hall states studied in Chapter 24.

27.1 Fermion–Boson Duality I

We map between the Wilson–Fisher theory of the superfluid–insulator transition of
bosons described by the D= 3 XY model (obtained in Section 8.3), and a dual model of
Dirac fermions. This mapping was originally obtained from a lattice model for bosons
in Ref. [44], but we follow the parton approach of Ref. [21].

27.1.1 Superfluid−Insulator Transition

Let us consider bosons, Bi, on the square lattice at an average density of 1/2 per site.
However, we apply a staggered on-site potential so that the density of bosons is one
per unit cell:

328
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329 27.1 Fermion–Boson Duality I

Hb = ε0 ∑
i

ηiB
†
i Bi−∑

i< j
ti j

(
B†

i B j +B†
jBi

)
+

U
2 ∑

i
ni(ni−1), (27.1)

where ni = B†
i Bi and ηi = +1 (ηi = −1) on sublattice A (sublattice B) of the square

lattice. Note that ε0 ̸= 0 breaks the sublattice symmetry, and there are two sites per
unit cell. We work at an average densityQ= ⟨B†

i Bi⟩= 1/2. At small U the ground state
is a superfluid and at large U the ground state is a non-degenerate (“trivial”) insulator
with all bosons on the B sublattice. The quantum phase transition can be shown, using
the same methods as those used in Chapter 8 for the Hubbard model with ε0 = 0 and
Q= 1, to be in the universality class of theWilson–Fisher conformal filed theory (CFT)
with N = 2 component real fields (see Problem 8.1). We can write the partition function
for the vicinity of the critical point as a field theory for the complex superfluid order
parameter Φ:

Zb[A] =
∫
DΦexp

(
−
∫

d3xLb

)
,

Lb = |(∂µ − iAµ)Φ|2 + s|Φ|2 +u|Φ|4 . (27.2)

For future convenience, we have introduced an external U(1) gauge field Aµ which
couples minimally to the current associated with the boson number Q.

27.1.2 Fermionic Partons

Let us now describe the same phase transition by decomposing the boson B into two
fermionic partons:

B = f1 f . (27.3)

We arrange the mean-field Hamiltonian of these partons so that the low-energy excita-
tions reside on the f fermion, while the auxiliary fermion f1 is a spectator in a gapped
state. In particular we place f1 in a filled band that has Chern number C1 =−1, while f
undergoes a transition from a band with Chern number C = 1 to Chern number C = 0.

Let us discuss the Hamiltonian for f for such a Chern-number-changing transition.
We choose

H f = ε0 ∑
i

ηi f †
i fi−∑

i< j

(
ti j f †

i f j + t∗i j f †
j fi

)
. (27.4)

Whereas the ti j in Hb were real, now the ti j acquire additional phase factors to account
for the average flux. We take first and second neighbor hopping t1 and t2 as shown in
Fig. 27.1 (compare Fig. 18.2 for the chiral spin liquid). We employ a two-site unit cell,
and then the momentum-space Hamiltonian is

H f = ∑
k

f †
α(k)Mαβ (k) fβ (k), (27.5)
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tFigure 27.1 Unit cell of the saddle-point HamiltonianH f for the fermions

kx

ky

tFigure 27.2 The upper band of the Hamiltonian in (27.5) for t1 = 1, t2 = 0.1, ε0 = 0.4. There is a massless Dirac node at
(−π/2,0), while that at (π/2,0) remains massive.

where α,β represent sublattices A and B and

M(k) =
(

ε0−2t2 sin(kx + ky)−2t2 sin(kx− ky)

−2t1 cos(kx)+2it1 sin(ky)

−2t1 cos(kx)−2it1 sin(ky)

−ε0 +2t2 sin(kx + ky)+2t2 sin(kx− ky)

)
. (27.6)

The band structure obtained from M(k) is shown in Fig. 27.2. Note that there is Dirac
node at k= (−π/2,0) for ε0 = 4t2; this is our quantum critical point of interest, when
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331 27.1 Fermion–Boson Duality I

the band gap vanishes. For ε0 > 4t2, we have a trivial insulator in which the lower band
is fully occupied and C = 0, while for ε0 < 4t2 we have a Chern insulator with C = 1 (as
can be computed from the methods of Chapter 18).

We arrange a similar Hamiltonian for f1, which is always a gapped Chern insulator
with C1 =−1.

27.1.3 Gauge Theory

Next let us consider the gauge fluctuations about these mean-field states. We will show
that the state with C = 0, C1 =−1 is actually a trivial insulator of the gauge-invariant
bosons B, while the C = 1, C1 =−1 state is a superfluid of B.

The gauge invariance associated with the parton decomposition (27.3) requires the
introduction of an emergent U(1) gauge field bµ . We couple the external U(1) gauge
field Aµ to the parton f1. So the parton f is coupled to the gauge field bµ , while
the parton f1 is coupled to the gauge field −bµ +Aµ . This corresponds to the charge
assignments

Gauge field f f1

bµ 1 −1
Aµ 0 1

. (27.7)

Integrating out both fermionic partons in the gapped phases, we obtain the effective
Lagrangian

Lb =
iC
4π

εµνλ bµ ∂ν bλ +
iC1

4π
εµνλ (bµ −Aµ)∂ν(bλ −Aλ ). (27.8)

Chern NumbersC = 0,C1 =−1
First, let us consider the structure of (27.8) for C = 0, C1 = −1. As Lb depends only
upon bµ−Aµ , the integral over bµ yields a result independent of Aµ , and so there is no
Hall conductivity. Let us also verify that there are no edge states following the methods
of Chapter 17.4, because counter-propagating edge states could also lead to vanishing
Hall conductivity. Only the f1 band has a possible edge state, and an associated edge
chiral boson φ1; coupling this edge state to the gauge fields in the standard manner
according to (27.7), we obtain

Ledge =−
i

4π
∂xφ1∂τ φ1 +

i
2π

εµν
(
−bµ +Aµ

)
∂ν φ1. (27.9)

Note that we have only included the important kinematic terms in the edge theory, and
dropped the spatial-gradient terms. Now the integral over bµ yields the condition φ1 =

constant, and so there is no edge mode. This verifies that we obtain a trivial insulator
for C = 0, C1 =−1.
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Chern NumbersC = 1,C1 =−1
Next, let us consider the structure of (27.8) for C = 1, C1 =−1. Now, (27.8) reduces to

Lb =
i

2π
εµνλ bµ ∂ν Aλ −

i
4π

εµνλ Aµ ∂ν Aλ . (27.10)

The integral over bµ yields a zero flux condition∼ δ
(
εµνλ ∂ν Aλ

)
. This is just theMeiss-

ner effect. If we had included Maxwell terms in the effective gauge theory (27.8), we
would have obtained a Higgs mass term ∼ A2

µ . Let us also verify there are no active
edge states. Now we have chiral bosons φ , φ1 associated with the two bands with non-
zero Chern number, and coupled to the gauge fields according to (27.7); so the edge
theory is

Ledge =
i

4π
∂xφ∂τ φ− i

4π
∂xφ1∂τ φ1 +

i
2π

εµν bµ (∂ν φ−∂ν φ1)+
i

2π
εµν Aµ ∂ν φ1. (27.11)

Now, the integral over bµ yields φ = φ1 (up to a constant), and then the first two terms
in (27.11) cancel: there is no edge mode.

We have now verified our central claim: the two phases of the parton theory across
the gapless point at ε0 = 4t2 precisely match the low-energy properties of the original
boson model undergoing a superfluid–insulator transition.

27.1.4 Quantum Critical Theory

Now let us consider the neighborhood of the point ε0 = 4t2. We can still safely integrate
out the f1 fermions, but have to keep the low-energy f fermions active.

For t2 = ε0 = 0, this Hamiltonian has Dirac nodes at k= (±π/2,0), and it is instruc-
tive to keep track of the vicinities of both nodes. We write k = (±π/2+ qx,qy) and
expand for small qx,qy. We also introduce Pauli matrices τx, τy, τz in the sublattice
space. Then we can write the Hamiltonian as

H f = f † [±2t1qxτx +2t2qyτy +(ε0∓4t2)τz] f . (27.12)

This is the Hamiltonian of two species of two-component Dirac fermions, with one
species carrying a light mass m = ε0− 4t2, and other a heavy mass M = ε0 + 4t2 (see
Fig. 27.2).

Let us focus on the light-mass fermion. We employ relativistic notation by defining
ψ = c, ψ̄ ≡ ψ†τz, and γµ = (τz,−τy,τx), introduce a coupling to the gauge field bµ
by gauge invariance, and then the imaginary-time Lagrangian corresponding to the
light-mass Dirac fermion in H f is

L0
f = ψ̄γµ(∂µ − ibµ)ψ +mψ̄ψ , (27.13)

where we have absorbed the Fermi velocity 2t1 by rescaling time. If we use this contin-
uum theory to naively integrate out the f fermion, we obtain a Chern–Simons term
for bµ with a half-integral coefficient

isgn(m)

8π
εµνλ bµ ∂ν bλ . (27.14)
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333 27.2 Fermion–Boson Duality II

Clearly, this has to be compensated by a contribution from the heavy fermion, so that
the total Chern number is either 0 or 1 depending upon the sign of m. The proper gauge-
invariant way to account for this additional contribution is to use the η-invariant to
represent the path integral over ψ [260, 313]. However, it is common to denote this
additional contribution by an explicit C = 1/2 contribution from the heavy fermion;
more properly, this C = 1/2 contribution is from “the rest of the band” after the Dirac
node has been separately accounted for. As the remaining band remains gapped, we do
not expect any critical corrections from this contribution. Consequently, the complete
low-energy theory for the f bands is then

L f = ψ̄γµ(∂µ − ibµ)ψ +mψ̄ψ +
i

8π
εµνλ bµ ∂ν bλ . (27.15)

Finally, we add the C1 = −1 contribution of the f1 band from (27.8) to obtain the
complete low-energy theory for the quantum critical point:

Lψ = ψ̄γµ(∂µ − ibµ)ψ +mψ̄ψ− i
8π

εµνλ bµ ∂ν bλ +
i

2π
εµνλ Aµ ∂ν bλ −

i
4π

εµνλ Aµ ∂ν Aλ .

(27.16)
We can now present the final statement of the boson–fermion duality. The fermionic

partition function with the Lagrangian in (27.16) equals the bosonic partition function
Zb[A] in (27.2):

Zψ [A] =
∫
DψDbµ exp

(
−
∫

d3xLψ

)
= Zb[A] . (27.17)

In the bosonic theory, we tune across the superfluid–insulator quantum critical point
by changing the parameter s. In the fermionic theory we tune across the critical point
where the sign of m changes.

It is now interesting to note an important operator correspondence between (27.16)
and (27.2). At the lattice level we have in (27.8) that B ∼ f f1. Because of the Chern
number C1 = −1 on f1, we note that a 2π flux in bµ corresponds to an f1 particle. So
we can conclude that a monopole in b,Mb, corresponds to an f1 particle. However, in
the presence of gapless Dirac fermions at the critical point m = 0, the monopole oper-
ator has a single fermionic zero mode [34, 127]. Gauge invariance fixes the occupation
number of this mode, and this turns out to be precisely the same as the requirement of
gauge invariance of B∼ f f1. So, choosing the appropriately gauge-invariant monopole
[34, 127] associated with (27.16), we have the operator correspondence B∼Mb.

27.2 Fermion–Boson Duality II

We obtain our second exact duality by introducing another external gauge field Cµ ,
and adding the term
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− i
2π

εµνλCµ ∂ν Aλ +
i

4π
εµνλ Aµ ∂ν Aλ (27.18)

to both sides of the duality in Section 27.1. Then, we promote the gauge field Aµ to a
dynamic gauge field, and integrate over it. In keeping with our notational convention,
we map Aµ → aµ , and then perform the integration.

On the bosonic side of the duality we obtain the partition function

Zb[C] =
∫
DΦDaµ exp

(
−
∫

d3xLb

)
, (27.19)

Lb = |(∂µ − iaµ)Φ|2 + s|Φ|2 +u|Φ|4 + i
4π

εµνλ aµ ∂ν aλ −
i

2π
εµνλCµ ∂ν aλ . (27.20)

On the fermionic side we obtain

Zψ [C] =
∫
DψDbµDaµ exp

(
−
∫

d3xLψ

)
, (27.21)

where

Lψ = ψ̄γµ(∂µ − ibµ)ψ +mψ̄ψ− i
8π

εµνλ bµ ∂ν bλ +
i

2π
εµνλ aµ ∂ν bλ −

i
2π

εµνλCµ ∂ν aλ .

(27.22)
From the path integral over aµ , we obtain the constraint bµ =Cµ . So the final form of
the fermionic theory equals the bosonic partition function in (27.19) with

Zψ [C] =
∫
Dψ exp

(
−
∫

d3xLψ

)
= Zb[C], (27.23)

Lψ = ψ̄γµ(∂µ − iCµ)ψ +mψ̄ψ− i
8π

εµνλCµ ∂νCλ . (27.24)

Similar to the case in Section 27.1, the gauge-invariant monopole Ma [34, 127]
corresponds to the fermion ψ .

27.3 Fermion–Fermion Duality

I now present a fermion–fermion duality between fermions c, and “composite”
fermions fc. This has useful applications to the fractional quantum Hall effect, where
c represents the physical electron, and fc realizes Jain’s composite fermions, as we see
in Section 27.4.

Let us consider the situation when the fermion c undergoes an integer quantum Hall
transition from a state with σxy = 0 to σxy = e2/h. This is easily described by placing c
in a band whose Chern number changes from 0 to 1. Indeed, we considered just such
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a band structure in Section 27.1 for the fermion f . The transition is described at low
energies by a single Dirac fermion ψ , whose mass changes sign. So the first low-energy
theory for this transition is simply that in (27.15), after replacing the emergent gauge
field bµ by the external gauge field Aµ ,

Lψ = ψ̄γµ(∂µ − iAµ)ψ +mψ̄ψ +
i

8π
εµνλ Aµ ∂ν Aλ . (27.25)

The partition function is

Zψ [A] =
∫
Dψ exp

(
−
∫

d3xLψ

)
. (27.26)

The transition is driven by a change in the sign of the fermion mass at m = 0.
Now, let us describe this integer quantumHall transition by the parton construction.

We use the same parton decomposition as that used in Chapter 24 in the description
of the Jain fractional quantum Hall states. So we write the fermion c in terms of the
three fermionic partons fc, f1, f2:

c = fc f1 f2. (27.27)

As usual, we place the partons in filled bands characterized by an integer Chern num-
ber. We label these Chern numbers as Cc, C1, and C2, respectively. We now show that
the Chern numbers Cc = 0, C1 = 1, C2 = 1 describe an insulator with σxy = 0, while the
Chern numbers Cc = −1, C1 = 1, C2 = 1 describe a Chern insulator with σxy = e2/h.
This matches the integer quantum Hall transition of the parent fermion c. And the
transition is driven by the change in Chern number of the composite fermion fc from
0 to −1. So our low-energy theory is expressed in terms of the corresponding Dirac
composite fermion ψc.

27.3.1 Gapped Phases

The parton decomposition (27.27) requires us to introduce two gauge fields to impose
the equalities of the three parton currents at all spacetime points. We choose to couple
fc to an emergent gauge field aµ , f1 to the emergent gauge field −aµ − bµ , and f2 to
the gauge field bµ +Aµ . We represent these charge assignments in the following table.

Gauge field fc f1 f2

aµ 1 -1 0
bµ 0 -1 1
Aµ 0 0 1

(27.28)

Assuming we are in the gapped phases, we can integrate out the fermions and obtain
an effective action for gauge fields analogous to (27.8)

La,b =
iCc

4π
εµνλ aµ ∂ν aλ +

iC1

4π
εµνλ (aµ +bµ)∂ν(aλ +bλ )+

iC2

4π
εµνλ (bµ +Aµ)∂ν(bλ +Aλ ).

(27.29)
Let us now examine this theory for the two cases noted above.
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Chern numbersCc = 0,C1 = 1,C2 = 1
For this case, in (27.29), we can integrate out aµ by shifting aµ → aµ − bµ , and then
integrate over bµ after shifting bµ → bµ −Aµ , yielding trivial results. So there is no
Chern–Simons term for Aµ .

We also need to verify that there no edge states, because we have not ruled out
counter-propagating edge states that yield a net-zero σxy. We obtain the edge theory
by introducing chiral bosons φ1,2 for the fermions f1,2, and there is no edge state asso-
ciated with fc. Coupling these bosons to the gauge fields minimally according to the
charge assignments in (27.28), the analog of (27.11) is

Ledge =
i

4π
∂xφ1∂τ φ1 +

i
4π

∂xφ2∂τ φ2 +
i

2π
εµν aµ (−∂ν φ1)

+
i

2π
εµν bµ (−∂ν φ1 +∂ν φ2)+

i
2π

εµν Aµ ∂ν φ2. (27.30)

The integral over aµ sets φ1 = constant, and then the integral of bµ sets φ2 = constant.
So there is no edge state, and we indeed have a trivial insulator.

Chern NumbersCc =−1,C1 = 1,C2 = 1
Now, (27.29) becomes

La,b =
i

4π
εµνλ bµ ∂ν bλ +

i
2π

εµνλ aµ ∂ν bλ +
i

4π
εµνλ (bµ +Aµ)∂ν(bλ +Aλ ). (27.31)

The integral over aµ sets bµ = 0, up to a gauge transformation. Then we are left with
a Chern–Simons term for Aµ with a unit coefficient, implying σxy = e2/h.

As above, we have to verify the nature of the edge states. Now we have three chiral
bosons φc,1,2, and the analog of (27.30) from (27.28) is

Ledge =−
i

4π
∂xφc∂τ φc +

i
4π

∂xφ1∂τ φ1 +
i

4π
∂xφ2∂τ φ2 +

i
2π

εµν aµ (∂ν φc−∂ν φ1)

+
i

2π
εµν bµ (−∂ν φ1 +∂ν φ2)+

i
2π

εµν Aµ ∂ν φ2. (27.32)

Now, the integrals over aµ and bµ set φc = φ1 = φ2 (up to constants). Then (27.32)
reduces to precisely the edge theory of a Chern insulator in a Chern band with C = 1.

27.3.2 Quantum Critical Theory

It is now easy to obtain the quantum critical theory, following the methods of the
sections above. We take the low-energy limit of the active composite fermion fc under-
going a transition from Chern number Cc = 0 to Cc =−1, represent it by a low-energy
Dirac fermion ψc as in (27.15), and add the contributions of the f1,2 fermions from
(27.29) to obtain
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Lc = ψ̄cγµ(∂µ − iaµ)ψc−mψ̄cψc−
i

8π
εµνλ aµ ∂ν aλ

+
i

4π
εµνλ (aµ +bµ)∂ν(aλ +bλ )+

i
4π

εµνλ (bµ +Aµ)∂ν(bλ +Aλ )

= ψ̄cγµ(∂µ − iaµ)ψc−mψ̄cψc +
i

8π
εµνλ aµ ∂ν aλ +

i
2π

εµνλ aµ ∂ν bλ

+
2i
4π

εµνλ bµ ∂ν bλ +
i

2π
εµνλ bµ ∂ν Aλ +

i
4π

εµνλ Aµ ∂ν Aλ . (27.33)

It is now tempting to integrate out the bµ gauge field above, and to obtain a theory
with only one emergent gauge field aµ . However, as emphasized in Ref. [253], this is
dangerous, and does not properly capture all the topological properties of the theory.
But if we are only interested in the bulk properties of critical theory in a perturbative
expansion (say in an inverse expansion in the number of fermion flavors), we can go
ahead and do so. So, with this caution, we can perform the integral over the bµ gauge
field and obtain our promised fermion–fermion duality

Zc[A] =
∫
DψcDaexp

(
−
∫

d3xLc

)
= Zψ [A], (27.34)

where Zψ [A] is defined in (27.26) and

Lc = ψ̄cγµ(∂µ − iaµ)ψc−mψ̄cψc−
i

4π
εµνλ aµ ∂ν Aλ +

i
8π

εµνλ Aµ ∂ν Aλ . (27.35)

I reiterate that (27.33) is a more complete representation of the field theory on the
composite-fermion side of the duality [253].

Similar to the previous cases, the assignment of the gauge charges in (27.27) can be
used to deduce the representation of the fermion operator ψ in terms of theory for ψc;
we find that ψc ∼M2

aM
†
b.

Unlike the previous dualities considered in this chapter, the fermion–fermion duality
has no Chern–Simons term in an internal gauge field on either side of the duality,
at least in the form in (27.35). In this respect, it is similar to the Dasgupta–Halperin
boson–boson duality studied in Chapter 23.

27.4 Fractional QuantumHall Effect: Dirac Composite Fermions

We have previously described the Jain states in Chapter 24 by using a parton theory
where we assumed that the fermions occupied Landau levels. We can now use the
Dirac composite-fermion approach above to obtain an alternative theory of the Jain
states [266, 267]. The Dirac approach has the advantage of allowing one to preserve
the particle–hole symmetry of the half-filled Landau level.
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A useful starting point to introducing Dirac composite fermions is to consider
graphene at its charge-neutrality point in the presence of a magnetic field, as in Sec-
tion 19.2. Because of the particle–hole symmetry of graphene, the n = 0 Landau level
in graphene is exactly half filled, and we are at ν = 1/2. By particle–hole symmetry,
this state has σxy = 0. If we are considering a non-relativistic fermion, as in GaAs, then
quantum Hall states would have their conductivity shifted by e2/(2h), which means
the Hall conductivity of the half-filled Landau level would be e2/(2h).

So, starting from graphene at its charge-neutrality point, we consider the theory

Lgraphene = ψγµ
(
∂µ − iAµ

)
ψ + · · · , (27.36)

where ψ creates an electron in the form of a two-componentDirac fermion. The spatial
components of Aµ represent the applied magnetic field with ∇∇∇×A= B. The time com-
ponent, iAτ , is the applied chemical potential, which allows us to consider electron
densities away from the charge-neutrality point of graphene. If we were considering
the non-relativistic quantum Hall states, as in GaAs, then we would shift the Hall
conductivity (and the density) by adding a Chern–Simons term in the external gauge
field

LGaAs = ψγµ
(
∂µ − iAµ

)
ψ +

i
8π

εµνλ Aµ ∂ν Aλ + · · · . (27.37)

The remainder of the discussion here is carried out using LGaAs, as that is the case con-
sidered in most of the literature. It is easy to translate back to graphene, by appropriate
shifts in the Hall conductivity and the density.

To describe the ν = 1/2 state and its vicinity, we perform the fermion–fermion
duality on LGaAs, to obtain the theory of Dirac composite fermions, ψc:

Lc = ψcγµ
(
∂µ − iaµ

)
ψc−

i
4π

εµνλ Aµ ∂ν aλ +
i

8π
εµνλ Aµ ∂ν Aλ + · · · . (27.38)

As has been our convention, the field aµ is a dynamical U(1) gauge field that has to be
integrated over, while Aµ is the external, “background,” electromagnetic gauge field.

We now introduce some basic notation, and obtain important relations by compar-
ing the saddle-point equations (27.37) and (27.38). Let ρ be the density of electrons.
Then, the filling factor of the Landau level ν is (in units with h̄ = e = 1)

ν =
2πρ

B
. (27.39)

Taking the derivative of LGaAs with respect to Aτ , we have

ρ =−⟨ψγτ ψ⟩+ B
4π

. (27.40)

So, at ν = 1/2, the density of Dirac electrons in graphene, −⟨ψγτ ψ⟩, vanishes. Let us
also represent the average internal gauge field on the composite fermions by b = ∇∇∇×a.
Now we take the derivative of Lc with respect to Aτ . This yields

ρ =− b
4π

+
B

4π
, (27.41)
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which we can also write as

b =−B(2ν−1) . (27.42)

So, at ν = 1/2, the average magnetic field on the Dirac composite fermions b vanishes.
This is the primary advantage of the composite-fermion formulation: we have mapped
a problem at high magnetic field to one at vanishing magnetic field.

We also need some relations for the density of the Dirac composite fermions. Let us
denote the density of the Dirac composite fermions by

ρc =−⟨ψcγτ ψc⟩ . (27.43)

Then, taking the derivative of Lc with respect to aτ , we obtain

ρc =
B

4π
. (27.44)

So the density ofDirac composite fermions is determined by the appliedmagnetic field.
In general, the theory of composite fermions therefore has a non-zero density ρc

and an applied average field b. So, if anything, it is more complicated than the original
problem of electrons, as we also have to consider a fluctuating gauge field aµ . However,
the composite-fermion theory simplifies under two conditions: (i) if the average field b
vanishes, or (ii) if exactly an integer number of its Landau levels are filled, so that there
is an energy gap to composite-fermion excitations.

In case (i), which happens exactly at ν = 1/2, we have a finite density of composite
fermions in a vanishing magnetic field, which will form a Fermi surface. We do have to
consider the influence of the aµ gauge fluctuations on this Fermi surface, and this we
defer to Section 34.3. Note that the present formulation of the half-filled Landau-level
problem is dual to that presented in Section 24.4, but leads to the same low-energy
effective theory.

Let us consider here case (ii), when the n-th Landau level of Dirac fermions is fully
filled. Recall that the allowed values of n are . . . ,−2,−1,0,1,2, . . . , and that the cor-
responding Hall conductivity of the Dirac fermions is (n+1/2)e2/h. In this situation,
the relationship between ρc and b is

ρc =

(
n+

1
2

)
b

2π
. (27.45)

From (27.42), (27.44), and (27.45), we obtain the Jain filling fractions

ν =
n

2n+1
. (27.46)

The simplest cases of the fractional quantum Hall states are n= 1, ν = 1/3 and n=−2,
ν = 2/3. Notice that for the Dirac composite fermions, the cases n = 1 and n =−2 are
particle–hole symmetric: the chemical potential is between the adjacent Landau levels
with |n| = 1 and |n| = 2, and the composite-fermion Hall conductivity is ±(3/2)e2/h.
This particle–hole symmetry is a crucial feature of theDirac composite-fermion theory.

This theory can also describe integer quantum Hall states at the special values n =

0,−1 corresponding to ν = 0,1; in these cases the zero-th Dirac Landau level is either
fully filled or empty, and these cases are also particle–hole symmetric.
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The phase transition from the Néel ordered phase to the valence-bond solid leads to
a deconfined critical theory of a gapless spin liquid. The description using bosonic
partons leads to aCP1 field theory, and the description using fermionic partons leads
to an SU(2) gauge theorywithmassless Dirac spinons. A stable gaplessZ2 spin-liquid
phase is obtained by condensing Higgs fields in the latter theory.

This chapter returns to the basic problem that historically was the motivation for much
of the analyses in Parts II and IV: the nature of spin-liquid states of spin S = 1/2 anti-
ferromagnets on the square lattice. In our bosonic parton analysis in Chapter 15, the
basic phase diagram in Fig. 15.1 shows that the magnetically ordered Néel state can
have a quantum phase transition to a “quantum-disordered” state, and we examine
here the nature of such a transition.

For the case of the triangular lattice, the quantum-disordered state is aZ2 spin liquid,
as was described in Chapter 15; this sets up the phase diagram in Fig. 15.5, and the
quantum phase transition was described by a well-understood O(4)* field theory in
Section 15.4.1.

For the case of the square lattice with a bipartite Néel ordered state, we found in
Section 15.3.1 that the corresponding quantum-disordered state was described by a
U(1) gauge theory. We studied the nature of the U(1) gauge theory more completely
using a duality mapping in Section 26.1, and found that the quantum-disordered state
was a confining state of a U(1) spin liquid with valence-bond solid (VBS) order. This
sets up the phase diagram for the square-lattice antiferromagnet in Fig. 28.1, which
is the analog of Fig. 15.5 for the triangular or other non-bipartite lattices. We recall
Fig. 1.7, which showed an example of a quantum transition between two such phases
in SrCu2(BO3)2, albeit for a case in which the VBS state is only two-fold degenerate.

This chapter investigates the nature of the Néel–VBS transition in Fig. 28.1. Both
phases are confining, and break distinct symmetries. In the conventional Landau–
Ginzburg–Wilson framework, such a transition is expected to be first-order, or to have
an intermediate coexistence phase. Here we describe the possibility of deconfined crit-
icality: that there is a second-order transition, with the critical theory a gapless spin
liquid with fractionalized spinon degrees of freedom. Evidence for deconfined crit-
icality has emerged in experiments on SrCu2(BO3)2 [56]. I will discuss two distinct
approaches to this transition, using bosonic spinons in Section 28.1, and fermionic
spinons in Sections 28.2 and 28.3. Finally, in Section 28.4, we consider the possibility

340

https://doi.org/10.1017/9781009212717.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.029


341 28.1 U(1) Spin Liquids on the Square Lattice: Bosonic Spinons

Valence-bond solid

=
1√
2

(| | )
Néel, ηi Si = 0

ggctFigure 28.1 Possible phase diagram of the S = 1/2 square-lattice antiferromagnet tuned by further neighbor exchange
interactions.

of an intermediate gapless Z2 spin-liquid phase, a possibility supported by recent
numerical studies.

28.1 U(1) Spin Liquids on the Square Lattice: Bosonic Spinons

We return to our treatment in Chapter 15 of square-lattice antiferromagnets
using Schwinger bosons siα . After decoupling the spin exchange interactions to
boson pairing terms, and diagonalizing the boson Hamiltonian by a Bogoliubov
transformation, we find bosonic spinons with dispersion

ωk =
(
λ̄ 2− J2Q̄2(sinkx + sinky)

2)1/2
, (28.1)

where λ̄ is the mean value of the Lagrange multiplier imposing the boson-number
constraint, and Q̄ is the mean value of the boson pairing field. We now notice that
this dispersion has a minimum at k = ±(π/2,π/2), and the minimum spinon gap is√

λ̄ 2−4J2Q̄2. We are interested here in the situation when this gap vanishes. The point
where the gap is exactly zero is our candidate for a gapless quantum critical theory.
Beyond this point, the bosonic spinons condense, and we obtain the Néel state, with
the same symmetry as the classical antiferromagnet with spins polarized in opposite
orientations on the two checkerboard sublattices.

In the vicinity of this gap-vanishing transition, we can write down a continuum
theory for the spinons, coupled to the emergent U(1) gauge field aµ . Recall that we
expressed the phases of the bond fields in (15.26)

Qi,i+x̂ = Q̄exp(iΘix) ,

Qi,i+ŷ = Q̄exp(iΘiy) , (28.2)

and the gauge fields are obtained by the parameterization in (15.28):
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Θix(τ) = ηiax(r,τ),
Θiy(τ) = ηiay(r,τ),

λi =−iλ̄ −ηiaτ(r,τ), (28.3)

where ηi = ±1 on the checkerboard sublattices. For the spinons, we introduce the
wavevector at the minimum spinon gap k0 = (π/2,π/2) and parameterize on the A
and B sublattices:

sα
Ai = ψα

1 (ri)e
ik0·ri ,

sα
Bi =−iJ αβ ψ2β (ri)e

ik0·ri , (28.4)

where J αβ = εαβ for the SU(2) spin case (J αβ was defined in (15.12)). Next, we insert
these parameterizations into the spinon action, perform a gradient expansion, and
transform the Lagrangian L into

L=
∫ d2r

a2

[
ψ∗1α

(
d

dτ
+ iaτ

)
ψα

1 +ψα∗
2

(
d

dτ
− iaτ

)
ψ2α

+ λ̄
(
|ψα

1 |2 + |ψ2α |2
)
−4JQ̄1 (ψα

1 ψ2α +ψ∗1α ψα∗
2 )

+ JQ̄1a2 [(∇∇∇+ ia)ψα
1 (∇∇∇− ia)ψ2α

+ (∇∇∇− ia)ψ∗1α (∇∇∇+ ia)ψα∗
2 ]

]
. (28.5)

We now introduce the fields

zα = (ψα
1 +ψα∗

2 )/
√

2,

πα = (ψα
1 −ψα∗

2 )/
√

2 .

Following the definitions of the underlying spin operators, it is not difficult to show
that the Néel order parameter φa is related to the zα by

φa = z∗α σaα
β zβ . (28.6)

FromEq. (28.5), it is clear that the the π fields turn out to havemass λ̄ +4JQ̄1, while the
z fields have a mass λ̄ −4JQ̄1, which vanishes at the transition to the long-range-order
phase. The π fields can therefore be safely integrated out, and L yields the following
effective action, valid at distances much larger than the lattice spacing [217, 218]:

Se f f =
∫ d2r√

8a

∫ cβ

0
dτ
{
|(∂µ − iaµ)zα |2 + ∆2

c2 |z
α |2
}
. (28.7)

Here, µ extends over x,y,τ ; c =
√

8JQ̄1a; is the spin-wave velocity; and ∆ = (λ̄ 2 −
16J2Q̄2

1)
1/2 is the gap towards spinon excitations. Thus the long-wavelength theory

consists of a massive, spin-1/2, relativistic, boson zα (spinon) coupled to a U(1) gauge
field aµ .
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On general symmetry grounds, and by analogy with the arguments in Chapter 26,
we extend (28.7) to a theory for the vicinity of the quantum critical point at which the
spinon gap vanishes [239]:

SU(1) =
∫

d3x
(
Lz +Lmonopole

)
+SB,

Lz = |(∂µ − iaµ)zα |2 +g|zα |2 +u
(
|zα |2

)2
+K(εµνλ ∂ν aλ )

2,

Lmonopole =−y
(
Ma +M†

a
)
,

SB = i2S∑
i

ηi

∫
dτ aiτ . (28.8)

The theory Lz is also known as the CP1 model. For a complete description, we have to
include monopolesMa in the gauge field aµ , and also the Berry phase of the spinons
in the ground state, as in Chapter 26. The Néel order parameter in (9.15) is the U(1)
gauge-invariant bilinear of the spinon field:

N = z∗α σσσαβ zβ , (28.9)

where σσσ are the Pauli matrices (compare to (15.48) for the coplanar order in Z2 gauge
theories).

As we tune the coupling g in (28.8), we can expect the two phases shown in
Fig. 28.1:

(i) Néel phase, g < gc: the spinon zα condenses in a Higgs phase with ⟨zα⟩ ̸= 0. The
aµ gauge field is higgsed, and spin-rotation symmetry is broken by the opposite
polarization of the spins on the two sublattices.

(ii) VBS, g > gc: the spinons are gapped, and then we apply the effective theory for
the U(1) gauge field in Section 26.1. For half-integer-spin S, we conclude there is
VBS order.

We now obtain a potential gapless spin liquid if there is a continuous quantum phase
transition at g = gc. As we showed in Chapter 26, for half-integer-spin S, the single
monopole terms in (28.8) average to zero at long wavelengths from the Berry phases,
and only quadrupoled monopole terms survive. So we can simplify the continuum
theory for the vicinity of the quantum critical point to [256, 261]:

Lz = |(∂µ − iaµ)zα |2 +g|zα |2 +u
(
|zα |2

)2
+K(εµνλ ∂ν aλ )

2− y4
(
M4

a +M†4
a
)
, (28.10)

where y4 is the quadrupoledmonopole fugacity. There is ample numerical evidence that
y4 is irrelevant near a possible critical point, and so the question reduces to whether
the theory Lz at y4 = 0 exhibits a critical point that realizes a conformal field theory
in 2+1 dimensions. This is a question that has been studied extensively in numerics,
with no firm conclusion. But the weight of the current evidence points to a “complex”
critical point, that is, there are very large correlation lengths due the proximity to a
renormalization-group fixed point, but the fixed point itself resides in a regime where it
is necessary to analytically continue the theory to complex values of the couplings [107,
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344 28 Gapless Spin Liquids

167, 188, 273, 294, 299]. In any case, it is clear that a “deconfined critical” description
is suitable over a substantial length scale, with fractionalized spinons interacting with
a U(1) gauge field in the absence of monopoles.

28.2 U(1) Spin Liquids on the Square Lattice: Fermionic Spinons

We now examine the same antiferromagnet in Section 28.1, but using fermionic
spinons. An exact computation should, of course, give the same results from the two
approaches. But if an approximate computation gives the same phases, then we would
expect the field theories of the critical points in between them are dual to each other;
indeed, this was the strategy of Chapter 27.

We return to the U(1) spin liquid that we described in Chapter 22 on the chiral
spin liquid. We already showed there that in the absence of the time-reversal symmetry
breaking term (i.e., by setting t2 = 0 in Fig. 18.2), we obtained a theory of four species
of massless, two-component Dirac fermions. Here, we generalize this theory to include
a “staggered flux” (as in Fig. 28.2; see Section 28.3), and couple it to a U(1) gauge field
and monopoles to obtain

Lψ =
4

∑
i=1

ψ̄iγµ(∂µ − iaµ)ψi−
(

yiMai + y∗iM
†
ai

)
, (28.11)

where we have allowed for the possible spatial dependence of the monopole fugac-
ity, as was the case in Chapter 24. A full analysis of this theory requires a complete
understanding of the monopole terms, and their signatures under various symme-
try transformations, and there has been important progress in this direction recently
[268, 270]. While there is still some theoretical uncertainty, the most likely outcome
is that (28.11) is unstable to either the Néel or VBS state, and can also realize a dual
description [294] of the critical fluctuations associated with the bosonic theory (28.10).

There have also been studies of similar U(1) spin liquids of gapless Dirac spinons on
the triangular and kagome lattices [268, 270]. The possibility of a U(1) gapless spin-
liquid phase remains open, and the instabilities to various confining phases with broken
symmetries have also been described. It would be interesting to elucidate the connec-
tion between this U(1) gauge field + fermionic spinon approach to the phase diagram
of the triangular or kagome lattice antiferromagnet, and theZ2 gauge theory + bosonic
spinon approach of (15.49).

28.3 Gapless SU(2) Spin Liquids

We can obtain another perspective on the spin liquid discussed in Section 28.2 by
employing the SU(2) gauge theory used for the chiral spin liquid in Section 22.4.
To restore time-reversal symmetry, and obtain a gapless spin liquid, we set t2 = 0 in
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345 28.3 Gapless SU(2) Spin Liquids

Fig. 22.1. Then, the Hamiltonian in (22.27) describes massless Dirac fermions, which
will be coupled to a SU(2) gauge field. The continuum formulation of this theory can
be obtained by following the same procedure as below (18.39), but we have to carefully
account for the SU(2) gauge symmetry. For this purpose, it is convenient to express
the lattice fermion f i in (22.19) in terms of four Majorana fermions χ0i, χxi, χyi, χzi by

f =
1√
2
(χ0 + iχaσa) . (28.12)

To work out the dispersion relation of the Hamiltonian in Fig. 22.1, we increase our
unit cell by one lattice site in the x direction and so χ acquires an additional sublattice
index m = A,B. In momentum space, we then have

H = ∑
k

χT
−kH(k)χk ,

H(k) =−2t1 [sin(ky)ρz + sin(kx)ρx] .

(28.13)

Here, ρ i are Pauli operators acting on the sublattice space, m = A,B. This Hamiltonian
is diagonal in the 0,a indices in (28.12), and the gauge was chosen to have this fea-
ture. The Hamiltonian in (28.13) has Dirac points at ky = 0,π, kx = 0. Labelling these
Dirac points by another index ν = 1,2, and expanding around these two points, we
decompose our Majorana operator as

χm,i ∼ ρxχm,ν=1(x)+(−1)iy χm,ν=2(x) . (28.14)

With this, the Hamiltonian reduces to

H ≈ 2it1 ∑
ν=1,2

χT
ν (ρx∂x−ρz∂y)χν , (28.15)

with the sublattice and 0,a indices implicit. This gives the continuum Lagrangian

L= 2it1 χ̄ν γµ ∂µ χν , (28.16)

where γ0 = ρy, γx = iρz, γy = iρx, and χ̄ ≡ χT γ0. Here, we have chosen to express L in
the Minkowski metric (+,−,−); we ultimately move to the Euclidean metric below to
perform calculations.

We now define the 4×2 matrix operator

Xα,ν ;β =
1√
2

(
χ0,ν δαβ + iχa,ν σa

αβ

)
(28.17)

and X̄ = X†γ0, where the sublattice/Dirac index m is left implicit. This allows us write
our Lagrangian as

L= 2it1Tr
(
X̄γµ ∂µ X

)
. (28.18)

In this form, the Hamiltonian describes eight massless Majorana fermions (these are
two-component “relativistic” Majorana fermions with an additional sublattice index).
The SU(2) gauge symmetry acts on the right index (β in (28.17)) of X , and the gradient
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in L must be replaced by the appropriate covariant gradient when the gauge field is
included. Specifically, we have

Dµ X = ∂µ X + iXaµ (28.19)

and the SU(2) gauge symmetry in (22.23) acts as

X → XUg , aµ →U†
g aµUg− i∂µU†

g Ug , (28.20)

and the full Lagrangian is

L= 2it1Tr
(
X̄γµ Dµ X

)
. (28.21)

Global spin rotations act on the left index (α in (28.17)) of X , and global valley
rotations act on the ν index. These global rotations combine to yield an emergent,
low-energy Sp(4)/Z2 ≡ SO(5) global symmetry in this spin liquid [214, 294].

To summarize, we have now obtained a continuum theory of the π-flux phase of the
square-lattice antiferromagnet; this is an SU(2) gauge theory with N f = 2 massless
Dirac fermions. This theory has an emergent global SO(5) symmetry, which com-
bines the SO(3) global spin rotations with various lattice symmetries. Note that, unlike
(28.11), there are no monopole insertions, because they are not present in an SU(2)
gauge theory in 2+1 dimensions. Nevertheless, (28.21) is a strongly coupled gauge the-
ory, and has been the focus of a number of numerical studies. While the existence
of a conformal critical theory has not been established, the numerics display critical
correlations over very large length scales.

A possible ultimate fate of the theory is confinement into a phase where the SO(5)
symmetry is broken by the condensation of a Lorentz-invariant fermion bilinear, which
transforms as a vector under SO(5) symmetry. Remarkably, the five components of this
SO(5) vector turn out to be precisely the Néel (Nx,y,z) and VBS (V1,2, see (16.36)) order
parameters that appeared in the bosonic-spinon theory in Section 28.1; we have

(V1,V2,Nx,Ny,Nz) = Tr(X̄ΓΓΓX) , (28.22)

with

ΓΓΓ = (µz,−µx,σ xµy,σ yµy,σ zµy) , (28.23)

where µa are Pauli matrices acting on the valley index.

28.4 GaplessZ2 Spin Liquid on the Square Lattice

Recent numerical studies of frustrated square lattice Hamiltonians [43, 78, 79, 112,
161, 192, 296] have provided evidence for an extended intermediate gapless spin liquid
between the Néel and VBS states of Fig. 28.1. An attractive candidate for this phase is
a gapless Z2 spin liquid [257]. Unlike the gapless U(1) spin liquids examined above, the
gaplessZ2 spin liquid is stable to gauge fluctuations over at least some regime of param-
eters because the gauge sector is gapped, that is, even though the spinons are gapless,

https://doi.org/10.1017/9781009212717.029 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.029


347 28.4 GaplessZ2 Spin Liquid on the Square Lattice

teiφtFigure 28.2 Staggered flux hopping.

the visons remain gapped. The gapped visons are sufficient to retain Z2 topological
order.

I describe here a gapless Z2 spin liquid obtained by turning on a dxy pairing
between the spinons in a U(1) staggered flux phase. This pairing amplitude acts like a
charge-2 Higgs field, and higgses the U(1) gauge symmetry down to Z2. This parallels
the situation found for bosonic spinons in Chapter 15.

We employ the staggered flux hopping for the fermionic spinons fiα shown in
Fig 28.2. After turning on pairing in the dxy channel, and introducing fermions fAα ,
fBα on the two sublattices, we find the Hamiltonian acting on ( fA,k↑, fB,k↑, f †

A,−k,↓,

f †
B,−k,↓)

T :

H(k) =


0 Ak Bk 0

A∗k 0 0 −Bk
B∗k 0 0 −A∗k
0 −B∗k −Ak 0

 , (28.24)

where

Ak =−2t(e−iϕ cos(kx)+ eiϕ cos(ky)) , Bk = 4∆eiθ sin(kx)sin(ky) . (28.25)

Nowwe have taken a general complex dxy order parameter ∆eiθ ; for the choice of gauge
in Fig. 28.2, it has opposite signs on the two sublattices:

∆A,xy = ∆eiθ , ∆B,xy =−∆eiθ . (28.26)

The eigenvalues of (28.24) are

ε2
k = [Im(Ak)]

2 +[Re(Ak)±|Bk|]2 , (28.27)

which is independent of θ . This dispersion is plotted in Fig. (28.3). Note the presence
of Dirac nodal points, representing gapless spinon excitations. The dispersion does not
have full square-lattice symmetries. However, spinons are not individually observable,
and so this does not necessarily imply that square-lattice symmetry has been broken.
We have to examine gauge-invariant products of the bond variables, and confirm that
all such products do indeed preserve square-lattice symmetry [306].
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348 28 Gapless Spin Liquids

tFigure 28.3 Dispersion in (28.27) for t = 1, ϕ = 0.6,∆ = 0.3.

TheU(1) gauge transformation in the staggered flux phase acts in a uniformmanner,
fiα → fiα eiρi . Consequently, the dxy pairing ∆eiθ does indeed act like a charge-2 Higgs
field, which higgs the photon, and leaves a phase with Z2 topological order.
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29 Kondo Impurity Model

The Kondo model describes a magnetic impurity in a metal. The renormalization-
group and a large-N analysis show that the mobile electrons screen a spin S = 1/2
impurity so that it resembles a non-magnetic impurity at temperatures below the
Kondo temperature. The Bose Kondomodel of an impurity in an insulating quantum-
critical magnet is also described.

The Kondo impurity model was introduced to describe the behavior of impurities
of transition metal ions (e.g., Mn) in simple metals (e.g., Cu). It was observed that
the impurity ion acquires a local magnetic moment that interacts non-trivially with
the host conduction electrons. More recently, similar models have also been used to
describe small quantum dots coupled to mobile electrons in leads.

The importance of the Kondo model in condensed-matter physics rests on its central
role in the development of our understanding of the consequences of strong inter-
actions in metals. In Chapter 2, we found that strong interactions don’t do much in
metals, apart from renormalizing the effective mass and residue of the quasiparticle
excitations. That ultimately continues to be the case in the simplest Kondo model,
but the strong renormalizations occur in an interesting, non-trivial, but nevertheless
computable manner.

We also consider the “BoseKondo”model in Section 29.5; in this case, the localmag-
netic moment interacts with gapless bosonic excitations in the bulk, such as those that
may be found near a magnetic quantum phase transition. Strictly speaking, this model
does not apply to a correlated metal; however, we see a close connection in Chapter 33
to the Sachdev–Ye–Kitaev model of a correlated metal studied in Chapter 32.

29.1 Resonant-Level Model

We begin by a simple model of non-interacting electrons on a lattice with a single
impurity (see Fig. 29.1)

HRLM = ∑
k,α

εkc†
kα ckα +∑

α

[
εd d†

α dα −w
(

d†
α c0α + c†

0α dα

)]
. (29.1)
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352 29 Kondo Impurity Model

tFigure 29.1 Resonant-level model of free electrons: conduction electrons cα hybridize with a localized dα state with amplitude
w. The cα move on a d > 1-dimensional lattice, although only one dimension is shown.

tFigure 29.2 Feynman diagrams forGdd and the conduction electrons.

The ckα are the conduction electrons with dispersion εk in a perfect lattice. They scatter
off an additional impurity atom at the origin of spatial coordinates, and the electron
on the impurity atom is represented by dα . The scattering is represented by the tun-
neling matrix element w between the impurity atom and the lattice site at the origin,
with

c0α ≡
1√
V ∑

k
ckα . (29.2)

This is a model of non-interacting electrons, and despite the lack of translational
invariance, it is not difficult to solve it exactly. We can sum all the Feynman dia-
grams in powers of w, as shown in Fig. 29.2, and obtain the Green’s function of the d
electron

[Gdd(iωn)]
−1 = iωn− εd−

1
V ∑

k

w2

iωn− εk

= iωn− εd−
∫

dε
d(ε)w2

iωn− ε
, (29.3)

where d(ε) is the single spin density of states of the conduction electrons. We approx-
imate the density of states by its value of the Fermi level, d(0), and absorb the real
part of the integral over ε into a renormalization of εd . Then we obtain the final
answer

Gdd(iωn) =
1

iωn− εd + iΓsgn(ωn)
, (29.4)

where

Γ = πw2d(0) . (29.5)

The density of electronic states on the d site is now seen to be Lorentzian of width Γ:
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353 29.1 Resonant-Level Model

ρd(ω) =− 1
π
ImGdd(ω + iη)

=
1
π

Γ
(ω− εd)2 +Γ2 . (29.6)

This is the resonant level: the d electron is mostly on the d site with energy εd , but it has
a lifetime of 1/Γ, as it can “decay” by coherent tunneling into the conduction band. The
quotes around decay indicate that this is not an incoherent decay involving exchange
of energy with other electrons, and the single-particle eigenstates of HRLM are infinitely
long lived, albeit not plane waves. We can also obtain the conduction-electron Green’s
function, which is now not diagonal in k:

G(k,p, iωn) =
δk,p

iωn− εk
+

w2

V
Gdd(iωn)

(iωn− εk)(iωn− εp)
. (29.7)

Unlike the case of the Fermi liquid, notice now that ImG−1
dd (z) does not vanish as

z→ 0 (as in (2.38) and (2.39)), but equals the non-zero constant Γ. This is a conse-
quence of the lack of translational invariance, not the breakdown of the quasiparticle
concept. The width of the resonant level Γ signifies a coherent mixing of the localized
d-level state with the continuumof conduction-electron states. It is not ameasure of the
scattering of quasiparticles that exchange energy, which we considered in Chapter 2.
So, in disordered systems, we have to use more complicated correlators to deduce the
lifetime of the true quasiparticles, which are not momentum eigenstates (as we see in
Section 30.2.2).

For subsequent considerations when we include the effect of interactions, it is useful
to characterize the system by its response to a uniform applied Zeeman field coupling
as −h∑i Szi, where S⃗i is the electron spin operator on the site i. We characterize the
response by the local spin susceptibility χi = ⟨Szi⟩/h. For a system without an impurity
(or far from the impurity, when present), this spin susceptibility can be computed just
like the compressibility, and we obtain the Pauli susceptibility of a metal χP (which is
the spin susceptibility per unit volume):

χP =
d(0)

2
. (29.8)

With an impurity, we are interested in the behavior of χi in the vicinity of the impu-
rity. In the “flat density of states” approximation, which was made between (29.3) and
(29.4), the response on the d site is dominated entirely by the response to the local field;
then we can easily compute the impurity susceptibility on the d site as

χimp =−
T
2 ∑

ωn

[Gdd(iωn)]
2

=
Γ

2π(ε2
d +Γ2)

. (29.9)

At resonance, that is, for a d level that is at the Fermi level (εd = 0) and Γ small, the
susceptibility χimp ∼ 1/Γ is greatly enhanced over other sites.
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29.2 Adding Interactions

Now we add interactions to HRLM. It is not difficult to argue that interactions in the
conduction band will not do much, and merely renormalize the bare conducting elec-
trons to electron-like quasiparticles with a modified dispersion. However, interactions
on the impurity site can have a strong effect, and we only include those. In the applica-
tions to quantum dots, this is the analog of including the “Coulomb blockade” on the
quantum dot. In this manner, we obtain the Hamiltonian of the Anderson impurity
model:

HA = HRLM +Ud d†
↑d↑d

†
↓d↓ . (29.10)

In the context of the perturbation theory in U , it is easy to see from the diagrammatic
perturbation expansion in Fig. 29.2 that the relationship between the conduction-
electron and d-electron Green’s function in (29.7) still applies – we simply have to
replace the d Green’s function by a renormalized Green’s function including all inter-
actions. These interactions modify the form of the d-electron Green’s function from
(29.3) to

[Gdd(iωn)]
−1 = iωn− εd−Σdd(iωn)−

1
V ∑

k

|w|2

iωn− εk
. (29.11)

Here, Σdd(iωn) is the only change from the presence of the interaction Ud .
The task for the remainder of this chapter is to understand the behavior of Σdd as a

function of temperature and frequency for largeUd , and deduce consequences for other
physical observables. A first guess would be to simply compute Σdd(ω) in a perturbative
expansion in powers ofUd , and hope that the result applies also for largeUd , as it did for
Fermi liquid theory, albeit with possibly large renormalizations of various parameters.
In fact, this hope is realized. However, it took some time for the condensed-matter
community to appreciate this, and much new physics emerged from understanding the
intricate structure of the crossover to largeUd in this analysis. An important part of the
new physics is the emergence of a new energy scale, the Kondo temperature TK , which
can be much smaller than all other energy scales when Ud is large. For T ≪ TK , we do
indeed realize the Fermi liquid behavior of a non-interacting resonant-level model, but
with strong renormalizations. And for TK≪ T ≪ EF , we have “local-moment” physics,
which we describe shortly.

The analysis for large Ud proceeds most naturally, as it did for the Hubbard model
in Section 9.1, by performing a canonical transformation to an effective Hamiltonian
acting on the low-energy subspace. This turns out to be the Kondo Hamiltonian. Let
us examine the spectrum on the d level, in the limit that |εd | and Ud are much larger
than w. Then there are four possible states on the d level, with energies

|0⟩ ⇒ E = 0,

d†
α |0⟩ ⇒ E = εd ,

d†
↑d

†
↓ |0⟩ ⇒ E = 2εd +Ud . (29.12)
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tFigure 29.3 Kondo impurity model: conduction electrons cα with a spin Sd and exchange interactions JK .

The non-trivial situation arises when εd≪ 0,2εd +Ud . In this case, the d level is doubly
degenerate, and has either a spin-up or a spin-down electron, and other states on the
d site have a much larger energy. This is precisely the analog of the situation in the
square-lattice Hubbard model in Section 9.1, where we replaced each site by an S = 1/2
spin, and derived an effective superexchange interaction between them. In the present
situation, we only replace the d site by an S = 1/2 spin and, by a very similar Schrieffer–
Wolff transformation, we obtain the celebrated Kondo impurity model, sketched in
Fig. 29.3:

HK = ∑
k

εkc†
kα ckα + JKSd · c†

0α
σσσαβ

2
c0β . (29.13)

Here, Sd is an S = 1/2 spin operator acting on the two states d†
↑ |0⟩, d†

↓ |0⟩ on the d
site, and we recall (29.2) for the conduction-electron operator on the impurity site c0α .
So HK describes the conduction electrons interacting with an S = 1/2 spin with an
exchange interaction JK , which is antiferromagnetic; as in the Hubbard model, the
Kondo exchange interaction is antiferromagnetic. Its value is

JK = 2w2
(

1
−εd

+
1

εd +Ud

)
. (29.14)

Note that for εd ≪ 0,2εd +Ud , both energy denominators are large and positive. If we
take the limit of two sites, which we considered for the Hubbard model, this reduces to
the familiar expression J = 4t2/U . The Schrieffer–Wolff transformation also generates
an additional potential scattering term ∼ w2/Ud for the conduction electrons, which
we have dropped in (29.13).

29.3 Renormalization Theory

As a first step towards understanding the large-Ud limit, we can perform a perturba-
tion expansion of HK in powers of JK . As we see below, such an expansion leads to
correlators that have a logarithmic dependence upon external frequency (at T = 0).
This naturally suggests an application of the renormalization group, which allows us
to resum the logarithmically singular terms. From such an analysis we find that the
system becomes strongly coupled below an energy scale TK , which is non-zero even for
very small JK ; an estimate of TK is given below. The perturbative expansion in JK fails
for temperatures T < TK , and this strong coupling regime is addressed systematically
in Section 29.4 by another method.
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Generating a perturbation expansion in powers of JK is not entirely straightforward
because the d spins are now no longer free fermions, and there is no Wick’s theo-
rem for the correlations of the spin operators. However, it is nevertheless possible to
use diagrammatic methods by using the Schwinger fermion decomposition of the spin
operator in (22.3) along with the unit fermion constraint in (22.4); in our case there is
no site index, and we perform this decomposition of the d spin:

Sd =
1
2

f †
α σσσαβ fβ , f †

α fα = 1. (29.15)

Remarkably, for the case of single spin, it is possible to impose the constraint in (29.15)
exactly, diagram by diagram, using the Abrikosov method. This method involves
imposing a chemical potential −λ on the Schwinger fermions, and taking the λ →
∞ limit to impose the single fermion constraint. So we consider the Hamiltonian,
generalizing (29.13),

HK = ∑
k

εkc†
kα ckα +λ f †

α fα + JK

(
f †
γ

σσσ γδ

2
fδ

)
·
(

c†
0α

σσσαβ

2
c0β

)
. (29.16)

The constraint in (29.15) is implemented by computing
〈
O f †

α fα

〉
λ

/〈
f †
α fα

〉
λ
, where

O is any observable, and taking the limit λ → ∞. In practice, this is straightforward
to implement, and usually involves omitting graphs in which the fα flow both forward
and backward in time. Note also that we are now representing the impurity spin by a
single fermionic spinon fα . This is not the same as the original d fermion because it
obeys the constraint in (29.15).

The key physics of the Kondo model becomes evident upon considering the renor-
malization of the JK coupling to second order in J2

K . This is given by the two graphs in
Fig. 29.4. The first graph in Fig. 29.4 evaluates to

tFigure 29.4 Renormalization of the Kondo exchange coupling JK . The full line is the spinon fα , while the dashed line is the
conduction electron.
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J2
K
2

1
V ∑

k

∫ dΩ
2π

1
(iΩ− εk)(iω− iε + iΩ−λ )

=
J2

K
2

1
V ∑

k

θ(−εk)
iω− iε + εk−λ

, (29.17)

while the second evaluates to

J2
K
2

1
V ∑

k

∫ dΩ
2π

1
(iΩ− εk)(iω + iε− iΩ−λ )

=
J2

K
2

1
V ∑

k

−θ(−εk)
iω + iε− εk−λ

. (29.18)

We should take the frequency of the incoming spinon to be just above threshhold,
with iω−λ small. We can also set the frequency of the external conduction electron to
zero, ε . Then, the integral over k leads to a logarithmic dependence upon the external
frequency of the spinon. As in Section 25.2.3, we can treat this using the renormaliza-
tion group, by only integrating out high-energy conduction electrons. In the simplest
model, we assume a flat band density of states that extends for |εk| < D, where 2D is
the bandwith. In the renormalization-group computation, we only integrate out the
highest-energy electrons with D−δD < |εk|< D. Then, the sum of (29.17) and (29.18)
evaluates to a renormalization of the exchange coupling:

JK → JK +
J2

K
V ∑

D−δD<−εk<D

1
εk

. (29.19)

Performing the k integral, and writing δD = Dδℓ, we obtain the “poor person”
renormalization-group flow

dJK

dℓ
= d(0)J2

K +O(J3
K) . (29.20)

This flow is sketched in Fig. 29.5. For the ferromagnetic Kondo problem, JK < 0, the
renormalization-group flow is towards JK = 0: in this case the impurity spin is essen-
tially decoupled from the conduction electrons, and its coupling to the conduction
electrons can be treated perturbatively. However, our interest here is the antiferro-
magnetic case, with JK > 0, in which case (29.20) informs us that JK increases without
bound under the renormalization-group flow, no matter how small the initial positive
value of JK . Specifically, the integral of (29.20) is

JK(ℓ) =
1

1/JK(0)−d(0)ℓ
. (29.21)

tFigure 29.5 Flow of the renormalization-group equation (29.20). For ferromagnetic exchange, JK < 0, the flow is to the fixed
point at JK = 0. For antiferromagnetic exchange, JK > 0, the flow is towards strong coupling, JK → ∞.
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358 29 Kondo Impurity Model

If we now start with a very small positive bare value JK(ℓ= 0), we see from (29.21) that
the renormalized exchange is of order unity at ℓ= ℓ∗ ∼ 1/(d(0)JK); equivalently, when
De−ℓ

∗ ∼ TK , where TK is the Kondo temperature,

TK ∼ Dexp
(
− 1

JKd(0)

)
. (29.22)

From the point of view of the Kondo Hamiltonian, the expression for TK is non-
perturbative, given its singular dependence upon JK . However, one should note that
this expression is ultimately non-singular at small Ud as Ud ∼ 1/JK : this is a hint that
the low-energy physics is actually adiabatically connected to the free resonant-level
model, albeit with strong renormalizations, as we now discuss. But first, it should be
noted that the flow of JK to infinity predicted by (29.20) is not a reliable prediction of
the present analysis because we cannot trust (29.20) when JK becomes large – it was
obtained in a perturbative expansion in JK . Computations by Wilson using a numeri-
cal renormalization-group scheme showed that the flow is indeed to JK → ∞, and the
predictions of (29.20) are qualitatively correct.

Given this flow to large JK , we can understand the qualitative fate of the model by
examining the ground state of HK in the limit of large JK . In this limit, the energy is
minimized if the impurity spin Sd locks into a spin singlet with a single conduction
electron at the site 0. No other electron can occupy this site, and therefore we can
describe the remaining electrons by the renormalized free-electron Hamiltonian

HR = ∑
k,α

εkc†
kα ckα +V0c†

0α c0α (29.23)

and take the limit V0→ ∞ to prevent any other electrons from occupying the impurity
site. As HR is free-electron-like, and there are no dynamical degrees of freedom at the
impurity, it is not difficult to take this limit using scattering theory, and we obtain
an effective Fermi-liquid description of the scattering states. Indeed, the remarkable
conclusion is that in the strong coupling limit at T ≪ TK , the Kondo model reduces to
a model of non-interacting electrons qualitatively similar to the resonant-level model
of Section 29.1.

We can use this interpretation to deduce some important features of the T depen-
dence of the impurity spin susceptibility χimp, introduced towards the end of Sec-
tion 29.1. At temperatures T ≫ TK , the perturbation theory in JK is reliable, and so,
at leading order, the impurity susceptibility is given by the Curie susceptibility of an
isolated spin-1/2 electron:

χimp =
1

4T
, TK ≪ T ≪Ud . (29.24)

For T ≪ TK , we expect a mapping to the resonant-level model, which has a finite impu-
rity susceptibility∼ 1/Γ, as obtained in (29.9). This χimp is determined by the width of
the resonant level Γ, and a natural guess is that the width of the Kondo “resonance”
(as it is known) should be TK . So we have

χimp ∼
1

TK
, T ≪ TK , (29.25)
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where the coefficient depends upon the precise definition of TK .We can combine (29.24)
and (29.25) into a crossover function between the two limiting regimes:

χimp =
1

4T
Φ(T/TK) . (29.26)

An important implication of the Kondo renormalization-group flow is that the
crossover function Φ(T̄ ) is a universal function for JK ≪ D, determined by the
renormalization-group flow of the Kondo model from JK = 0 to JK = ∞. At T̄ ≫ 1,
Φ→ 1 so that we have the susceptibility of a free moment. For T̄ ≪ 1 we have Φ(T̄ )∼ T̄
so that χimp is finite.

Similar universal crossovers apply to other observables of a Kondo impurity in a
metal.

29.4 Large-M Theory

This section describes a method [109] that can yield explicit results for crossover func-
tions such as those in (29.26). This is obtained by generalizing the SU(2) spin symmetry
of the Kondo model to SU(M), and examining the large-M limit, similar to those
employed for spin liquids in Chapters 15 and 22. It yields the correct qualitative behav-
ior both at low and high T , and the crossover between these limits. And, as we see in
Chapter 30, the large M is also a powerful tool in examining the Kondo lattice model.

First, we realize the spin Sd by the spinon fα in (29.15). In this section, we implement
the constraint in (29.15) by a Lagrange multiplier in the path integral, in contrast to
the Abrikosov method in Section 29.3.

To enable the generalization to SU(M), we first write the SU(2) model in a manner
which does not involve the Pauli matrices. We use the identity

σσσαβ ·σσσ γδ = 2δαδ δβγ −δαβ δγδ (29.27)

to write the Kondo interaction as

JK

2
Sd · c†

0γ σσσ γδ c0δ =−JK

2
(

f †
α c0α

)(
c†

0β fβ

)
− JK

4
(

f †
α fα

)(
c†

0β c0β

)
. (29.28)

After using the constraint in (29.15), the second term in (29.28) is just a shift in the local
chemical potential, and we will ignore it from now on. The generalization to SU(M) is
now straightforward; the indices α,β = 1, . . . ,M, and the constraint is

f †
α fα =

M
2
. (29.29)

As we see below, to obtain a suitable large-M saddle point, we also need to replace JK/2
by JK/M.

We can now write the path integral for the Kondo model:

ZK =
∫
D fαDckαDλ exp

(
−
∫ β

0
dτ [L0 +L1]

)
,
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L0 = ∑
k

c†
kα

(
∂

∂τ
+ εk

)
ckα + f †

α

(
∂

∂τ
+ iλ

)
fα − iλ

M
2
,

L1 =−
JK

M

(
f †
α c0α

)(
c†

0β fβ

)
. (29.30)

The large-M theory is obtained by a method parallel to that followed in obtaining
the Landau–Ginzburg theory from the Bardeen–Cooper–Schrieffer (BCS) theory in
Chapter 6. We decouple the Kondo exchange term by a Hubbard–Stratonovich field
P(τ). Then we obtain

ZK =
∫
DλDPD fαDckα exp

(
−
∫ β

0
dτ [L0 +LQ]

)
,

LQ =
M|P|2

JK
−P f †

α c0α −P∗c†
0α fα . (29.31)

Before proceeding, we notice an important property of ZK : it is invariant under an
emergent U(1) gauge symmetry, under which

fα → fα eiϕ(τ),

P→ Peiϕ(τ),

λ → λ − ∂ϕ
∂τ

. (29.32)

This gauge symmetry is not so crucial in the Kondo model, as it is always possible to
work in a convenient fixed gauge, but it will play a crucial role when we consider the
Kondo lattice in Chapter 30. Clearly, this gauge symmetry is closely connected to that
encountered in (22.10) in the study of spin liquids in Part IV.

We return to taking the large-M limit of ZK . In the form (29.31), the action is
quadratic in the fermions, and so we can integrate them out. As all the fermions have
M components, this yields an effective action for P and λ , which has an M prefactor.
Consequently, the large-M limit is obtained by replacing P and λ by their saddle-point
values. We go ahead and do this and replace P by P, and iλ by λ (we are anticipating
here that the saddle-point value of λ is purely imaginary). Then the problem reduces
to the following free-fermion Hamiltonian

HK =
M|P|2

JK
−P f †

α c0α −P∗c†
0α fα +∑

k
εkc†

kα ckα

+ λ f †
α fα −λ

M
2
. (29.33)

Our remaining task is to find the ground-state energy of HK , and demand that it is
stationary with respect to variations in P and λ . The latter task is simplified by the
Feynman–Hellman theorem: in any eigenstate |G⟩ of HK we have

∂
∂P∗
⟨G|HK |G⟩= ⟨G|

∂HK

∂P∗
|G⟩ (29.34)

and so

P =
JK

M

〈
c†

0α fα

〉
. (29.35)
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Similarly, the corresponding equation for λ is

1
M

〈
f †
α fα

〉
=

1
2
. (29.36)

We can evaluate these expectation values from the Green’s functions of HK , which
are the same as those of the resonant-level model, HRLM in (29.1). As in (29.4), we have

G f f (iωn) =
1

iωn−λ + iΓPsgn(ωn)
, (29.37)

where

ΓP = π|P|2d(0) , (29.38)

and

G f c0 =−G f f (iωn)
P
V ∑

k

1
iωn− εk

. (29.39)

For the frequency summations required for (29.35) and (29.36), we employ the spectral
representation

G f f (iωn) =
∫ ∞

−∞

dΩ
π

A f (Ω)

iωn−Ω
, (29.40)

where

A f (Ω) =
ΓP

(Ω−λ )2 +Γ2
P

(29.41)

is the Lorentzian spectral density of the f level. Then, (29.35) becomes

P =
JKP
V

∫ ∞

−∞

dΩ
π

A f (Ω)∑
k

T ∑
ωn

−1
(iωn− εk)(iωn−Ω)

= JKP
∫ ∞

−∞

dΩ
π

A f (Ω)
∫

dε d(ε)
f (ε)− f (Ω)

Ω− ε
. (29.42)

Similarly, (29.36) is ∫ ∞

−∞

dΩ
π

A f (Ω) f (Ω) =
1
2
. (29.43)

We now have to determine the saddle-point values of P and λ by solving (29.42) and
(29.43). Fortunately, the solution of (29.43) is simple:

λ = 0 , (29.44)

because then we pick up exactly half of the Lorentzian spectral density. So the renor-
malized f level is exactly at the Fermi level, which means it is exactly resonant (this is
sometimes called the Abrikosov–Suhl or Kondo resonance). The value of P is deter-
mined by (29.42), which is the analog here of the BCS equation that determined the
gap parameter. We first evaluate the integral of ε in the limit of a flat density of states
at T = 0 ∫

dε d(ε)
f (ε)− f (Ω)

Ω− ε
≈ d(0)

∫ D

−D
dε

θ(−ε)−θ(−Ω)

Ω− ε
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= d(0)
[

ln
∣∣∣∣D+Ω

Ω

∣∣∣∣−θ(−Ω) ln
∣∣∣∣D+Ω
D−Ω

∣∣∣∣]
≈ d(0) ln

∣∣∣∣DΩ
∣∣∣∣ , (29.45)

when |Ω| ∼ ΓP≪ D. So (29.42) yields

1
JKd(0)

=
∫ ∞

−∞

dΩ
π

A f (Ω) ln
∣∣∣∣DΩ
∣∣∣∣

= ln
(

D
ΓP

)
. (29.46)

So, we have our main result: the value of P is determined by (29.38) from the width of
the Kondo resonance, which is

ΓP = Dexp
(
− 1

JKd(0)

)
, (29.47)

consistent with the estimate of theKondo temperature in (29.22).We can now compute
other physical properties in the large-M expansion, and it is natural that they will be
determined by the exponentially low-energy scale ΓP in (29.47).

29.5 Bose KondoModel

This section briefly considers a model in which the impurity spin is in an insulator,
and the free-fermion environment is replaced by low-energy bosonic spin fluctuations.
Such a model arises in the presence of a vacancy in an antiferromagnet, as illustrated
in Fig. 29.6. The coupling between the spin and the bulk spin excitations is particularly
important when the bulk undergoes a quantum phase transition; in Fig. 29.6, such a
transition can be realized by tuning the value of J2/J1, when there is a transition from
a trivial gapped paramagnet to a magnetically ordered Néel state. The Bose Kondo

J1

J2
(a) (b)tFigure 29.6 A coupled ladder antiferromagnet with antiferromagnetic bonds J1 and weaker antiferromagnetic bonds J2, with a

single vacancy. We are interested in the behavior of the impurity spin while the bulk undergoes a quantum phase
transition from a trivial gapped paramagnet in (a), to a Néel state in (b), with increasing J2/J1. The ellipses in (a)
respresent valence bonds, as in Fig. 13.1.
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363 29.5 Bose Kondo Model

problem we consider here will also be relevant for analyzing certain random quantum
spin liquids in Section 33.3.2.

The bulk transition in Fig. 29.6 is described by the relativistic field theory of a
three-component real scalar field ϕa in 2+1 dimensions in (10.2), as has been discussed
at length in the QPT book. Here, in the interests of simplicity, we neglect the self-
interaction u in (10.2), which is actually important to describ the physical situation in
Fig. 29.6. So the field ϕa will be Gaussian, and the coupling of such a field to an impu-
rity spin was considered by Sengupta [255] and others [23, 57, 189, 238, 293, 300]. The
effects of u were described in Ref. [57, 238, 293], but will not be considered here.

We consider the model that generalizes the SU(2) spin-rotation symmetry to SU(M),
as this will be important for the application in Section 33.3.2. In this case, the impurity
spin Sa, and the bulk scalar field ϕa both have a = 1, . . . , M2− 1. So we examine the
Hamiltonian

Himp = γ0 Sa ϕa(0)+
1
2

∫
ddx
[
π2

a +(∂xϕa)
2] . (29.48)

Here, x is the d-dimensional bulk spatial coordinate, ϕa(x) is the scalar field, and πa(x)
is its canonically conjugate momentum. The “Kondo” coupling between the spin and
the bulk is γ0, and we are interested in its renormalization-group flow.

The SU(M) spin Sa acts on the antisymmetric, self-conjugate representation of
SU(M). Such a spin can be realized by fermions (“spinons”) fα , α = 1, . . . , M, obeying
the constraint

∑
α

f †
α fα =

M
2
, (29.49)

and the operator representation

Sa = f †
α T a

αβ fβ , (29.50)

where the matrices T a (which are 1/2 times the Pauli matrices for M = 2) obey

Tr(T aT b) =
1
2

δ ab, T aT a =
M2−1

2M
·1 , T a

αβ T a
γδ =

1
2

(
δαδ δβγ −

1
M

δαβ δγδ

)
.

(29.51)

Far from the impurity, the time-dependent correlators of the scalar field are

⟨ϕ(x,τ)ϕ(x,0)⟩ ∼ 1
|τ|2−ε , |x| → ∞ , (29.52)

where ε = 3−d; this can be deduced from the x≪ ξ case of (10.26). Our task here is to
determine the exponent, α , characterizing the autocorrelation function of the impurity
spin

⟨Sa(τ)Sa(0)⟩ ∼ 1
|τ|α

. (29.53)

We restrict our attention to d < 3 (i.e., ε > 0) when the coupling γ0 is relevant, and
the spin-autocorrelation function cannot be determined by bare perturbation theory
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in γ0. I present in Section 29.5.1 a renormalization-group analysis in powers of ε , and
the main result is that

α = ε (29.54)

to all orders in ε and γ0 [293], and for all M.
Note that a result of the form in (29.53) implies that the impurity spin is not screened,

unlike the fermion Kondo problem considered in earlier sections of this chapter. The
Bose Kondo coupling γ0 does not flow to infinity under renormalization, as does the
fermionKondo coupling JK . Instead, as we see below, γ0 is attracted to a finite coupling
fixed point, which leads to the critical scaling in (29.53).

29.5.1 Renormalization-Group Analysis

The main input to the renormalization-group analysis is a perturbative evaluation of
the impurity spin autocorrelator in powers of γ0. I only present the one-loop results
here, although a two-loop evaluation has been given in Refs. [122, 293]. We follow the
strategy of Ref. [293] and use time-ordered perturbation theory to expand the correla-
tor in powers of γ0, insert the two-point correlators of the bulk fields, and then explicitly
evaluate the traces over the Sa. We write the correlator as

⟨Sa(τ)Sa(0)⟩= N
D
, (29.55)

and the perturbative expansions of the numerator and denominator are represented by
the diagrams shown in Figs. 29.7 and 29.8. Note that these are not Feynman diagrams,
and there is no Wick’s theorem. The oriented line represents the worldline of the spin,
and the diagrams indicate the ordering of the operators whose traces are to be evalu-
ated. The numerator and denominator have to be evaluated separately, and there is no
automatic cancellation of disconnected contributions. The diagrams in Figs. 29.7 and
29.8 yield

D = 1+ γ2
0 L0

(
D1ϕ +D2ϕ +D3ϕ

)
, (29.56)

N = L0 + γ2
0
(
L1D1ϕ +L2D2ϕ +L3D3ϕ

)
, (29.57)

tFigure 29.7 Diagrams contributing to the denominatorD in (29.56), of (29.55). The oriented line denotes the trajectory of the
SU(M) spin in imaginary time, a filled circle is a γ0 vertex, and the spiral curve denotes the ϕ propagator.
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tFigure 29.8 Diagrams contributing to the numeratorN in (29.57), of (29.55). Conventions as in Fig. 29.7, and an open circle
denotes the external Sa operator.

where the average over the group representation ⟨O⟩ ≡ (TrO)/(Tr1) is carried out by
the expressions

L0 = ⟨SaSa⟩= M(M+1)/8,

L1 =
〈

SaSbSbSa
〉
= L2

0,

L2 =
〈

SaSaSbSb
〉
= L2

0,

L3 =
〈

SaSbSaSb
〉
= M2(M+1)(M−3)/64 . (29.58)

Also,

D1ϕ =
∫ τ

0
dτ1

∫ τ

τ1

dτ2Gϕ (τ1− τ2) =−
S̃d+1τε

ε(1− ε)
,

D2ϕ =
∫ β

τ
dτ1

∫ β

τ1

dτ2Gϕ (τ1− τ2) =−
S̃d+1τε

ε(1− ε)
,

D3ϕ =
∫ τ

0
dτ1

∫ β

τ
dτ2Gϕ (τ1− τ2) =

2S̃d+1τε

ε(1− ε)
. (29.59)

Note we evaluate the above integrals at T = 0, by extending the integrals appropriately
as explained in Ref. [293]. Here,

Gϕ (τ) =
∫ ddk

(2π)d
dω
2π

e−iωτ

k2 +ω2 =
S̃d+1

|τ|d−1 , (29.60)

with S̃d = Γ(d/2−1)/(4πd/2).
We can nowapply these perturbation-theory results to compute the renormalization-

group equations. In the usual field-theoretic renormalization group, the perturbative
results for the Sa correlator can be used to fix its renormalization constant

Sa =
√

ZsSa
R. (29.61)

Similarly, we define a renormalized couplings constant by

γ0 =
µε/2Zγ√

S̃d+1

γ, (29.62)
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where µ is a renormalization scale. Because of the simple bilinear structure of the γ0

term in (29.48), it is easy to see that the same graphs contribute to the renormalization
constants Zs and Zγ , and we obtain an exact relation to all orders in γ :

ZS =
1

Z2
γ
. (29.63)

It is this relation that leads to the main exponent identity in (29.54). We can see this by
computing the β function of γ and the anomalous spin exponent ηS:

β (γ) = µ
dγ
dµ

, ηS(γ) =
d lnZS

d ln µ
. (29.64)

Then a direct evaluation using (29.61), (29.62), and (29.63) shows that

β (γ) = γ(ηS(γ)− ε) . (29.65)

In other words, at any fixed point of the β function with a non-zero γ , we must have
ηS(γ) = ε , and hence (29.54) holds.

It remains to show that a such a fixed point actually exists, and is attractive in the
flow to low energies. This we can only do order by order in γ , and the function β (γ) is
not known exactly. To the order we have computed results above, we have

ZS = 1− γ2

ε
Lγ , (29.66)

where

Lγ =
L1 +L2−2L3

L0
= M . (29.67)

This yields the β function

β (γ) =−ε
2

γ +
M
2

γ3 +O(γ5) . (29.68)

So the needed attractive fixed point is indeed present in the flow to low energies at
γ∗ = (ε/M)1/2, at least at this order in perturbation theory. I emphasize that although
there are higher-order corrections in (29.68), there are no such corrections to (29.54).
This fact is important later in Section 33.3.2.

Problems

29.1 (a) Consider a generic free-electron Hamiltonian of the form

H = ∑
a,b

c†
ahabcb (29.69)
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and let ϕ µ
a be the µ-th eigenvector and εµ the corresponding eigenvalue of the

matrix hab. Show that the Green’s function is

Gab(iωn) = ∑
µ

ϕ µ
a ϕ µ∗

b
iωn− εµ

. (29.70)

Hence, argue that the free energy of H at a temperature T can be written as

F =−T ∑
µ

ln
(

1+ e−εµ/T
)

= T
∫ ∞

−∞

dΩ
π

ln
(

1+ e−Ω/T
)
∑
a

ImGaa(Ω+ iη) . (29.71)

(b) Now consider the resonant-levelmodel in (29.1). By thinking of HRLM as acting
on the space of k and d orbitals, show that in the limit V → ∞ the change in
the free energy due to the presence of the d state is

∆F = 2T
∫ ∞

−∞

dΩ
π

ln
(

1+ e−Ω/T
)
ImGdd(Ω+ iη) , (29.72)

along with an additional contribution from G(k,k, iωn). Show that this addi-
tional contribution vanishes for the flat density of states near the Fermi
level.

(c) Now let us apply these formulae for the free energy to the Kondo impurity
model. Take λ = 0 at the outset. Show that the free energy of the impurity
spin in the large-N theory is given by (at N = 2)

FK =
2|Q|2

JK
−2T

∫ ∞

−∞

dΩ
π

ln
(

1+ e−Ω/T
)

A f (Ω) . (29.73)

(d) It now remains to evaluate the integral over Ω to obtain FK as a function of Q,
and then minimize FK to find the optimum value of Q. We consider the case
T → 0. After cutting off the integral in (29.73) at |Ω|= D, show that

FK =
2|Q|2

JK
− Γ

π
ln
(

1+
D2

Γ2

)
, (29.74)

where Γ= π|Q|2d(0). Show that theminimumof (29.74) is always at Q ̸= 0, and
so find that the optimum value of Q for JKd(0)≪ 1 agrees with that obtained
in this chapter.
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30 The Heavy Fermi Liquid

The Kondo lattice model describes a lattice of S = 1/2 spins coupled to a separate
band of mobile electrons. The lattice manifestation of the Kondo effect leads to a
heavy Fermi liquid state, with a large Fermi surface, and quasiparticles with a large
effective mass. The Luttinger relation of Fermi liquid theory on the volume enclosed
by the Fermi surface is described, and applied to the Kondo lattice model.

The Kondo lattice is the preferred model to describe the physics of a number of inter-
metallic compounds. These compounds contain a transition metal or a rare-earth
metal with a localized orbital with strong local Coulomb interactions that prefer a net
magnetic moment on each site. This moment then interacts with the mobile conduc-
tion electrons arising from the lighter elements. The key difference from the previous
chapter is that the moments are not isolated impurity sites, but arranged periodically
in a perfect lattice. So the Bloch crystal momentum is a good quantum number to
describe the electronic states, including those associated with the moments on the elec-
tronic sites. There are also interesting applications of Kondo lattice models to twisted
bilayer graphene [271].

We begin by generalizing the interacting resonant-level model, that is, the Anderson
model in (29.10), to the Anderson lattice model sketched in Fig. 30.1. The resonant
d site is now replaced by a lattice of d sites, each of which mix with the conduction
electrons cα with the hybridization w, and there is an on-site repulsion Ud on every d
site:

HAL = ∑
k

[
εkc†

kα ckα + εd
kd†

kα dkα

]
+∑

i

[
−w
(

d†
iα ciα + c†

iα diα

)
+Ud d†

i↑di↑d
†
i↓di↓

]
.

(30.1)
Note that we neglect the weaker interactions on the c sites. As the two bands mix, only
the total number of electrons is conserved, and we denote the total density per unit cell
as 1+ρc, with 0 < ρc < 1.

tFigure 30.1 Anderson lattice model: conduction-band electrons cα and d-band electrons dα with band-mixing hybridizationw.
Two electrons on the same site of the d band repel with energyUd .
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369 30.1 The Kondo Lattice Heavy Fermi Liquid

tFigure 30.2 Kondo lattice model: conduction electrons cα coupled to S = 1/2 spins S.

We are interested in the large-Ud limit, with the chemical potential chosen so that
there is exactly one electron in every d site, just as in Chapter 29. Then, we can per-
form the Schrieffer–Wolff transformation on (30.1), following the same procedure
as Section 29.2, and hence obtain the lattice generalization of the Kondo impurity
model in (29.13). This Kondo lattice model is sketched in Fig. 30.2. The Kondo lattice
Hamiltonian is expressed in terms of S = 1/2 spins Si on each d site:

HKL = ∑
k

εkc†
kα ckα +

JK

2 ∑
i
Si · c†

iα σσσαβ ciβ . (30.2)

The Schrieffer–Wolff transformation also generates an exchange interaction between
the d sites, but we defer consideration of the resulting Kondo–Heisenberg model until
Section 31.1. As the d sites have electron density that is exactly unity, the density of
conduction electrons is now ρc, as shown in Fig. 30.2.

In Section 30.1, we apply the large-M method [52, 109] to the Kondo lattice model
in (30.2), and find that the Kondo impurity model has a natural and simple general-
ization to the lattice. Kondo screening applies also to the lattice model, and we obtain
a “heavy Fermi liquid” (HFL) state involving both the conduction electrons and the
local moments. This state has a Fermi surface, and the volume enclosed by the Fermi
surfaces counts all electrons: the conduction electrons and the local moments, for a
total density of 1+ρc. The narrow Kondo resonance width translates, as we shall see,
to a large renormalized mass at this large Fermi surface.

In Section 30.2 we turn to a more general consideration of the Luttinger relation,
which constrains the volume enclosed by the Fermi surface in Fermi liquids. We con-
nect this analysis to the Kondo impurity model in Section 30.2.3, and to the Kondo
lattice model in Section 30.2.4.

30.1 The Kondo Lattice Heavy Fermi Liquid

We proceed with an analysis of (30.2) using the large-M approach of Section 29.4.
The initial steps are exactly the same: we represent the spin by constrained fermionic
spinons fiα , now with an additional site label. We impose the constraint by a Lagrange
multiplier λi(τ) on each site, and decouple the Kondo interaction by a Hubbard–
Stratonovich field Pi(τ) on each site. Finally, we reduce the theory to its large-M saddle
point, where theLagrangemultiplier is replaced by a site-independent value iλi(τ)⇒ λ ,
and also Pi(τ)⇒P. Then, the large-M saddle point is replaced by a saddle-pointKondo
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370 30 The Heavy Fermi Liquid

latticeHamiltonian of free fermions generalizing (29.33) (V is now the number of lattice
sites):

HKL =
MV |P|2

JK
+∑

k

[
−P f †

kα ckα −P∗c†
kα fkα + εkc†

kα ckα

]
+λ ∑

k
f †
kα fkα −λ

MV
2

. (30.3)

The most important difference from the impurity model is that the f spinons have
now acquired a momentum label, and the Hamiltonian is diagonal in momentum. The
saddle-point equations determining the values of λ and P are now (replacing (29.35)
and (29.36))

P =
JK

MV ∑
k

〈
c†
kα fkα

〉
, (30.4)

1
2
=

1
MV ∑

k

〈
f †
kα fkα

〉
. (30.5)

We also introduce the density of conduction electrons ρc, which is important for the
following:

ρc

2
=

1
MV ∑

k

〈
c†
kα ckα

〉
. (30.6)

It is easy to compute the Green’s functions of HKL by summing diagrams order by
order in P, as shown in Fig. 30.3 (compare Fig. 29.2 for the resonant-level model). It
is convenient to write them in the following form:

[Gcc(k, iωn)]
−1 = iωn− εk−

|P|2

iωn−λ
, (30.7)

G f c(k, iωn) =
−P

(iωn−λ )
Gcc(k, iωn), (30.8)

G f f (k, iωn) =
1

iωn−λ
+

|P|2

(iωn−λ )2
Gcc(k, iωn). (30.9)

These equations correspond to (29.37)–(29.39) for the resonant-level model. We now
insert G f c in the saddle-point equation (30.4), and obtain

P
JK

=
T
V ∑

k,ωn

−P

(iωn− εk)(iωn−λ )−|P|2
. (30.10)

tFigure 30.3 Feynman diagrams forGcc andG f f . All lines carry the same momentum and frequency.
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371 30.1 The Kondo Lattice Heavy Fermi Liquid

To evaluate the frequency summation, we notice that the denominator in (30.10) has
poles at the energies z = E±k where

2E±k = εk+λ ±
[
(εk−λ )2 +4|P|2

]1/2
. (30.11)

These are, of course, the single-particle eigenenergies of HKL. Evaluating the frequency
summation in (30.10), we obtain (compare to (29.42))

P
JK

=
P
V ∑

k

f (E−k )− f (E+
k )

E+
k −E−k

. (30.12)

Before solving (30.12) we need to constrain the chemical potentials acting on the c
and f fermions. These are fixed by the density ρc of the c fermions in (30.6), and the
constraint (30.5) on the f fermions. It is easier to first fix the total density of fermions,
which leads to the relation

1+ρc =
2
V ∑

k

[
f (E+

k )+ f (E−k )
]
. (30.13)

We work under conditions in which the total density of the conduction electrons per
site ρc < 1. Then, at T = 0, (30.13) shows that we can have E+

k > 0 for all k, while
E−k < 0 for some finite domain of k; this is the portion of the Brillouin zone inside the
Fermi surface (see Fig. 30.4). Similarly, from (30.5), we obtain, at T = 0 (compare to
(29.43)),

tFigure 30.4 Schematic band structure in the HFL phase. In (a), we show the conduction electron band εk , and the decoupled f
band at zero energy; the conduction-electron states with energy εk < 0 are occupied and have densityρc (this
determines the value of k∗F ), while the f band is halffilled. The HFL state is obtained when the mixing between the
bands is non-zero (given byP in (30.19)), and the f band is shifted byλ in (30.17). This results in the bands shown in
(b). Only the lower band in (b) is occupied, up to the wavevector kF , for a total density of 1+ρc. The values of kF in
(a) and (b) are the same, with the value of εkF specified by (30.20). See Fig. 31.2 for a description of how (a) is
modified in the FL* phase.
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372 30 The Heavy Fermi Liquid

1
2
=

1
V ∑

k

1
2

1+
εk−λ[

(εk−λ )2 +4|P|2
]1/2

θ(−E−k ). (30.14)

Returning to (30.12), determining P at T = 0, we obtain

P
JK

=
P
V ∑

k

θ(−E−k )[
(εk−λ )2 +4|P|2

]1/2 . (30.15)

We now have to solve (30.15) and (30.14) to obtain the values of the saddle-point
parameters, λ and P. We will examine the nature of the solution more carefully below
after consideration of the Luttinger theorem. However, we can already notice an
important point: the Kondo logarithmic divergence as P→ 0, found in (29.45) for the
Kondo impurity model, is also present in the Kondo lattice model. This is clear from
(30.15), which has a logarithmic divergence at P = 0 when the conduction band crosses
the f level, that is, when εk = λ , provided the density of conduction-electron states is
finite at the Fermi level. This means that no matter how small we make JK , we can have
a solution with a non-zero P; this is also the lowest-energy solution, and so we obtain
a heavy Fermi liquid. We see in the next section that a minimum-energy solution with
P = 0 becomes possible once we allow the f moments to interact directly with each
other.

30.1.1 Solution of Saddle-Point Equations

We now present an analytic solution of the saddle-point equations (30.13)–(30.15) in
the limit of small P, for the case of a flat band density of states d(ε) = (1/V )∑k δ
(ε− εk)≈ d(0); the structure of the solution is sketched in Fig. 30.4.

The Fermi surface is present at E−k = 0, and from (30.10) this translates to εk =

|P|2/λ . From (30.13), assuming a constant density of states, we therefore deduce that
the limits of the summation over k in (30.13), (30.14), and (30.15) translate into bounds
on εk:

− ρc +1
2d(0)

+
|P|2

λ
< εk <

|P|2

λ
. (30.16)

We can now evaluate (30.14) in the limit P→ 0, and obtain the value of λ :

λ = 2d(0)|P|2. (30.17)

(In contrast, recall that for the Kondo impurity model, we had λ = 0.) We now see
from the upper limit in (30.16) that the Fermi surface is at εk = 1/(2d(0)) when P is
small, but non-zero, as shown in Fig. 30.4. This should be contrasted from the Fermi
surface location εk = 0 for a decoupled conduction-electron band. This increase in εk
is precisely that needed to accomodate the 1/2 electron per site per spin component
associated with the f fermions, that is, we have a large Fermi surface.
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373 30.2 The Luttinger Relation

We can now obtain the value of P by evaluating (30.15) to logarithmic accuracy

1
JK

= 2d(0) ln(D/|P|) , (30.18)

where D is an energy of order of the bandwidth. So P is exponentially small,

|P| ∼ Dexp
(
− 1

2d(0)JK

)
, (30.19)

the same as the estimate for the Kondo impurity model in the argument of the
exponent.

Finally, let us examine the structure of the conduction-electronGreen’s function near
the Fermi level. We expand the expression for Gcc in (30.7) for small ωn, and obtain

Gcc(k, iωn)≈
Z

iωn−Z
[

εk−
1

2d(0)

] , (30.20)

where

Z = |2d(0)P|2 . (30.21)

So there is an exponentially small quasiparticle residue Z, and a quasiparticle effective
mass m∗ = m/Z, which is exponentially large (here m is the band mass associated with
the dispersion εk). Notice also the shift in the Fermi energy in (30.20), illustrated in
Fig. 30.4. These are characteristic properties of the heavy Fermi liquid.

30.2 The Luttinger Relation

In Chapter 2, we alluded to one of the most remarkable features of Fermi liquid the-
ory: the momentum-space volume enclosed by the Fermi surface defined by (2.39) is
independent of the interactions, and depends only on the total electron density. Actu-
ally, this result is more general than Fermi liquid theory, and holds also in non-Fermi
liquids without quasiparticle excitations, as discussed in Chapter 34. Moreover, there
are deep connections of this “classic” result to key ideas in the modern theories of
phases with fractionalization and anomalies; we encounter these connections in Sec-
tion 31.3.2. In Section 30.2.1, we discuss this result in the simplest context of one-band
model considered in Chapter 2, extend to disordered systems in Section 30.2.2, and
consider applications to the Kondo models in Sections 30.2.3 and 30.2.4.

30.2.1 One-BandModel

I present a proof of the Luttinger relation following the classic textbook treatments, but
use an approach that highlights its connections to the modern developments. Specif-
ically, there is a fundamental connection between the Luttinger relation and U(1)
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374 30 The Heavy Fermi Liquid

symmetries [53, 209]: any many-body quantum system has a Luttinger relation asso-
ciated with each U(1) symmetry, and this connects the density of the U(1) charge in
the ground state to the volume enclosed by its Fermi surfaces. This relation applies
both to systems of fermions and bosons, or mixtures of fermions and bosons. How-
ever, the relation does not apply if the U(1) symmetry is “broken” or “higgsed” by the
condensation of a boson carrying the U(1) charge. As bosons are usually condensed
at low temperatures (see Chapter 3), the Luttinger relation is not often mentioned in
the context of bosons. However, there can be situations when bosons do not condense,
for example, if the bosons bind with fermions to form a fermionic molecule, and then
the molecules form a Fermi surface; then we have to apply the Luttinger relation to
the boson density [209].

We begin by noting a simple argument on why there could even be a relation between
a short-time correlator (the density, given by an “ultraviolet” (UV) equal-time corre-
lator) and a long-time correlator (the Fermi surface is the locus of zero short-time
(correlator) energy excitations in a Fermi liquid, an “infrared” (IR) property). In the
fermion path integral (see Appendix B), the free-particle term in the Lagrangian is

L0
c = ∑

p
c†
p

(
∂

∂τ
+ ε0

p −µ
)

cp, (30.22)

where we have now chosen to extract the chemical potential µ explicitly from the bare
dispersion ε0

p . The expression in (30.22) is invariant under global U(1) symmetry:

cp→ cpeiθ , c†
p→ c†

pe
−iθ (30.23)

as are the rest of the terms in the Lagrangian describing the interactions between the
electrons. However, let us now ‘gauge’ this global symmetry by allowing θ to have a
linear dependence on imaginary time τ :

cp→ cpeµτ , c†
p→ c†

pe
−µτ . (30.24)

Note that in the Grassman path integral, cp and c†
p are independent Grassman num-

bers and so the two transformations in (30.24) are not inconsistent with each other. The
interaction terms in the Lagrangian are explicitly invariant under the time-dependent
U(1) transformation in (30.24). The free-particle Lagrangian in (30.22) is not invariant
under (30.24) because of the presence of the time derivative term; however, applica-
tion of (30.24) shows that µ cancels out of the transformed L0

c , and so has completely
dropped out of the path integral. We seem to have reached the absurd conclusion that
the properties of the electron system are independent of µ : this is explicitly incorrect
even for free particles.

What is wrong with the above argument that “gauges away” µ by the transformation
in (30.24)? The answer becomes clear from the expression for the total electron density:

ρe =
1
V ∑

p

∫ ∞

−∞

dω
2π

G(p, iω)eiω0+ . (30.25)

The transformation in (30.24) corresponds to a shift in frequency ω → ω + iµ of the
contour of integration, and this is not permitted because of singularities in G(p, iω).
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375 30.2 The Luttinger Relation

However, as shown below, it is possible to manipulate (30.25) into a part that contains
the full answer, and a remainder that vanishes because manipulations similar to the
failed frequency shift in (30.24) become legal.

The key step to extracting the non-zero part is to use the following simple identity,
which follows directly from Dyson’s equation (2.26):

G(p, iω) = G f f (p, iω)+GLW (p, iω),

G f f (p, iω)≡ i
∂

∂ω
ln [G(p, iω)] ,

GLW (p, iω)≡−iG(p, iω)
∂

∂ω
Σ(p, iω) . (30.26)

The non-zero part is G f f : it is a frequency derivative, and so its frequency integral in
(30.25) is not difficult to evaluate exactly after carefully using the eiω0+ convergence
factor. The subscript of G f f denotes that this the only term that is non-vanishing for
free fermions; indeed, we will see below that the frequency integral of G f f has the
same value for interacting fermions as for free fermions with the same Fermi surface.
The remaining contribution from GLW vanishes for free particles (which have vanishing
Σ). Therefore, establishing the Luttinger relation, that is, the invariance of the volume
enclosed by the Fermi surface, reduces then to establishing that the contribution of
GLW to (30.25) vanishes.

We consider the latter important step first. We would like to show that

∑
p

∫ ∞

−∞

dω
2π

GLW (p, iω) = 0 . (30.27)

We now show that (30.27) follows from the transformations of GLW under the gauge
transformation in (30.24) for an imaginary chemical potential:

cp→ cpe+iω0τ , c†
p→ c†

pe
−iω0τ . (30.28)

The argument relies on the existence of a functional, ΦLW [G(p, iω)], of the Green’s
function, called the Luttinger–Ward functional, so that the self-energy is its functional
derivative

Σ(p, iω) =
δΦLW

δG(p, iω)
. (30.29)

The existence of such a functional can be seen diagrammatically, in which the
Luttinger–Ward functional equals the interaction-dependent terms for the free energy
written in a “skeleton” graph expansion in terms of the fully renormalized Green’s
function. Taking the functional derivative with respect to G(p,ω) is equivalent to cut-
ting a single G from all such graphs in all possible ways, and these are just the graphs for
the self interaction dependent energy. For a more formal argument, see Ref. [208]. An
important property of the Luttinger–Ward functional is its invariance under frequency
shifts:

Φ [G(p, iω + iω0)] = Φ [G(p, iω)] , (30.30)
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for any fixed ω0. Here, we are regarding Φ as a functional of two distinct functions
f1,2(ω), with f1(ω) ≡ G(p, iω + iω0) and f2(ω) = G(p, iω), and Φ evaluates to the
same value for these two functions. Now note that this frequency shift is nothing
but the gauge transformation in (30.28); therefore, (30.30) follows from the fact that
such frequency shifts are allowed in ΦLW . The singularity on the real frequency axis is
sufficiently weak so that the frequency shifts are legal in a Fermi liquid; but we note
that in the non-Fermi liquid Sachdev–Ye–Kitaev model considered in Chapter 32, the
Green’s functions are significantly more singular at ω = 0, and the analogs of (30.27)
and (30.30) do not apply; this is described in Section 32.2.2. For the Fermi liquid, we
can now expand (30.30) to first order in ω0, using (30.29), and integrating by parts we
establish (30.27).

Now that we have disposed of the offending term in (30.26), we can return to (30.25)
and evaluate

ρe =
i

V ∑
p

∫ ∞

−∞

dω
2π

∂
∂ω

ln [G(p, iω)]eiω0+ . (30.31)

We evaluate the ω integral by distorting the contour in the frequency plane. For
this, we need to carefully understand the analytic structure of the integrand. This is
subtle, because there are two types of branch-cuts. One arises from the Green’s func-
tion: G(p,z) has a branch-cut along the real axis Im(z) = 0, with ImG(p,z) ≤ 0 for
Im(z)= 0+, ImG(p,z)≥ 0 for Im(z)= 0− and ImG(p,z)= 0 for z= 0. The other branch-
cut is from the familiar ln(z) function: we take this on the positive real axis, with a
discontinuity of 2iπ. First, we account for the branch-cut in G(p,z), by distorting the
contour of integration in (30.31) to pick up the discontinuity ImG(p,z):

ρe =
−i
V ∑

p

∫ 0

−∞

dz
2π

∂
∂ z

ln
[

G(p,z+ i0+)
G(p,z+ i0−)

]
. (30.32)

Note from (2.26) and (2.38) that on the real frequency axis ImG(p,z+ i0±)→ 0 as
z→ 0 or −∞. Consequently, the only possible values of ln[G(p,z+ i0+)/G(p,z+ i0−)]
are 0,±2πi as z→ 0 or −∞, from the branch-cut of the logarithm. So we obtain from
(30.32)

ρe =
−i

2πV ∑
p

ln
[

G(p, i0+)
G(p, i0−)

]
=

1
V ∑

p
θ
(
−ε0

p +µ−Σ(p, i0+)
)

=
1
V ∑

p
θ
(
−εp

)
, (30.33)

where we have used (2.28) and (2.38). Because the branch-cut of the logarithm extends
to z=+∞, only negative values of εp contribute to the z integral extending from z=−∞
to z= 0. The equation (30.33) is the celebrated Luttinger relation, equating the electron
density to the volume enclosed by the Fermi surface of the quasiparticles εp = 0. In the
presence of a crystalline lattice, there can be additional bands that are either fully filled
or unoccupied; such bands yield a contribution of unity or zero, respectively to (30.33).
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377 30.2 The Luttinger Relation

To summarize, the Luttinger relation is intimately connected to the U(1) symmetry
of electron-number conservation. Indeed, we can obtain a Luttinger relation for each
U(1) symmetry of any system consisting of fermions or bosons. The result follows from
the invariance of the Luttinger–Ward functional under the transformation in (30.28), in
which we gauge the global symmetry to a linear time dependence: in this respect, there
is a resemblance to ‘tHooft anomalies in quantum field theories. If the U(1) symmetry
is “broken” by the condensation of a boson that carries U(1) charge, the Luttinger
relation no longer applies. We will find this point of view very useful when we consider
systems that have a modified Luttinger relation due to the presence of emergent gauge
symmetries in Section 31.2.

30.2.2 Disordered Systems

Our discussion of the Luttinger relation has so far assumed perfect crystalline sym-
metry, so the quasiparticles energies εp are functions of the crystal momentum p. The
Luttinger relation applies also to systems without crystalline symmetry, although it is
expressed in a form involving quantities that are not easy to observe.

Let us consider a lattice of sites i, with a bare electron hopping ti j, which has no
particular symmetry. Then, the electron Green’s function Gi j(iω) is a matrix indexed
by the lattice sites, as is the self-energy Σi j(iω). These are related by Dyson’s equation,
which now has a matrix form

[(iω +µ)δi j + ti j−Σi j(iω)]G jk = δik . (30.34)

The low-lying quasiparticles are no longer plane-wave eigenstates, but the arguments
leading to (2.38) still apply, and we have

Im
[
Σi j(Ω+ i0+)

]
→ 0 as Ω→ 0 at T = 0. (30.35)

We now proceed with the computation of the average density, which generalizes
(30.25) to

ρe =
1
N

∫ ∞

−∞

dω
2π

Tr [G(iω)]eiω0+ , (30.36)

where N is the number of sites, and the trace is over the site indices. The analysis is then a
close parallel of that carried out for clean systems. The existence of the Luttinger–Ward
functional now replaces (30.27) by∫ ∞

−∞

dω
2π

Tr
[

G(iω)
∂

∂ω
Σ(iω)

]
= 0 , (30.37)

where a matrix multiplication is implied between G and Σ. The analysis from (30.31)
to (30.33) is replaced by

ρe =
i
N

∫ ∞

−∞

dω
2π

∂
∂ω

Tr ln [G(iω)]eiω0+

=
1
N ∑

α
θ(−εα) , (30.38)
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where εα are the eigenvalues of the matrix−ti j−µδi j +Σi j(i0+). In general, we do not
know the values of Σi j(i0+), and so this result is not easy to apply. However, it does
yield information on the nature of the quasiparticles, which are the eigenstates with
small |εα |.

30.2.3 Kondo Impurity Model

The resonant-level model of Section 29.1 satisfies a Friedel sum rule, which is reminis-
cent of the Luttinger relation. This expresses the change in electron density due to the
presence of the impurity in terms of the phase shift of the scattering of the conduction
electrons from the impurity.

In terms of the Green’s functions of Section 29.1, the change in the electron density
induced by the impurity is (with a factor of 2 for spin)

δρe = 2

∫ ∞

−∞

dω
2π

[
Gdd(iω)+∑

k

(
G(k,k, iω)− 1

iω− εk

)]
eiω0+

= 2
∫ ∞

−∞

dω
2π

i
d

dω
ln [Gdd(iω)]eiω0+

=−2i
∫ 0

−∞

dz
2π

∂
∂ z

ln
[

Gdd(z+ i0+)
Gdd(z+ i0−)

]
=
−i
π

ln
[

Gdd(i0+)
Gdd(i0−)

]
= 1+

2
π

tan−1

[
ReG−1

dd (i0
+)

ImG−1
dd (i0

+)

]
. (30.39)

Note the similarity of the manipulations to those in Section 30.2.1. The expression
(30.39) is exact, and does not rely on the “flat density of states” approximations used
to obtain (29.4). In terms of (29.4) we have

δρe = 1− 2
π

tan−1
[εd

Γ

]
. (30.40)

The right-hand side of (30.40) is 1/π times the scattering phase shift of the conduction
electrons at the Fermi level [109]. As expected, the density varies from δρe = 2, when
the d level is far below the Fermi level, to δρe = 0, when the d level is far above the
Fermi level.

We can now extend this result to the interactingAnderson impuritymodel in (29.10).
Adding the interaction Ud to the resonant-level model changes the d-fermion Green’s
function to that in (29.11). Then, we can see that the analysis in (30.39) acquires an
additional contribution ∫ ∞

−∞

dω
2π

Gdd(iω)
d

dω
Σdd(iω) = 0 , (30.41)
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379 30.2 The Luttinger Relation

which vanishes because of the existence of the Luttinger–Ward functional, as in (30.27).
The self-energy Σdd in (29.11) does change the electron density from (30.40) to

δρe = 1− 2
π

tan−1
[

ε⋆d
Γ

]
, (30.42)

where

ε⋆d = εd +Re [Σdd(0)] , (30.43)

which is similar to the renormalization in (2.28). Also, as in (2.38) and (30.35), we have
Im [Σdd(0)] = 0 at T = 0.

Turning to the Kondo impurity model in (29.13), establishing the Luttinger rela-
tion requires the framework of the 1/M expansion in Section 29.4. We observe that the
large-M saddle point in (29.33) has the same structure as the resonant-level model in
(29.1), provided we are at a saddle point with P ̸= 0. As far as the manipulations for
the Luttinger relation are concerned, the self-energy corrections to the f fermions in
the 1/M expansion about such a saddle point play the same role as the self-energy cor-
rections to the d electrons in the Anderson impurity model in (29.10). In other words,
once we have P ̸= 0, the f spinons play the same role as electrons. We therefore obtain
the same Friedel sum rule as in (30.42).

30.2.4 Kondo Lattice Model

As in the discussion of the Kondo impurity model in Section 30.2.3, it is easier to first
establish the Luttinger relation in the context of the Anderson lattice model (30.1)
by generalizing the arguments of Section 30.2.1 to the multi-band case. The Ander-
son lattice Hamiltonian leads to a 2× 2 matrix Green’s function, and at all orders in
perturbation theory in Ud we have

G−1(k, iωn) =

(
iωn− εk w

w iωn− εd
k

)
−ΣΣΣ(k, iωn), (30.44)

where the self-energy ΣΣΣ is also a 2× 2 matrix; this relation generalizes (2.26). We can
relate the total density to the size of the Fermi surface by generalizing the identity in
(30.26) to the multiband case:

TrG(k, iω) = i
∂

∂ω
ln [detG(k, iω)]− iTr

[
G(k, iω)

∂
∂ω

ΣΣΣ(k, iω)

]
. (30.45)

Then, an analysis analogous to that in Section 30.2.1 and 30.2.2 leads to a constraint
of 1+ρc on the total size of one or more Fermi surfaces, as in (30.13):

1+ρc =
2
V ∑

k

[
θ(−E+

k )+θ(−E−k )
]
, T = 0 , (30.46)

where the quasiparticle dispersions E±k are given by the roots ω = E±k of the equation

detG(k,ω) = 0 . (30.47)
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380 30 The Heavy Fermi Liquid

This analysis of the Anderson lattice model appears to leave no room for a metallic
state in which the Fermi surface size differs from that implied by a density of 1+ρc.
But we will see in Chapter 31 that other metallic states are possible with smaller Fermi
surfaces. The above arguments only imply that such states cannot appear in a pertur-
bation theory in Ud , but do not rule out their non-perturbative appearance across a
quantum phase transition.

Also, as in the discussion of the Kondo impurity model in Section 30.2.3, we can
apply the Luttinger arguments to the Kondo lattice model (30.2) in the context of the
1/M expansion. As before, this relies on the large-M saddle point in (30.3) with P ̸= 0,
which has the same structure as the non-interacting part of the Anderson lattice model
in (30.1). At M = ∞, we follow the same route as in the Kondo impurity problem in
Section 30.2.3. From the expressions in (30.7)–(30.9) it is easy to explicitly verify that

Gcc(k, iωn)+G f f (k, iωn) = i
∂

∂ω
ln
[
(iωn− εk)(iωn−λ )−|P|2

]
. (30.48)

Now, proceeding as in the subsections above, we obtain the Luttinger constraint in
(30.13). Upon including the fermion self-energies from the 1/M expansion, the analysis
is a close parallel of the argument above for the Anderson lattice model, and we obtain
the generalization of (30.13) to all orders in 1/M.

As discussed in much detail in Chapter 31, the large-M analysis of the Kondo lattice
model also points the way to novel metallic phases that were not apparent in the per-
turbative expansion of the Anderson lattice model. These phases have non-Luttinger
volume Fermi surfaces, and are associated with large-M saddle points with P = 0.
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31 The Fractionalized Fermi Liquid

A possible fate of the Kondo lattice model is that the lattice of spins form a spin-
liquid state, while the mobile electrons form a small Fermi surface on their own. This
is the fractionalized Fermi liquid, in which neutral spinon excitations coexist with
Fermi-liquid-like electronic quasiparticles. Topological arguments are presented for
the stability of themodified Luttinger relation in such ametal to arbitrary interactions
between the spins and the mobile electrons. A paramagnon fractionalization theory
shows that a fractionalizedFermi liquid canalso exist in a single-bandHubbardmodel,
and this is proposed as a theory of the pseudogap metal of the cuprates.

Our study of theAnderson latticemodel, and the closely relatedKondo latticemodel in
Chapter 30 produced the heavy Fermi liquid (HFL) ground state: a Fermi liquid with
a “large” Fermi surface whose enclosed volume counts the total density, 1+ρc, of both
the local moments and the conduction electrons, and the quasiparticles on the Fermi
surface have a large effective mass. This state has a close connection to the Anderson or
Kondo impurity model of Chapter 29, in which the local moment was always screened
by the conduction electrons as T→ 0, corresponding to the renormalization-group flow
of the Kondo coupling JK → ∞. In the lattice case, the screening of the local moment
implies that the spin moment effectively becomes mobile, and then “dissolves” into the
Fermi surface.

In this chapter I discuss another possible ground state of the Anderson or Kondo
lattice model: this is the fractionalized Fermi liquid (FL*), which has a “small” Fermi
surface whose enclosed volume counts only the density ρc of the conduction electrons.
Clearly, such a state does not obey the Luttinger relation discussed in Section 30.2,
and so cannot be contained by adiabatic continuity from the free-fermion state, as in
Fermi liquid theory. In other words, the HFL and FL* states must be separated by a
quantum phase transition without a symmetry-breaking order parameter [259, 262].
We note a recent observation [169] of a FL* state, along with its phase transition to an
HFL state.

The existence of the FL* state can be inferred from an extension of the Kondo lattice
model of Chapter 30, the Kondo–Heisenberg model with Hamiltonian

HKH = HKL + J ∑
⟨i j⟩
Si ·S j , (31.1)
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382 31 The Fractionalized Fermi Liquid

f electrons

c electrons

Kondo
exchange

JK

tFigure 31.1 A schematic of the FL* state on the Kondo lattice: a spin liquid with fractionalization and emergent gauge fields is
coupled by the Kondo coupling JK to a densityρc of c conduction. The small Fermi surface, of sizeρc, is stable to
turning on a non-zero JK , and this yields a state that does not obey the Luttinger relation of Section 30.2.

where HKL was specified in (30.2). This Hamiltonian now has an antiferromagnetic
exchange interaction J between nearest-neighbor sites, which is also generated from a
Schrieffer–Wolff transformation of the Anderson lattice model in (30.1). The HFL to
FL* phase transition can be generated by increasing the ratio J/JK . We have obtained
the HFL state in the limiting case J = 0, but now consider the opposite limiting case
JK = 0, but J ̸= 0. Then the Si decouple into a spin system, of the type extensively stud-
ied in Parts II and IV. Let us assume that the lattice of Si, and the J exchange couplings
between them (we allow extensions in which these couplings are non-nearest-neighbor)
are such that they form a spin-liquid ground state with fractionalized spinon excita-
tions and emergent gauge fields, as sketched in Fig. 31.1. Meanwhile, the decoupled
conduction electrons will form a Fermi liquid on their own with a Fermi volume of ρc

[11]. Let us now turn on a small JK . One of the key points of this chapter is that the
state of Fig. 31.1 is stable to turning on a non-zero JK , and the “topological order” of
the spin liquid ensures that the Fermi surface volume of the coupled system remains
pinned at the decoupled small Fermi surface size, yielding the FL* state. This is in stark
contrast to the Kondo impurity model of Chapter 29, where even an infinitesimal anti-
ferromagnetic coupling flows under the renormalization group to strong coupling. For
the case of a gapped spin liquid, the stability of perturbation theory in JK is clear. We
consider gapless spin liquids here in the context of the 1/M expansion, and show that
they can also be stable to a non-zero JK .

We emphasize here the role of symmetries in allowing the existence of the FL* phase
in the Anderson lattice model. The original Anderson lattice model in (30.1) has only
a single U(1) global symmetry, that associated with the conservation of the total num-
ber of cα and dα electrons, which must equal 1+ ρc per unit cell. Consequently, in
a perturbation theory in Ud , the Luttinger relation leads to only a single constraint:
the total volume enclosed by the Fermi surface must be equivalent to 1+ ρc states,
as in the HFL phase. The existence of the FL* phase in the Anderson lattice model
becomes evident after we perform a canonical transformation to the Kondo lattice
model, which has a much larger emergent symmetry: the total number of cα electrons
is constrained to be ρc per unit cell, and the number of fα spinons (in a fermionic
spinon description of the spin liquid) is constrained by (29.15) to be unity at each site.
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383 31.1 The FL* State in the Kondo Lattice

Sections 31.2 and 31.3 describe the role played by these symmetries in obtaining the
modified Luttinger* relation in the FL* phase.

While the existence of the FL* state seems evident for the Kondo lattice model by
the reasoning in Fig. 31.1, it is not immediately clear whether a FL* state can appear
in a single-band model, as in the Hubbard model. Section 31.4 presents arguments for
the existence of FL* in single-band models, and describes a theory of “paramagnon
fractionalization,” which leads to such ametallic phase. The FL* phase of theHubbard
model provides an appealing description of the pseudogap metal phase of the cuprate
superconductors.

31.1 The FL* State in the Kondo Lattice

This section applies the large-M method of Section 30.1 to the Kondo–Heisenberg
model in (31.1).

A key feature of our discussions of the Kondo impurity model and the Kondo lat-
tice model has been the singular nature of the limit JK → 0. Even for very small JK , we
have found that the P = 0 state is unstable to the turning on of an exponentially small
P. In a renormalization-group language, this is the statement that an infinitesimal JK

is a marginally relevant perturbation to the JK = 0 fixed point. The P ̸= 0 state was
then found to be a renormalized Fermi liquid, with well-defined quasiparticles obey-
ing the Friedel sum rule for the Kondo impurity model; for the Kondo lattice model,
the qusiparticles possess a Luttinger volume Fermi surface, which counts the spins as
electrons.

We now consider the case with J ̸= 0, and find a situation in which the JK = 0 fixed
point is stable, and we obtain a novel stable state with P = 0, and no broken symmetry.

We can proceed with a 1/M expansion for HKH by combining the treatment above
for the Kondo model HKL with that for theU(1) spin liquid in Chapter 22. This implies,
that, in addition to the decoupling field Pi(τ) used to obtain (30.3), we have the analogs
of the decoupling fields Qi j(τ) of (22.6) between the d sites. This leads here to the
following new terms in the Lagrangian

LQ = ∑
⟨i j⟩

[
M|Qi j|2

J
−Qi j f †

jα fiα −Q∗i j f †
iα f jα

]
, (31.2)

where Qi j is the link Hubbard–Stratonovich field between the d sites. A crucial role is
now played by the emergent U(1) gauge symmetry, which combines the Kondo gauge
symmetry of (29.32) with that of the spin-liquid gauge symmetry in (22.10):

fiα → fiα eiϕi(τ),

Pi→ Pieiϕi(τ),

λi→ λi−∂τ ϕi(τ),
Qi j→ Qi je−i(ϕi(τ)−ϕ j(τ)) . (31.3)
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384 31 The Fractionalized Fermi Liquid

This transformation leaves the full Lagrangian invariant for a gauge transformation
ϕi(τ), which can have an arbitrary dependence on τ and lattice site i. As in Section 22.2,
note that the phase of Qi j transforms just like the vector potential of aU(1) gauge field.
So if we write

Qi j = |Qi j|exp(iai j) , (31.4)

then

ai j→ ai j +ϕ j(τ)−ϕi(τ) . (31.5)

In the continuum limit, the transformation of ai j is precisely the analog of the vector
potential of theMaxwell theory, while that of λ is that of the scalar potential. So ai j and
λi together realize an emergent, lattice U(1) gauge field. For the ai j to an independent
propagating degree of freedom, we do need to expand about a saddle point in which
the saddle-point values of |Qi j| are non-zero: we will assume that is the case in the
remaining discussion.

Given the identification of ai j and λi with aU(1) gauge field, the other fields in (31.3)
are easily seen to be matter fields, which are charged under the emergent U(1) gauge
symmetry. The fiα are fermionic spinons that carry a unit gauge charge, and the Pi are
bosons that also carry a unit gauge charge.

All the saddle points we have considered so far had

Pi = P ̸= 0 , HFL . (31.6)

With our new-found identification of P as a gauge-charge boson, we see that any phase
of matter satisfying (31.6) is a Higgs phase of the emergent U(1) gauge field, with P
the Higgs condensate. The fluctuations of the gauge fields are quenched by this Higgs
condensate, and they become overdamped modes in the particle–hole continuum. This
is why we did not have to seriously consider the U(1) gauge field in our analyses so far.

This section considers the possibility of a new saddle point in which

Pi = P = 0 , FL* . (31.7)

Now, in the language of gauge theories, the U(1) gauge symmetry is unbroken, and
there is no Higgs condensate. It is essential to account for the fluctuations of the gauge
field in a proper description of such a phase.

Let us examine the possibilities for the saddle point in the context of the mean-field
Hamiltonian. Now, the Hamiltonian is generalized to

HKH =
MV |P|2

JK
+∑

k

[
−P f †

kα ckα −P∗c†
kα fkα + εkc†

kα ckα

]
+

MzV |Q|2

2J
−λ

NV
2

+∑
k

ε f
k f †

kα fkα , (31.8)

where z is the number of nearest neighbors of each lattice site, we have assumed a
spatially uniform saddle-point value of |Qi j| equal to Q, and the dispersion of the f
fermions is given by
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385 31.1 The FL* State in the Kondo Lattice

ε f
k = λ −Q

z

∑
a=1

eik·ea , (31.9)

with ea vectors connecting nearest-neighbor sites. The saddle-point equations (30.4)
and (30.5) are supplemented by an additional equation for Q

Q =
2J

MzV ∑
k

z

∑
a=1

eik·ea
〈

f †
kα fkα

〉
. (31.10)

The equations (30.4), (30.5), and (31.10) can now be solved for the values of λ , Q,
and P. In the light of (31.6) and (31.7), we pay particular attention to the equation of
P. This can be written in the form (30.12), with the quasiparticle dispersions now given
by

2E±k = εk+ ε f
k ±

[
(εk− ε f

k )
2 +4|P|2

]1/2
. (31.11)

As we are interested in the possibility of a solution like (31.7), let us take the P→ 0
limit of (30.12), which can be written as

P
J
=

P
V ∑

k

f (εk)− f (ε f
k )

ε f
k − εk

. (31.12)

Now, the crucial point is that the summation on k in (31.12) is finite for a generic
dispersion ε f

k like that in (31.9). In the case Q = 0 that we considered in Section 30.1,
the f band is dispersionless, and then the summation on k in (31.12) is logarithmically
divergent (see (30.12)).With Q ̸= 0, and the summation finite, the only solution possible
for (31.12) for small JK is P= 0. Specifically, an FL* phase is obtained for JK < JKc with

1
JKc

=
1
V ∑

k

f (εk)− f (ε f
k )

ε f
k − εk

. (31.13)

The reader should notice a similarity to the “Stoner criterion” for spin density waves
in (9.51), with an inverse interaction strength on the left-hand side, and a fermionic
susceptibility on the right-hand side.

We conclude with a brief statement of the physical properties of the FL* phase. With
P= 0, the conduction electrons are decoupled from theKondo spins atmean-field level.
From (30.7), the conduction-electron Green’s function is

Gcc(k, iωn) =
1

iωn− εk
. (31.14)

In comparison to (30.20), there is no shift of 1/(2d(0)) in the Fermi energy to accom-
modate the f electrons, and so we have a small Fermi surface, as shown in Fig. 30.4a
and Fig. 31.2. There is also no corresponding renormalization of the mass of the
conduction electrons.

The f spinons are decoupled from the conduction electrons, and form an indepen-
dent U(1) spin liquid at mean-field level; several realizations of such spin liquids were
studied in Parts II and IV, and a possible state with a spinon Fermi surface is illustrated
in Fig. 31.2. Beyond the meanfield, the spinons interact with the emergent U(1) gauge
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386 31 The Fractionalized Fermi Liquid

tFigure 31.2 Schematic band structures in the FL* phase. There are electron-like quasiparticles in only the conduction band up to
the wavevector k∗F . In Fig. 30.4a we showed a perfectly flat f band, but now this acquires the dispersion in (31.9). The
f band is occupied by fermionic spinons so that it is half filled (and obeys (30.5)), and decoupled from the conduction
band.

field, and this has interesting consequences for the spin spectrum of the spin liquid, as
also discussed in Parts II and IV. There are also fluctuations of the hybridization boson
Pi about P = 0, and this leads to some modification of the spinon spectrum from the
presence of the conduction electrons. However, this coupling does not lead to a disap-
pearance of the fractionalized spinon excitations, which are stabilized by their charges
under the emergent U(1) gauge field.

31.2 Emergent Gauge Fields and Generalized Luttinger Relations

We saw in Chapter 30 that the large-M theory of the HFL phase yielded a “large”
Fermi surface corresponding to a density of 1+ρc electrons. Similarly, in Section 31.1,
the large-M theory of the FL* phase yielded a “small” Fermi surface of conduction
electrons alone, corresponding to a density of ρc. In this section we will show that the
results hold to all orders in 1/M, and also describe the connection to the discussion of
the Luttinger relation in Section 30.2.

As we have already noted in Section 30.2, the analysis of the Anderson lattice model
appears to leave no room for the small Fermi surface of the FL* phase. However, it
must be kept in mind that the above analysis is perturbative in Ud , even though it holds
to all orders in Ud .

To understand the FL* phase, we have to turn to theKondo lattice model (31.1), and
understand its U(1) symmetries more carefully. The Kondo lattice model has a global
U(1) symmetry of electron-number conservation, which counts only the conduction
electrons. However, it has an additional U(1)gauge symmetry specified by (31.3), asso-
ciated with a fixed electron number on each d site. So the total symmetry of the Kondo
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387 31.2 Emergent Gauge Fields and Generalized Luttinger Relations

Table 31.1 Symmetry charges

Symmetry f c P

U(1) 0 1 −1
U(1)gauge 1 0 1
U(1)diag 1 1 0

lattice model is U(1)×U(1)gauge. The fate of this enlarged symmetry is distinct in the
two phases:

(i) HFL phase: the U(1)×U(1)gauge symmetry is broken to a diagonal U(1)diag sym-
metry by the condensation of the Higgs boson P. Recall that P∼ c†

α fα , and so P
carries charges of both U(1) and U(1)gauge, associated with charges of c† and f .
However, the condensation of P leaves U(1)diag unbroken, under which c and f
have the same charge:

Udiag : cα → cα eiϕd , fα → fα eiϕd . (31.15)

The nature of these symmetries is summarized in Table 31.1. The arguments of
Section 30.2 now imply that we can only deduce a Luttinger relation for the unbro-
kenU(1)diag symmetry, which counts the number of both c and f fermions. In this
manner, we obtain the large Fermi surface of the HFL phase, as already obtained
in the Anderson lattice model.

(ii) FL* phase: the U(1)×U(1)gauge symmetry remains unbroken. The arguments
of Section 30.2 now imply that there should be two separate Luttinger relations
associated with these two symmetries. Only the c fermions carry the global U(1)
charge, and so the usual Luttinger arguments imply a small Fermi surface, as dis-
cussed further below. The Luttinger relations also apply to U(1)gauge, symmetry
and lead to constraints on the spinon excitation structure of the spin liquid. As
an example, in the π flux discussed in Section 22.1, the Luttinger relation leads
to the presence of massless Dirac fermions. Moreover, there are also Luttinger-
like constraints on FL* states with a Z2 spin liquid; the relations discussed in
Section 15.4.2 are intimately connected to the Luttinger relation, as discussed in
Section 31.3.2.

Finally, a few further comments on the stability of the small Fermi surface, and the
Luttinger (i.e., Luttinger*) relation that applies in the FL* phase. We can compute the
conduction-electron Green’s function in a 1/M expansion of the gauge theory about
the Q = 0 saddle point, and the results can be written as

Gcc(k, iωn) =
1

iωn− εk−Σcc(k,ωn)
. (31.16)

As long as we are expanding about the Q = 0 saddle point, it is not difficult to see
that the self-energy in (31.14) is obtained from a Luttinger–Ward functional, and so
satisfies
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∑
k

∫ ∞

−∞

dω
2π

Gcc(k, iω)
∂

∂ω
Σcc(k, iω) = 0 . (31.17)

Then, proceeding in the usual route, we obtain the Luttinger* relation

ρc =
1
V ∑

k
θ(−ε∗k), (31.18)

with ε∗k = εk+Σcc(k,0); contrast this to the usual Luttinger relation in (30.46) for the
large Fermi surface.

It is also interesting to compare the conduction-electron Green’s function in (31.14)
with that in (30.7). We can consider the f -electron contribution in (30.7), equal to
|P|2/(iωn−λ ), as a conduction-electron “self-energy”: this self-energy diverges at zero
frequency for λ = 0, leading to zeros of the Green’s function, which have been the focus
of some attention in the literature [7, 30, 61, 64, 70, 147, 243, 274, 321]. We see from
our treatment that such zeros are resolved [251] in two possible ways:

(i) In the HFL phase with P ̸= 0, we have λ non-zero, and given by λ = 2d(0)|P|2 in
(30.17). It is this non-zero λ that leads to the shift in the apparent Fermi surface
εk = 0 to the actual large Fermi surface εk = |P|2/λ , as in (30.20).

(ii) In the FL* phase with P = 0, this apparently divergent contribution to the self-
energy is absent, and the actual self-energy, which is Σcc in (31.16), can be obtained
from a Luttinger–Ward functional. Now there is a stable small Fermi surface at
εk = 0 (with 1/M fluctuation corrections, at ε∗k = 0) obeying the Luttinger* relation
in (31.18).

31.3 Torus Flux Insertion and Generalized Luttinger Relations

Our discussions of the Luttinger and the Luttinger* relations have so far been per-
turbative, although they expand about different starting points, some of which have
non-trivial correlations built in. We employed theUd expansion of the Anderson lattice
model, the JK expansion of theKondo latticemodel, and the 1/M expansions about two
different saddle points of the Kondo lattice model. Here, we sketch a non-perturbative
approach to deriving these relations. First, we derive the Luttinger relation of the
Fermi liquid as obtained by Oshikawa [193], and then turn in Section 31.3.2 to the
Luttinger* relation of the FL* phase.

31.3.1 Fermi Liquid

Consider an arbitrary quantum system, of bosons or fermions, defined on (say) a
square lattice of unit lattice spacing, and placed on a torus. The size of the lattice
is Lx × Ly, and we impose periodic boundary conditions. Assume the system has a
global U(1) symmetry, and all the local operators carry integer U(1) charges. We
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389 31.3 Torus Flux Insertion and Generalized Luttinger Relations

tFigure 31.3 Torus geometry with a flux quantum inserted.

tFigure 31.4 Dispersion of a free particle with momentum kx in a system of sizeLx = 10. The two plots indicate the allowed
values of εkx before and after 2π flux insertion. Note that the allowed values of εkx coincide, after the shift (31.20).

pick an eigenstate of the Hamiltonian (usually the ground state) |G⟩. Because of the
translational symmetry, this state will obey

T̂x |G⟩= eiPx |G⟩ , (31.19)

where T̂x is the lattice translational operator by one lattice spacing along the x direction,
and Px is the momentum of the state |G⟩. Note that Px is only defined modulo 2π. The
state |G⟩ will also have a definite total U(1) charge, which we denote by the integer N.

Nowwe gauge the globalU(1) symmetry, and insert one flux quantum (with flux 2π)
through one of the cycles of the torus (see Fig. 31.3). Let us consider the consequences
for a single particle with crystal momentum −π ≤ kx ≤ π along the x direction with
dispersion εkx . In the presence of a flux Φ, this dispersion will change to εk′x where (see
Fig. 31.4)

k′x = kx−
Φ
Lx

. (31.20)

We note that kx is quantized in integer multiples of 2π/Lx, and so an insertion of flux
Φ = 2π yields a system that is gauge equivalent to Φ = 0. Applying the same argument
to a non-interacting many-body system, we deduce its crystal momentum P′x will differ
from Px by ∆Px with

∆Px =
2π
Lx

N (mod2π). (31.21)

Now, we turn on the interactions between the particles: these cannot change the total
momentum, which is conserved (modulo 2π) both by the interactions and the flux
insertion; so (31.21) applies also in the presence of interactions.

https://doi.org/10.1017/9781009212717.032 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.032


390 31 The Fractionalized Fermi Liquid

This argument was somewhat cavalier, so let us derive (31.21) a bit more carefully for
a general many-body system. The initial and final Hamiltonians of the flux insertion
process are related by a gauge transformation

UgH fU−1
g = Hi , Ug = exp

(
i
2π
Lx

∑
i

xin̂i

)
, (31.22)

where n̂i is the integer number operator of the U(1) symmetry. while the wavefunction
evolves from |G⟩ to UT |G⟩, where UT is the time-evolution operator. We want to work
in a fixed gauge in which the initial and final Hamiltonians are the same; in this gauge,
the final state is |G′⟩= UGUT |G⟩. Then we can establish (31.21) using the definitions

T̂x |G⟩= e−iPx |G⟩ , T̂x
∣∣G′〉= e−iP′x

∣∣G′〉 , (31.23)

and the easily established properties

T̂xUT = UT T̂x , T̂xUg = exp
(
−i2π

N
Lx

)
Ug T̂x . (31.24)

So far, we have been quite general, and not specified anything about the many-
body system, apart from its translational invariance and global U(1) symmetry. In the
subsequent discussion, we make further assumptions about the nature of the ground
state and low-lying excitations, and compute ∆P by other methods. Equating such a
result to (31.21) will then lead to important constraints on the allowed structure of the
many-body ground state.

First, we assume the ground state is a Fermi liquid. So its only low-lying excitations
are fermionic quasiparticles around the Fermi surface. For our subsequent discussion,
it is important to also include the electron spin index, α =↑,↓, and so we will have a
Fermi liquid with two global U(1) symmetries, associated respectively with the con-
servation of electron number and the z component of the total spin Sz. Consequently,
there are two Luttinger theorems, one for each global U(1) symmetry. The action for
the fermionic quasiparticles ckα , with dispersion ε(k), is

SFL =
∫

dτ
∫ d2k

4π2 ∑
α=±1

c†
kα

(
∂

∂τ
− i

2
αAs

τ − iAe
τ + ε(k−αAs/2−Ae)

)
ckα , (31.25)

where τ is imaginary time and the gauge coupling α =±1. The Fermi surface is defined
by ε(k) = 0, and SFL only applies for k near the Fermi surface, although we have (for
notational convenience) written it in terms of an integral over all k. We have also cou-
pled the quasiparticles to two probe gauge fields Ae

µ = (Ae
τ ,A

e) and As
µ = (As

τ ,A
s),

which couple to the two conserved U(1) currents associated, respectively, with the
conservation of electron number and Sz.

We place the Fermi liquid on a torus, and insert a 2π flux of a gauge field that cou-
ples only to the spin-up electrons. So we choose As

µ = 2Ae
µ ≡ Aµ . Then, the general

momentum balance in (31.21) requires that

∆Px =
2π
Lx

N↑ (mod2π) =
2π
Lx

N
2
(mod2π), (31.26)

where we assume equal numbers of spin-up and -down electrons N↑ = N↓ = N/2.
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391 31.3 Torus Flux Insertion and Generalized Luttinger Relations

tFigure 31.5 Response of a Fermi liquid to flux insertion. The shaded circles represent states occupied by the quasiparticles inside
the Fermi surface, before and after the flux insertion. Each quasiparticle near the Fermi surface acquires a momentum
shift δp= (δ px,0). The total change in momentum is equal to the difference in the total momenta between the
occupied regions within the two Fermi surfaces. This equality assumes quasiparticles exist at all momenta, but this is
permissible because the net contribution arises only from the regions near the Fermi surface, where the quasiparticles
do exist.

Now, we compute the momentum balance assuming that the only low-energy exci-
tations are quasiparticles near the Fermi surface described by SFL, and these react
like free particles to a sufficiently slow flux insertion. So each quasiparticle picks up a
momentum

δp≡
(

2π
Lx

,0
)

(31.27)

(see Fig. 31.5), and then we can write (with δnp the quasiparticle density excited by the
flux insertion)

∆Px = ∑
p

δnp px.

Now δnp =±1 on a shell of thickness δp ·dSp on the Fermi surface (where dSp is an
area element on the Fermi surface). So we can write the above as a surface integral

∆Px =
∮

FS
px

(
LxLy

4π2

)
δp ·dSp

= (δp · x̂)
∫

FV

(
LxLy

4π2

)
dV

by the divergence theorem. So

∆Px =
2π
Lx

(
LxLy

VFS

4π2

)
, (31.28)

whereVFS is themomentum-space area enclosed by the Fermi surface; the factor within
the brackets on the right-hand side equals the number of momentum-space points
inside the Fermi surface. Note that the entire contribution to the right-hand side of
(31.28) comes from the vicinity of the Fermi surface, where the quasiparticles are well-
defined; we have merely used a mathematical identity to convert the result to equal the
volume, and we are not assuming the existence of quasiparticles far from the Fermi
surface.
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Now we equate (31.26) and (31.28), along with a corresponding argument along the
y direction, and obtain

N↑−LxLy
VFS

4π2 = Lxmx , N↑−LxLy
VFS

4π2 = Lymy (31.29)

for some integers mx, my. By choosing Lx, Ly mutually prime integers we can now show
[193, 195]

N↑
LxLy

=
VFS

4π2 +m (31.30)

for some integer m. This is the Luttinger relation, obtained earlier in (30.33) and (30.46)
for N↑ = N↓ = N/2.

31.3.2 Z2 Spin Liquid

We turn now to a non-perturbative discussion of the Luttinger* relation in the FL*
phase. We apply the same momentum balance argument by placing the Anderson or
Kondo lattice system on the torus in Fig. 31.3. From Fig. 31.1, the small Fermi surface
obeying the Luttinger* relation (31.18) contributes a momentum related to the density
ρc of the conduction electrons only. To satisfy the general relation (31.21), we now need
to establish that the spin liquid produces a contribution to the momentum balance
equation that is equivalent to a density of one electron per site. We will now establish
this for the case of a gapped Z2 spin liquid, which then constitutes a non-perturbative
argument for the Luttinger* theorem [32, 68, 195, 262].

Is convenient to formulate the theory of the Z2 spin liquid using the U(1)×U(1)
Chern–Simons gauge theory discussed in Chapter 17. We show in Section 17.1.1 that
the Z2 spin liquid is a theory with two gauge fields, a1

µ and a2
µ , whose torus line opera-

tors in (17.14) obeyed the anti-commutation relations in (17.15), also found for the Z2

gauge theory in (16.16); we reproduce these here for clarity:

Wi = exp
(

i
∫
Ci

a1
µ dxµ

)
, Vi = exp

(
i
∫
Ci

a2
µ dxµ

)
,

WxVy =−VyWx, WyVx =−VxWy , (31.31)

where Cx,y are contours that encircle the contours of the torus. The bosonic spinons
carry unit charge under a1

µ , while the visons carry unit charge under a2
µ , as specified by

(17.32). We account for the fact that the spinons carry spin Sz =±1/2 by the coupling
to the external field As

µ via the charge vector in (17.36). These considerations yield the
Chern–Simons theory

SCS =
∫

d2xdτ
[

i
π

εµνλ a2
µ ∂ν a1

λ +
i

2π
εµνλ As

µ ∂ν a2
λ

]
. (31.32)

We also need to supplement such a topological field theory by information on the
action of translational symmetry. The needed information is obtained in (16.18), and
is closely connected to the fact that the visons can accumulate a phase factor upon
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tFigure 31.6 Square lattice on a torus. The torus line operatorVy (defined in (17.14)) is translated by one lattice spacing in the x̂
direction. Compare with Fig. 16.6.

encircling any site of the lattice, as illustrated in Figs. 16.9 and 15.6, and discussed in
Section 15.4.2. We reproduce the required result here, and also illustrate it in Fig. 31.6:

TxVy = e2πiSLyVyTx, (31.33)

and there is a second relation with x↔ y. Here, S is the on-site spin of the underlying
spin liquid.

We have now recalled all the information needed to apply the momentum balance
argument to the Z2 spin liquid. The general results in (31.21) and (31.26), describing
flux insertion through the cycle of torus, apply to any lattice quantum system with a
global U(1) symmetry, and so should also apply to the Z2 spin liquid. We now show,
using (31.33), that (31.21) and (31.26) are indeed satisfied.

As in Section 31.3.1, we insert a flux, Φ, which couples only to the spin-up electrons,
which requires choosing As

µ = 2Ae
µ ≡ Aµ . We work in real time, and thread a flux along

the x cycle of the torus. So we have

Ax =
Φ(t)
Lx

, (31.34)

where Φ(t) is a function that increases slowly from 0 to 2π. In (31.32), the Ax gauge
field couples only to a2

y , and we parameterize

a2
y =

θy

Ly
. (31.35)

Then, from (31.32), the time-evolution operator of the flux-threading operation can be
written as

Û = exp
(

i
2π

∫
dt θy

dΦ
dt

)
= eiθy ≡Vy. (31.36)

So the time-evolution operator is simply the torus line operator Vy when acting upon
the nearly degenerate topological states of the Z2 spin liquid on the torus. If the state
of the system before the flux threading was |G⟩, the state after the flux threading will
be Vy |G⟩. This is illustrated in Fig. 31.7.
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tFigure 31.7 For aZ2 spin liquid, the insertion of a 2π flux inAs
x is equivalent to the operatorVy acting on the nearly degenerate

topological states.

Now we can easily determine the difference in momenta of the states |G⟩ and Vy |G⟩.
From (31.33) we obtain

∆Px = 2πSLy (mod2π) =
2π
Lx

(SLxLy) (mod2π). (31.37)

In the second form above, we see that (31.37) is consistent with (31.26) for N↑ = SLxLy.
This is indeed the correct total number of spin-up electrons in a spin-S antiferromagnet.
We also note that these results above are closely connected to the relations in (16.19).

Given the abstractness of the above discussion using the Chern–Simons theory, it is
useful to present another argument [262] for the relationship illustrated in Fig. 31.7
using the explicit resonating-valence-bond (RVB) wavefunctions described in Sec-
tions 13.1 and 13.2. This uses a computation by Bonesteel [33], and also illustrates
the close connection to the Lieb–Schultz–Mattis theorem in one dimension [159]. The
unitary operator performing the flux insertion of As

x from (31.22) is

Us = exp

(
i
2π
Lx

∑
i

xiŜzi

)
, (31.38)

where Ŝzi is the z component of the spin operator on site i. When acting on any of the
dimer components of the RVB wavefunction in (13.1), we have (note, here δ is used as
a label for a dimer covering, instead of i in (13.1)) [33],

Us |Dδ ⟩= ∏
d ∈ dimers

(−1)γd
[
cos(Θd/2)+2isin(Θd/2)Ŝzd

]
|Dδ ⟩ , (31.39)

where the product is over all dimers in the covering Dδ , Θd = 2πℓd/Lx with ℓd the x
component of the length of dimer d, and Ŝzd is the z component of the spin on the
rightmost site of dimer d. The crucial factor in (31.39) is (−1)γd , which represents the
action of Vy on the RVB wavefunction, in a manner similar to Fig. 13.2: γd = 1 for
dimers that “cut” a vertical line between the sites with x = 1 and x = Lx (this is a vertical
line analogous to the horizontal lines in Fig. 13.2), and γd = 0 otherwise. Upon arguing
that the factor in square brackets in (31.39) becomes unity in the limit Lx→ ∞, when
acting on the nearly degenerate topological states on the torus, we obtain the required
mapping of Fig. 31.7.
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395 31.4 The FL* State in the Single-Band Hubbard Model

Finally, we note that these arguments on flux insertions are closely connected to the
action of translations on the topological ground states on the torus, as discussed near
(16.19).

31.4 The FL* State in the Single-Band Hubbard Model

The general phenomenology of the transition from the HFL state to the FL* state in
the Kondo lattice model is of a transition from a metal with 1+ p electronic charge car-
riers to another metal with p charge carriers. This phenomenology connects to many
observations on the heavy-fermion compounds, whose microscopic electronic struc-
ture is well described by various forms of the Kondo lattice Hamiltonian. However,
remarkably, such a phenomenology is also a good match to observations on the hole-
doped cuprates. At first sight, this is quite surprising, because it is not reasonable to
describe the cuprates by a Kondo-lattice-type model, that is, there is no natural iden-
tification of electrons that can localize in the analog of an f band, and all electrons
reside in a single band crossing the Fermi level, as is clearly observed in photoemission
experiments. This section presents a simple approach to constructing an FL* state in
a single-band model, while treating all electrons in this band democratically.

We return to the electron Hubbard model of Chapter 9, and consider the case of the
square lattice with electronic density 1− p, as is relevant to the cuprates doped with
holes of density p. At large U , the analog of the HFL state of the Kondo lattice is now
the “vanilla metal” state presented in (9.29) [10]. This starts with a wavefunction of
free electrons in the single band, and projects out all doubly occupied sites, which are
not present as U → ∞. This projection can be treated in a gauge-theoretic framework
quite similar to that followed for spin liquids, as we see below in Section 31.4.2. In the
simplest approach, we introduce an emergent U(1) gauge field, along with particles
carrying charges of the emergent gauge field; these are the spinons fα of Section 30.1,
and also bosonic, spinless “holons” b, which carry the electronic charge. The vanilla
metal state is obtained when the b holons condense, and this higgses out the U(1)
gauge field. Consequently, the gauge fluctuations are relatively innocuous, and so is the
projection operation in (9.29). So we can conclude that the vanilla state has a “large”
Fermi surface for all values of p, corresponding to an enclosed volume of 1+ p holes
or 1− p electrons. This is not compatible with observations at small p, which clearly
show the disappearance of the large Fermi surface state at small p.

This discussion highlights the need for a theory of the FL* state in the Hubbard
model at small p. There have been numerous discussions of such states in the litera-
ture, by various groups [38, 75, 176, 221, 286, 305, 321], including several by the author
and collaborators [128, 185, 210, 211, 212, 227, 232, 240, 251]. I begin our discussion
by presenting a simple physical picture of Ref. [211], along the lines of the discussion
of gapped spin liquids and RVB states in Chapter 13. We start with the RVB state illus-
trated in Fig. 13.1b, and remove a density p of electrons to obtain the state shown
in Fig. 31.8a. The resonance between the valence bonds can now allow processes in
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tFigure 31.8 (a) Doped spin liquid obtained by removing a density p of electrons from the RVB state in Fig. 13.1b. (b) Resonance
between the valence bonds leads to the motion of the vacancy in the center of the figure. The mobile vacancy is a
“holon,” carrying unit charge but no spin. If the holons have fermionic statistics, such a mobile holon state can realize a
holon metal. Only nearest-neighbor valence bonds are shown for simplicity.

which the vacant sites can move, as shown in Fig. 31.8b. As this process now trans-
fers physical charge, the resulting state can be expected to be an electrical conductor.
A subtle computation is required to determine the quantum statistics obeyed by the
mobile vacancies, but depending upon the parameter regimes, it can be either bosonic
or fermionic [139, 215]. Assuming fermionic statistics, we have the possibility that the
vacancies will form a Fermi surface, realizing a metallic state. Note that the vacan-
cies do not transport spin, and such spinless charge carriers are often referred to as
“holons”; the metallic state we have postulated is a holon metal. The low-energy quasi-
particles near the Fermi surface of the holon metal are also holons, carrying unit
electrical charge but no spin. Consequently, such quasiparticles are not directly observ-
able in photoemission experiments, which necessarily eject bare electrons with both
charge and spin. As low-energy electronic quasiparticles are observed in photoemis-
sion studies, the holon metal is not favored as a candidate for the pseudogap state of
the cuprates.

To obtain a spinful quasiparticle, we clearly have to attach an electronic spin to each
holon. And, as shown in Fig. 31.9, it is not difficult to imagine conditions under which
this might be favorable. (i) We break density p/2 valence bonds into their constituent
spins (Fig. 31.9a); this costs some exchange energy for each valence bond broken. (ii)
We move the constituent spins (“spinons”) into the neighborhood of the holons. (iii)
The holons and spinons form a bound state (Fig. 31.9b), which has both charge +e
and spin S = 1/2, the same quantum numbers as (the absence of) an electron; this
bound-state formation gains energy that can offset the energy cost of (i). We now have
a modified RVB state [211], like that in (13.1), but with |Di⟩ consisting of pairing of
sites of the square lattice with two categories of “valence bonds”: the elliptical and
rectangular dimers in Fig. 31.9b. The first class (elliptical) are the same as the electron
singlet pairs found in the Pauling–Anderson RVB state. The second class (rectangu-
lar) consists of a single electron resonating between the two sites at the ends of the
bond. From their constituents, it is clear that relative to the insulating RVB state, the
eilliptical dimers are spinless, charge-neutral bosons, while the rectangular dimers are
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tFigure 31.9 (a) State obtained by breaking density p/2 valence bonds in Fig. 31.8a into their constitute spinons. (b) The spinons
move into the neighborhood of the vacancies and form holon–spinon bound states represented by the rectangular
dimers [211]. The state with resonating elliptical and rectangular dimers realizes a metal with a Fermi volume of
p quasiparticles with charge+e and spin S = 1/2: the fractionalized Fermi liquid (FL*).

spin S = 1/2, charge +e fermions. Evidence that the states associated with the ellip-
tical and rectangular dimers dominate the wavefunction of the lightly doped cuprates
appears in cluster dynamical mean-field studies [80, 272]. Both classes of dimers are
mobile, and the situation is somewhat analogous to 4He–3He mixture. Like the 3He
atoms, the rectangular fermions can form a Fermi surface, and an extension of the
Luttinger argument to the present situation shows that the Fermi volume is exactly p
[210, 259, 262]. However, unlike the 4He–3He mixture, superfluidity is not immediate,
because of the close-packing constraint on the elliptical + rectangular dimers; onset
of superfluidity will require pairing of the rectangular dimers. So the state obtained
[211] by the resonating motion of the dimers in Fig. 31.9b is precisely the FL* metal: it
has a Fermi volume of p, with well-defined electron-like quasiparticles near the Fermi
surface.

31.4.1 Paramagnon FractionalizationWavefunction for the FL*
State

We can view the description of Fig. 31.9b [211] as a trial wavefunction for the FL*
metal. However, it is restricted to a particular class of spin liquids in which the valence
bonds and the spinon–holon bound state are short-ranged – the actual situation in the
cuprates is almost surely far from this limit. Also, it is not clear from such a construc-
tion how we may develop a more complete theory for a transition to the Fermi liquid
state, as described by the vanilla wavefunction in (9.29).

I now present a trial wavefunction, based upon the idea of introducing “ancilla”
or “hidden” qubits [173, 191, 324, 325], that achieves these objectives. This approach
relies upon an important lesson obtained from the theory for the Kondo lattice: we
should not fractionalize the mobile electron. For the FL* phase of the Kondo lattice,
we only fractionalize the immobile spins in the f band. For the single-band Hubbard
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tFigure 31.10 The paramagnon rotors in Fig. 9.6 are realized by a pair of ancilla (hidden) qubits (spin-1/2 spins) represented by
Schwinger fermionsΨ and Ψ̃. The antiferromagnetic exchange couplings JK and J⊥, are indicated and the dashed
lines represent exchange interactions within theΨ and Ψ̃ layers.

model, a very common approach, which we noted above, is to use the point of view of
a doped spin liquid: we begin with a spin liquid at half filling with fermionic spinons
fα , and represent the doping by bosonic holons b. The fractionalization is driven by
the exchange interaction J, but there is a stronger counter-effect to reconstructing the
electron by the large hopping t, which acts as an attractive potential between the fα
and b. In other words, if we fractionalize the electron with

cα = fα b† or f b†
α , (31.40)

as in Fig. 21.4, we will have to include fluctuation corrections that bind each holon
to a spinon, leading to a small Fermi surface of electrons. Assuming the appearance
of such bound states, Ref. [240] presents a theory of interacting electrons and bosonic
spinons which yields a pseudogap metal and a quantum phase transition to a Fermi
liquid with a large Fermi surface, but I do not describe this theory here.

Instead, we let us turn to the representation of the Hubbard model as a theory of
free electrons coupled to a lattice of paramagnon rotors, described near Fig. 9.6. The
main new idea is that we should fractionalize the paramagnon, which is charge neu-
tral, so that mobile charges are not fractionalized. First, we restrict attention to only
the ℓ = 0,1 angular momentum states of each rotor in (9.56). We can represent these
singlet and triplet states by a pair of S = 1/2 spins coupled with an antiferromagnetic
exchange coupling J⊥; these are the required ancilla qubits, as illustrated in Fig. 31.10
in which the top physical layer of electrons c, of density 1− p, is coupled to two lay-
ers of ancilla qubits, replacing the paramagnon rotors in Fig. 9.6. We use a Schwinger
fermion representation of ancilla or hidden qubits, as in (29.15) for the Kondo model.
So we introduce fermions Ψ with the constraint

∑
a

Ψ†
i;aΨi;a = 1 , (31.41)

satisfied on each lattice site i (a = ± is a pseudospin index) to represent the first layer
of ancilla qubits; similarly, we introduce fermions Ψ̃ to represent the second layer of
ancilla qubits. It is important that we add two layers of ancilla qubits, because only then
are the added layers allowed to form a trivial insulator. (Some earlier descriptions of
the FL* phase [185, 212] were obtained by adding a single ancilla band near half filling:
this gives a suitable description of the electron spectral function in the FL* phase, but
these approaches are difficult to extend into the FL phase.)
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tFigure 31.11 (a) The fractionalization of Section 31.4.1. The paramagnon is a quasi-bound state with a finite lifetime because it can
decay to a particle–hole pair. (b) The fractionalization of (31.40) and Fig. 21.4. This is not preferred because the holon
of Fig. 31.8 is not stable for t≫ J, and has not been observed. Note that a mobile charge carrier is not fractionalized
in (a), but is fractionalized in (b).

We note, in passing, that we have now complemented each electron ci with two
ancilla fermions Ψi and Ψ̃i. This 1⇒ 3 fermion replacement is similar to that in the
successful parton theory of fractional quantum Hall states, as discussed in Section 21.3
and Chapter 19. However, note that here the original electron operator is not fraction-
alized; rather, we have fractionalized the paramagnon into two ancilla fermions. This
fractionalization of collective spin excitations is closer in spirit to that in the Kondo
lattice. Fig 31.11 presents a pictorial summary of the paramagnon fractionalization
approach, and compares it to the conventional electron fractionalization approach of
(31.40).

In the large Fermi surface FL phase, we assume that the non-random and anti-
ferromagnetic coupling J⊥ dominates, and so the ancilla spins are locked into rung
singlets, and can be safely ignored in the low-energy theory; then, the c electrons form
a conventional Fermi liquid phase, and we obtain a Fermi surface corresponding to
electron density 1− p, or hole density 1+ p, as shown in Fig. 31.12. The trial wave-
function for this state is essentially the vanilla wavefunction in (9.29). We also show a
triplet paramagnon excitation, which is coupled to the large Fermi surface, just as in
the conventional paramagnon theory.

To obtain the small Fermi surface FL* phase, we consider an alternative fate of
the coupling of the mobile c electrons to the spins in the ancilla layers. Notice that
the Kondo coupling JK of the spins in the Ψ layer to the c electrons is antiferromag-
netic, while the effective Kondo coupling of the spins in the Ψ̃ layer to the c electrons
(mediated by the intermediate Ψ layer) is ferromagnetic. From Fig. 29.5, we know that
antiferromagnetic Kondo coupling flows to strong coupling, while the ferromagnetic
Kondo coupling is irrelevant. Let us assume that after some renormlization-group flow
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400 31 The Fractionalized Fermi Liquid

tFigure 31.12 In the large Fermi surface FL phase, the ancilla spins lock into rung singlets, while the c electrons are largely
decoupled from the ancilla spins, and form a conventional Fermi liquid of electron density 1− p (or hole density
1+ p). The bottom panel shows a propagating spin–triplet excitation which is the paramagnon.

tFigure 31.13 In the small Fermi surface FL* phase, theΨ ancilla spins are Kondo screened by the c electrons to form a Fermi
surface with density 2− p electrons, similar to that in the HFL phase of the Kondo lattice. This is equivalent to a small
hole-like Fermi surface of size p, consistent with observations in the cuprates at low doping. The Ψ̃ spins are largely
decoupled from the top two layers in the FL* phase, and form a gapless spin liquid with fractionalization, whose
presence is required by the generalized Luttinger relation.

to strong coupling, JK becomes even stronger than J⊥. Then the Kondo effect will
cause the Ψ spins to “dissolve” into the Fermi sea of the mobile electrons as shown
in Fig. 31.13. By analogy with the HFL phase of the Kondo lattice model in Chap-
ter 30, we conclude that the Fermi surface will correspond to an electron density of
1+(1− p) = 2− p: this is a small Fermi surface of holes of density p. The second layer
of Ψ̃ spins are now effectively decoupled from the other layers, and we assume their
mutual interactions cause them to form a spin liquid. In principle, the Ψ̃ spin liquid
could be any of the spin liquids studied in Parts II and IV, but let us assume for speci-
ficity that the spin liquid is one of those studied in Chapter 22. Then we can write down
a trial wavefunction for the FL* phase in this theory of paramagnon fractionalization
in the single-band Hubbard model [324], which can be viewed as a replacement for the
the vanilla wavefunction in (9.29):
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|ΦFL∗⟩=
[
Projection onto rung singlets of Ψ,Ψ̃

]
▷◁
∣∣Slater determinant of (c,Ψ)

〉
⊗
∣∣Slater determinant of Ψ̃

〉
. (31.42)

Note that, after the projection onto rung singlets on the right-hand side of (31.42),
|ΦFL∗⟩ is a wavefunction dependent only upon the physical c degrees of freedom in
the single-band model under consideration. Such a theory yields a good description of
photoemission observations in the pseudogap metal [173].

There is an interesting inversion here that is worth noting: at the mean-field level,
the small Fermi surface FL* phase of the single-band paramagnon fractionalization
model maps on to the large Fermi surface phase of the two-band Kondo lattice model,
where it is the HFL phase of that model. At small doping p, we can refine this to
the statement that the FL* phase of the single-band model maps onto a lightly doped
Kondo insulator in a Kondo–Heisenberg lattice model. This correspondence, however,
does not hold beyond themean field: in the small Fermi surface FL* phase of the single-
band model there are fractionalized spinon excitations arising from the Ψ̃ ancilla spins,
which are required by the generalized Luttinger relation. There are no fractionalized
excitations in the large Fermi surfaceHFL phase of the two-bandKondo latticemodel.

This discussion of the pseudogap metal as a FL* phase, can be summarized by
the slogan displayed in Fig. 31.13: “Pseudogap Metal = Kondo Lattice Heavy Fermi
Liquid+Spin Liquid”.

31.4.2 Gauge Symmetries

Apart from yielding the trial wavefunction in (31.42) for the FL* state, the para-
magnon fractionalization approach also allows us to write down a gauge theory for
the transition to the Fermi liquid state at large p. As in Parts II and IV, the struc-
ture of the gauge theory is dictated by the local constraints associated with the parton
construction, followed by an analyses of possible Higgs fields whose condensates can
break the gauge symmetry. We show here that the underlying gauge symmetry of the
paramagnon fractionalization approach is [325] (SU(2)S× SU(2)1× SU(2)2)/Z2 (the
subscripts are just labels, and do not refer to a Chern–Simons level). However, depend-
ing upon the question being addressed, only certain sectors of this rather large gauge
group are needed. In the FL* phase, the (SU(2)S×SU(2)1)/Z2 gauge symmetry is fully
broken, and we need only keep track of the SU(2)2 gauge symmetry of the spin liq-
uid on the second ancilla layer. For the FL*-FL transition, the critical theory reduces
to a (SU(2)S× SU(2)1)/Z2 gauge theory in the presence of a decoupled SU(2)2 spin
liquid [325].

Let Si;1, Si;2 be the spin operators acting on the qubits in the two ancilla layers,
where i is a lattice site (see Fig. 31.10). We apply the SU(2) gauge-invariant parton
representation of Section 22.4 to both layers. So we represent these spin operators with
ancilla fermions Fi;σ , F̃i;σ via

Si;1 =
1
2

F†
i;σ σσσσσ ′Fi;σ ′ , Si;2 =

1
2

F̃†
i;σ σσσσσ ′ F̃i;σ ′ , (31.43)
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where σσσ are the Pauli matrices. We also define the Nambu pseudospin operators

T i;1 =
1
2

(
F†

i;↓F
†
i;↑+Fi;↑Fi;↓, i

(
F†

i;↓F
†
i;↑−Fi;↑Fi;↓

)
,F†

i;↑Fi;↑+F†
i;↓Fi;↓−1

)
,

T i;2 =
1
2

(
F̃†

i;↓F̃
†
i;↑+ F̃i;↑F̃i;↓, i

(
F̃†

i;↓F̃
†
i;↑− F̃i;↑F̃i;↓

)
, F̃†

i;↑F̃i;↑+ F̃†
i;↓F̃i;↓−1

)
. (31.44)

For amore transparent presentation of the symmetries, it is useful to write the fermions
as 2×2 matrices (as in (22.19))

F i =

(
Fi;↑ −F†

i;↓
Fi;↓ F†

i;↑

)
. (31.45)

This matrix obeys the relation

F†
i = σ yFT

i σ y. (31.46)

We use a similar representation for F̃. Now, as in (22.21), we can write the spin and
Nambu pseudospin operators as

Si;1 =
1
4
Tr(F†

i σσσF i) , T i;1 =
1
4
Tr(F†

i F iσσσ) , (31.47)

and similarly for Si;2 and T i;2 with F̃. The unit F and F̃ fermion occupancy constraint
can now be stated as the vanishing of the pseudospins on each site of both ancilla
layers, as in (22.22)

T i;1 = 0 , T i;2 = 0 , (31.48)

which implies that the gauge symmetry is SU(2) [153] in the both ancilla layers. Specif-
ically, with the constraint (31.48), note that (31.47) are invariant under (we drop the
site index i, as it is common to all fields)

SU(2)1 : F→ FU1 , F̃→ F̃;

SU(2)2 : F→ F , F̃→ F̃U2 , (31.49)

where U1,2 are SU(2) matrices, similar to (22.23).
However, we are not done with the gauge symmetries, as we also need to introduce

a gauge symmetry associated with the rung-singlet projection in (31.42). We do this
by transforming to a rotating reference frame in spin space [228]. We introduce the
fermions ΨΨΨi, Ψ̃ΨΨi of Fig. 31.10 by the transformation

F i = LiΨΨΨi , F̃ i = L̃iΨ̃ΨΨi, (31.50)

where L, and L̃ are 2× 2 SU(2) matrices, and the ΨΨΨ fermions have a decomposition
similar to (22.19)

ΨΨΨi =

(
Ψi;+ −Ψ†

i;−
Ψi;− Ψ†

i;+

)
. (31.51)
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We use indices a = +,− for Ψi;a rather than ↑,↓ in (31.51) because the indices do not
represent physical spin in the rotated reference frame. Again, an analogous representa-
tion for Ψ̃ia is used. The transformation (31.50) implies a rotation of the spin operators,
but leaves the Nambu pseudospin invariant (and correspondingly for Sα

i;2 and T α
i;2):

Sα
i;1 = L

αβ
i

1
4
Tr(ΨΨΨ†

i τβ ΨΨΨi), (31.52)

T β
i;1 =

1
4
Tr(ΨΨΨ†

i ΨΨΨiτβ ), (31.53)

where α,β = x,y,z and τβ are Pauli matrices; we are using τβ rather than σβ here to
signify that these matrices act on the rotated a = +,− indices. As the pseudospin is
invariant, the constraints (31.48) now imply the single occupancy of the Ψ,Ψ̃ fermions
that we noted above in (31.41). The Li is a 3×3 SO(3) rotation matrix corresponding
to the 2×2 SU(2) rotations:

Lαβ
i =

1
2
Tr
(

L†
i σα Liτβ

)
. (31.54)

Note that the actions of SU(2)1 and SU(2)2 on F, F̃ in (31.49) translate into corre-
sponding rotations of ΨΨΨ, Ψ̃ΨΨ:

SU(2)1 : ΨΨΨ→ΨΨΨU1, Ψ̃ΨΨ→ Ψ̃ΨΨ, L→ L, L̃→ L̃;
SU(2)2 : ΨΨΨ→ΨΨΨ, Ψ̃ΨΨ→ Ψ̃ΨΨU2, L→ L, L̃→ L̃ .

(31.55)

We are now ready to discuss the gauge symmetries associated with the transforma-
tion to the rotating reference frame in spin space in (31.50). We do not wish to impose
the analog of the constraints (31.48) in the spin sector, because we don’t want van-
ishing spin on each site of both layers. Rather, we want to couple the layers into spin
singlets for each i, corresponding to the J⊥→∞ limit in Fig. 31.10. This is achieved by
the constraints

Si;1 +Si;2 ≈ 0 . (31.56)

The approximate equality is achieved by proceeding as usual with a gauge theory with
an exact constraint, and then including a finite bare gauge coupling, that is, includ-
ing a Maxwell term in the action with a non-zero coefficient. We don’t want an exact
constraint at infinite coupling because then the ancilla layers would just form rung sin-
glets. We do want to allow for some virtual fluctuations into the triplet sector at each
i; otherwise, the ancilla layers would completely decouple from the physical layer at
the outset. In contrast, (31.48) is imposed at an infinite bare gauge coupling [153]. In
practice, the value of the bare gauge coupling makes little difference, because we are
dealing ultimately with the effective low-energy gauge theory.

The mechanism for imposing (31.56) is now straightforward. We transform to a
common rotating frame in both layers by identifying

L̃i = Li , L̃i = Li , (31.57)

so that only states with zero total angular momentum in the two ancilla layers
are selected. So the transformation (31.50) introduces only a single SU(2)S gauge
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symmetry, related to that in Refs. [227, 228, 317], and the analog of (31.55) is

SU(2)S : ΨΨΨ→USΨΨΨ , Ψ̃ΨΨ→USΨ̃ΨΨ , L→ LU†
S , (31.58)

where US is an SU(2) matrix.
We assume ⟨Li⟩ = 0 in the whole phase diagram as we are interested in projecting

the ancilla layers into rung spin singlets. After that, the crucial transformations for the
subsequent discussion are those of the fermions ΨΨΨ, which we collect here:

SU(2)1 : ΨΨΨ→ΨΨΨU1 , Ψ̃ΨΨ→ Ψ̃ΨΨ;

SU(2)2 : ΨΨΨ→ΨΨΨ , Ψ̃ΨΨ→ Ψ̃ΨΨU2;

SU(2)S : ΨΨΨ→USΨΨΨ , Ψ̃ΨΨ→USΨ̃ΨΨ . (31.59)

We need only keep track of (31.59) for the following: the structure of all our effective
actions is mainly dictated by the requirements of the gauge symmetries acting on the
fermions in (31.59), and on the Higgs fields that will appear in the different cases. The
Z2 divisor in the overall (SU(2)1×SU(2)2×SU(2)S)/Z2 gauge symmetry arises from
the fact that centers of the two SU(2) tranformations in (31.50) are the same.

We can now write down an effective Hamiltonian for the FL* phase of the single-
band Hubbard model in the paramagnon fractionalization theory, analogous to (31.8)
for theKondo lattice. As the second ancilla layer is approximately decoupled into a spin
liquid (see Fig. 31.13), we focus on the effectiveHamiltonian of the c and Ψ layers. Then
the situation is even closer to that in the Kondo lattice, with a close correspondence
to the c and f “layers” in (31.8). The main difference is the larger gauge symmetry:
we have to consider a (SU(2)1× SU(2)S)/Z2 gauge symmetry for the top two layers
of Fig. 31.13, while the Kondo lattice only had the U(1) gauge symmetry in (31.3).
To understand the fate of this gauge symmetry, it is convenient to transform the 2×2
matrix notation in (31.51) into a four-vector notation:

ΨΨΨi =
(

Ψi;+,Ψi;−,−Ψ†
i;−,Ψ

†
i;+

)
, (31.60)

and similarly for the electron operator c. Then, as for the Kondo lattice, the JK inter-
action can be decoupled by a 4× 4 matrix field P (generalizing (29.31)) into terms of
the form

∑
i

ΨΨΨ†Pc+H.c. . (31.61)

TheHiggs fieldP transforms non-trivially under the (SU(2)1×SU(2)S)/Z2 gauge sym-
metry, and also under the global SU(2) spin rotation and U(1) charge symmetries, as
can be deduced from requiring the invariance of (31.61). We assume a simple Higgs
condensate of the form

P = Pdiag(1,1,−1,−1) , (31.62)

and then it is easy to see from (31.61) that the effective Hamiltonian for c and Ψ is
identical in structure to that for the HFL phase of the Kondo lattice in (31.8) with the
Ψ fermions replacing the f fermions. Moreover, the symmetry transformations of P
show that the condensate (31.62) breaks the (SU(2)1× SU(2)S)/Z2 gauge symmetry
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405 31.4 The FL* State in the Single-Band Hubbard Model

completely, and preserves the SU(2) spin rotation and U(1) charge symmetries. The
remaining analysis for the mean-field electronic structure of the c and Ψ is therefore
very similar to that for the HFL phase in Section 31.1, and was incorporated into the
results in Fig. 31.13. The electronic spectrum obtained from (31.62) compares well with
photoemission observations in the pseudogap metal [173].

It must be kept in mind that the Ψ̃ ancilla layer is still active in the FL* phase of the
single-band model, although it is decoupled from the other layers in mean-field theory.
The SU(2)2 gauge symmetry acts on the Ψ̃ layer, and its fate determines the nature of
the spin liquid in this FL* phase of the single-band Hubbard model. The SU(2)2 gauge
symmetry could be unbroken, or it could be broken down to U(1) or Z2 to obtain any
one of the spin liquids in Parts II and IV.

The transition from FL* to FL is described [325] by a theory of the disappearance of
the condensate of theHiggs fieldP. This Higgs field carries fundamental gauge charges
of (SU(2)1×SU(2)S)/Z2, and so the corresponding gauge fields must also be retained,
along with the fermions in the ancilla layers.
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32 Sachdev–Ye–Kitaev Models

The Sachdev–Ye–Kitaev model describes a metallic phase of matter without quasi-
particle excitations. Its solution in the limit of a large number of sites is presented,
enabled by random and all-to-all interactions between fermions. The low-energy
spectral functions have a conformal structure, and the leading corrections to the con-
formal solution are describedby a time-reparameterizationmode. Connections to the
physics of charged black holes is briefly noted.

This chapter turns to the further analysis of a phase of quantum matter without quasi-
particle excitations. We briefly discuss such a phase in Section 11.2.2 at the quantum
critical point of a relativistic O(N) scalar field theory in 2+1 dimensions; further dis-
cussion can be found in the QPT book [234]. Our interest here is to describe a solvable
theory of quantum matter without quasiparticle excitations. For this, there is essen-
tially only one class of examples, those based on the Sachdev–Ye–Kitaev (SYK)model,
to which we will turn in Section 32.2 by describing the structure of its large-N saddle-
point theory. The SYK model also realizes a compressible phase of matter: its density
can be continuously tuned at T = 0 by a chemical potential, much like that of a Fermi
liquid, and so qualifies as a metal without quasiparticle excitations (unlike the theory
of Section 11.2.2).

At first glance, the theory of one-dimensional quantum gases in Chapter 12, with
spectral functions like those in (12.55), might seem like an example of a compress-
ible phase of matter without quasiparticle excitations. However, that is not the case;
the one-dimensional quantum gas has no electron-like quasiparticles, but it does have
other quasiparticles – these are the free-particle phase or density fluctuation modes of
the Luttinger liquid, which describe the entire spectrum of low-energy states.

We will begin in Section 32.1 by discussing a simple theory with quasiparticles:
fermions occupying the eigenstates of a random matrix. The contrast to its proper-
ties will help highlight the novel features of the large-N solution of the SYK model in
Section 32.2, which overlaps with a review article by Chowdhury et al. [46]. Much is
known about the structure of the SYK model at finite N; we only note some impor-
tant results in Section 32.3, and refer the reader to a review article by Chowdhury et
al.’s article for further details. These authors also review the connections between the
SYK model and the random t–J model – the latter model captures many aspects of the
cuprate phase diagram at intermediate temperatures.

406
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32.1 RandomMatrix Model: Free Fermions

In the study of charge transport inmesoscopic structures, much experimental effort has
focused on electrons moving through “quantum dots.” We can idealize a quantum dot
as a “billiard,” a cavity with irregular walls. The electrons scatter off the walls, before
eventually escaping through the leads. If we treat the electron motion classically, we
can follow a chaotic trajectory of particles bouncing off the walls of the billiard. Much
mathematical effort has been expended on the semi-classical quantization of such non-
interacting particles: the “quantum billiard” problem. It was initially a conjecture [31],
and now proven [187], that many statistical properties of this quantum billiard can
be described by a model in which the electrons hop on a random matrix. It is this
random-matrix problem that is described in this section.

Many properties of the random-matrix model are similar to a model of a disordered
metal in which the electrons occupy plane-wave eigenstates, which scatter off randomly
placed impurities with a short-range potential. However, unlike the random-impurity
case, there is no regime in which the eigenstates of a random matrix can be localized.
As every site is coupled to every other site, there is no sense of space or distance along
which the eigenstate can decay exponentially.

32.1.1 Green's Function

We consider electrons ci (assumed spinless, for simplicity) hopping between sites
labeled i = 1, . . . ,N, with a hopping matrix element ti j/

√
N:

H2 =
1

(N)1/2

N

∑
i, j=1

ti jc
†
i c j−µ ∑

i
c†

i ci, (32.1a)

cic j + c jci = 0 , cic
†
j + c†

jci = δi j, (32.1b)

1
N ∑

i
c†

i ci =Q. (32.1c)

The ti j are chosen to be independent random complex numbers with ti j = t∗ji, ti j = 0

and |ti j|2 = t2. The 1/
√

N scaling of the hopping has been chosen so that the bandwidth
of the single-electron eigenstates will be of order unity in the N→ ∞ limit, and there-
fore (as there are N eigenstates) the spacing between the successive eigenvalues with
be of order 1/N. We have also included a chemical potential so that average density of
electrons on each site is Q. The subscript (“2”) in the Hamiltonian H2 denotes that it
only includes two electron operators.

For a given set of ti j, there is no alternative to numerically diagonalizing the N×N
matrix ti j to solve this problem.However, in the limit of large N, it turns out that certain
quantities self-average. In other words, certain observables take the same value on every
site, and that value is realized with probability 1 in the N → ∞ limit. We will only be
interested in such observables here.
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One of these self-averaging observables is the single-particle Green’s function, which
we define as usual by

Gi j(τ) =−Tτ

〈
ci(τ)c†

j(0)
〉
. (32.2)

In the limit of large N, we have the self-averaging result

Gi j(τ) ⇒ G(τ)δi j . (32.3)

The simplest way to see this is to evaluate averages of Gi j order by order in a
perturbation theory in ti j. To zeroth-order, the Green’s function is simply

G0
i j(iωn) =

δi j

iωn +µ
, (32.4)

where iωn are imaginary (Matsubara) frequencies. The Feynman graph expansion con-
sists of a single-particle line, with an infinite set of possible products of G0

i j and ti j. We
now average each graph over the distribution of ti j, and take the limit N → ∞. Then
only a simple set of graphs survive, and the average Green’s function is a solution of
the following set of equations

G(iωn) =
1

iωn +µ−Σ(iωn)
, Σ(τ) = t2G(τ), (32.5a)

G(τ = 0−) =Q. (32.5b)

The solution of (32.5a) reduces to solving a quadratic equation for G(iω), and so we
obtain, for a complex frequency z,

G(z) =
1

2t2

[
z+µ±

√
(z+µ)2−4t2

]
. (32.6)

The sign in front of the square root is chosen so that G(z) has the correct analytic
properties as z→ ∞:

• G(|z| → ∞) = 1/z,
• ImG(ω + i0+)< 0 for real ω ,
• ImG(ω + i0−)> 0 for real ω .

All of these constraints can be obtained from the spectral representation of the Green’s
function. We can also define the density of single-particle states as

ρ(ω) =− 1
π
ImG(ω−µ + i0+) =

1
2πt2

√
4t2−ω2 (32.7)

for ω ∈ [−2t,2t], and ρ(ω) = 0 otherwise. This is the famous semicircle density of states
for the random matrix.

The chemical potential is fixed by requiring that (32.5b) is satisfied, which can be
written as ∫ 2t

−2t
dω ρ(ω) f (ω−µ) =Q , (32.8)
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where f (ε) = 1/(eε/T +1) is the Fermi function. Performing a Sommerfeld expansion
of the left-hand side for T ≪ t, we obtain∫ µ

−2t
dω ρ(ω)+

π2T 2

6
ρ ′(µ) =Q . (32.9)

where ρ ′(ω) = dρ/dω , This equation must be satisfied at all T , and depending upon
the particular ensemble, it requires variation of µ orQwith T . In particular, if we keep
Q fixed and vary T , then

µ(T ) = µ0−
ρ ′(µ0)

ρ(µ0)

π2T 2

6
, (32.10)

where µ0 = µ(T = 0).

32.1.2 Many-Body Density of States

A quantity that will play an important role in our subsequent discussion of the SYK
model is the many-body density of states, N (E). Unlike the single-particle density of
states ρ(ω), this is not an intensive quantity, but is typically exponentially large in N,
because there is an exponentially large number of ways of making states within a small
window of an energy E ∼ N. In the grand canonical ensemble, we can relate the grand
potential Ω(T ) to N (E) via an expression for the grand partition function

Z = exp
(
−Ω(T )

T

)
=
∫ ∞

−∞
dE N (E)e−E/T . (32.11)

Note that we have absorbed a contribution −µNQ into the definition of the energy E,
just as is frequently done in Fermi liquid theory. So we can obtainN (E) by an inverse
Laplace transform of Ω(T ).

First, let us evaluate Ω(T ). By the standard Sommerfeld expansion for free fermions,
we have

Ω(T ) =−T
∫ 2t

−2t
dωρ(ω) ln

(
1+ e−(ω−µ)/T

)
=
∫ µ

−2t
dω(ω−µ)ρ(ω)− π2T 2

6
ρ(µ)

≡ E0−
π2T 2

6
ρ(µ). (32.12)

This results implies an entropy that vanishes linearly as T → 0:

S = γT, (32.13)

with, as in a Fermi liquid in (2.12),

γ =
π2

3
ρ(µ) . (32.14)

We now have to insert (32.12) into (32.11) and determine N (E). Rather than perform
the inverse Laplace transform, we make a guess of the form of N (E). First, it is not

https://doi.org/10.1017/9781009212717.033 Published online by Cambridge University Press

https://doi.org/10.1017/9781009212717.033
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tFigure 32.1 65 536 Many-body eigenvalues of aN = 32Majorana matrix model with random fermion hopping terms.N (E) is
plotted in (a) and (b) in 200 and 100 bins, (b) and (c) zoom into the bottom of the band. Individual energy levels are
shown in (c), and these are expected to have spacing 1/(Nρ(µ)) at the bottom of the band asN→ ∞. Figure by
G. Tarnopolsky.

tFigure 32.2 65 536 Many-body eigenvalues of aN = 32Majorana SYK Hamiltonian with random q = 4 fermion terms.N (E)
is plotted in (a) and (b) in 200 and 100 bins, (b) and (c) zoom into the bottom of the band. Individual energy leves are
shown in (c), and these are expected to have spacing e−NS at the bottom of the band asN→ ∞. Compare to
Fig. 32.1 for the random-matrix model, which has a much sparser spacing∼ 1/N at the bottom of the band. Figure
by G. Tarnopolsky.

difficult to see thatN (E < E0) = 0. Next, we expectN (E) to be exponentially large in
N when E−E0 ∼ N. So we make a guess:

N (E)∼ exp
(

aN[(E−E0)/N]b
)

, E > E0 (32.15)

for some constants a and b. Then, we insert (32.15) into (32.11), and perform
the integral over E by the steepest descent method in the large-N limit. Matching
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the result to the left-hand side of (32.11), we obtain the main result of this
section:

N (E)∼ exp(S(E)) , (32.16)

S(E) =
{ √

2Nγ(E−E0) , E > E0

0 , E < E0
,

where S(E) is the entropy as a function of the grand energy. Consideration of the
derivation shows that this result is valid for

1≪ ρ(µ)(E−E0)≪ N , (32.17)

in the limit of large N. Note that the entropy vanishes as E ↘ E0 in (32.16). Numeri-
cal results for N (E) are shown for a closely related random Majorana fermion model
in Fig. 32.1. When E −E0 ∼ N, the entropy S(E) is extensive, the energy-level spac-
ing is exponentially small, ∼ e−aN , with a > 0, and N (E)∼ eaN is exponentially large.
However, when E − E0 ∼ 1/N, we expect the many-particle eigenstates to be a few
single-particle excitations with energies ∼ 1/(Nρ(µ)), and so N (E) ∼ N. This rapid
dropoff in N (E) near the bottom of the band is clearly evident in Fig. 32.1a from the
“tails” in the density of states. A more complete analysis of the finite-N corrections is
needed to understand the behavior of theN (E) at low energy, along the lines of recent
analyses [157, 158].

We also show in Fig. 32.2 the corresponding results for the Majorana SYK model.
These results are discussed further in Section 32.3, but for now the reader should note
the striking absence of the tails in N (E) in Fig. 32.2a in comparison to Fig. 32.1a.

There is an interesting interpretation of (32.16), which gives us some insight into the
structure of the random matrix eigenenergies, and also highlights a key characteristic
ofmany-body systemswith quasiparticle excitations. It is known that the eigenvalues of
a randommatrix undergo level repulsion and their spacings obeyWigner–Dyson statis-
tics [175]. For a zeroth-order picture, let us assume that the random-matrix eigenvalues
are rigidly equally spaced, with energy-level spacing (near the chemical potential) of
1/(Nρ(µ)). Now we ask for the number of ways to create a many body excitation
with energy E − E0. This many-body excitation energy is the sum of particle–hole
excitations, each of which has an energy equal to an integer times the level spacing
1/(Nρ(µ)):

Nρ(µ)(E−E0) = n1 +n2 +n3 +n4 + · · · , (32.18)

where the ni are the excitation numbers of the particle–hole excitations (this mapping
is the essence of bosonization in one dimension). So, we estimate that the number of
such excitations is equal to the number of partitions of the integer Nρ(µ)(E−E0). Now
we use the Hardy–Ramanujan result that the number of partitions of an integer n is
p(n)∼ exp(π

√
2n/3) at large n. This immediately yields (32.16). Note that the special

case with exactly equally spaced quasiparticle levels (which is the case in Section 12.1)
has many-body levels with a spacing ∼ 1/N but an exponentially large degeneracy; in
contrast, the generic random-matrix case has no degeneracy but an exponentially small
many-body-level spacing.
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This argument highlights a key feature of the many-body spectrum: it is just the sum
of single-particle excitation energies. We expect that if we add weak interactions to the
random-matrix model, we will obtain quasiparticle excitations in a Fermi liquid state
whose energies add to give many-particle excitations; therefore, we expect the general
form of (32.16) to continue to hold even with interactions. However, we see at the end
of Section 32.3 that such a decomposition to quasiparticle excitations does not hold
for the SYK model.

We can also estimate the lifetime of the quasiparticles by a perturbative computa-
tion based on Fermi’s golden rule. The computation in (2.36) now applies essentially
exactly, as there is no momentum dependence and we can perform the integrals over
the energies using the density of states in (32.7); we obtain 1/τ ∼ U2T 2/t3 at low T
for interactions with root-mean-square strength U (see Problem 32.1). As this is para-
metrically smaller than a quasiparticle excitation energy∼ T , they remain well-defined
excitations.

32.2 Large-N Theory of the SYKModel

As in the random-matrixmodel, we consider electrons (assumed spinless for simplicity)
that occupy sites labeled i = 1,2, . . . ,N. However, instead of a random one-particle
hopping ti j, we now have only a random two-particle interaction Ui j;kℓ:

H4 =
1

(2N)3/2

N

∑
i jkℓ=1

Ui j;kℓ c†
i c†

jckcℓ−µ ∑
i

c†
i ci,

cic j + c jci = 0 , cic
†
j + c†

jci = δi j,

Q=
1
N ∑

i
c†

i ci , (32.19a)

where the subscript “4” emphasizes that the coupling depends randomly on four
indices. We choose the couplings Ui j;kℓ to be independent random variables with zero
mean Ui j;kℓ = 0, while satisfying Ui j;kℓ = −U ji;kℓ = −Ui j;ℓk = U∗kℓ;i j. All the random

variables have the same variance |Ui j;kℓ|2 =U2.
A model similar to H4 appears in nuclear physics, where it is called the two-body

random ensemble [37], and studied numerically. The existence and structure of the
large-N limit was understood [91, 92, 196, 242] in the context of a closely relatedmodel.
More recently, a Majorana version was introduced [136], and the large-N limit of H4

was obtained [235].
The useful self-averaging properties of the random-matrix model as N → ∞ also

apply to the SYK model (32.19a). Indeed, the self-averaging properties are much
stronger, as the average takes place over the many-body Hilbert space of size eαN ,
rather than the single-particleHilbert space of size N. Proceeding just as in the random-
matrixmodel, we perform aFeynman graph expansion inUi j;kℓ, and then average graph
by graph. In the large-N limit, only the so-called “melon graphs” survive (Fig. 32.3),
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tFigure 32.3 The “melon graph” for the electron self-energyΣ(τ) in (32.20b). Solid lines denote fully dressed-electron Green’s
functions. The dashed line represents the disorder averaging associated with the interaction vertices (denoted as solid
circles), |Ui j;kℓ|2.

and the determination of the on-site Green’s function reduces to the solution of the
following equations:

G(iωn) =
1

iωn +µ−Σ(iωn)
, (32.20a)

Σ(τ) =−U2G2(τ)G(−τ), (32.20b)

G(τ = 0−) =Q. (32.20c)

Unlike the random-matrix equations, these equations cannot be solved analytically,
and a full solution can only be obtained numerically. However, it is possible to make
significant analytic progress at frequencies and temperatures≪U , as described in the
following subsections.

Before embarking on a general low-energy solution of (32.20a)–(32.20c), let us note
a remarkable feature that can be deduced on general grounds [242]: any non-trivial
solution (i.e., with Q ̸= 0,1) must be gapless. Let us suppose otherwise, and assume
there is a gapped solution with ImG(ω) = 0 for |ω| < EG. Then, by an examination
of the spectral decomposition of the equation for the self-energy in (32.20b), we can
establish that ImΣ(ω) = 0 for |ω| < 3EG. Inserting this back into Dyson’s equation
(32.20a), we obtain the contradictory result that ImG(ω) = 0 for |ω| < 3EG. So the
only possible value is EG = 0.

We also mention briefly a model that combines the interaction term in (32.19a) with
the hopping term in (32.1a), namely

H24 =
1

(N)1/2

N

∑
i, j=1

ti jc
†
i c j +

1
(2N)3/2

N

∑
i jkℓ=1

Ui j;kℓ c†
i c†

jckcℓ−µ ∑
i

c†
i ci. (32.21)

The large-N equations for this model merely combine the self-energy contributions in
(32.20b) and (32.5a) so that

Σ(τ) = t2G(τ)−U2G2(τ)G(−τ) , (32.22)

while (32.20a) and (32.20c) remain the same. The solution of (32.20a), (32.20c), and
(32.22) are presented later in Section 33.3.3, where the same equations appear in a
different context. For now, we simply state that the t2 term is more important than the
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U2 term at low frequencies, and so the low-energy solution reduces to a renormalized
free-fermion solution similar to that in Section 32.1.

We now return to a consideration of H4 in (32.19a) for the remainder of this chapter.

32.2.1 Low-Energy Solution at T = 0

Knowing that the solution must be gapless, let us assume that we have a power-law
singularity at zero frequency. So we assume [242]

G(z) =C
e−i(π∆+θ)

z1−2∆ , Im(z)> 0, |z| ≪U . (32.23)

We have a prefactor C > 0, a power-law singularity determined by the exponent ∆ > 0,
and a spectral asymmetry angle θ , which yields distinct density of states for particle
and hole excitations.We nowhave to insert the ansatz (32.23) into (32.20a) and (32.20b)
and find the values ofC, ∆, and θ for which there is a self-consistent solution. Of course,
the solution also has to satisfy the constraint arising from the spectral representation
ImG(ω + i0+)< 0; for (32.23) this translates to

−π∆ < θ < π∆ . (32.24)

We now wish to obtain the Green’s function as a function of imaginary time τ . For
this purpose, we write the the spectral representation using the density of states ρ(Ω) =

−(1/π)ImG(ω + i0+)> 0, so that

G(z) =
∫ ∞

−∞
dΩ

ρ(Ω)

z−Ω
. (32.25)

We can take a Fourier transform and obtain

G(τ) =


−
∫ ∞

0
dΩ ρ(Ω)e−Ωτ , for τ > 0∫ ∞

0
dΩ ρ(−Ω)eΩτ , for τ < 0

. (32.26)

Using (32.26) we obtain in τ space

G(τ) =


−CΓ(2∆)sin(π∆+θ)

π|τ|2∆ , for τ ≫ 1/U

CΓ(2∆)sin(π∆−θ)
π|τ|2∆ , for τ ≪−1/U

. (32.27)

This expression makes it clear that θ determines the particle–hole asymmetry, asso-
ciated with the fermion propagation forward and backward in time. For our later
purpose, it is also useful to parametrize the asymmetry in terms of a real number
−∞ < E < ∞ so that

G(τ)∼


− eπE

|τ|2∆ , for τ ≫ 1/U

e−πE

|τ|2∆ , for τ ≪−1/U

, (32.28)
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and then we have

e2πE =
sin(π∆+θ)
sin(π∆−θ)

, (32.29)

and E = θ = 0 is the particle–hole symmetric case.
We also use the spectral representation for the self-energy

Σ(z) =
∫ ∞

−∞
dΩ

ρ(Ω)

z−Ω
. (32.30)

Using (32.20b) and (32.27) to obtain Σ(τ), and performing the inverse Laplace
transform as for G(τ), we obtain

ρ(Ω) =


ϒ(∆) [sin(π∆+θ)]2 [sin(π∆−θ)] |Ω|6∆−1

for Ω > 0

ϒ(∆) [sin(π∆+θ)] [sin(π∆−θ)]2 |Ω|6∆−1

for Ω < 0

, (32.31)

where

ϒ(∆) =
π2U2

Γ(6∆)

[
CΓ(2∆)

π

]3

. (32.32)

Finally, we have to insert the Σ(iωn) obtained from (32.30) and (32.31) back into
(32.20a). To understand the structure of the solution, let us first assume that 0 <

6∆− 1 < 1; we will find soon that this is indeed the case, and no other solution is
possible. Then, as |ωn| → 0, the frequency dependence in Σ(iωn) is much larger than
that from the iωn term in (32.20a). Also, we have 1− 2∆ > 0, and so G(z) in (32.23)
diverges as |z| → 0. So we find that a solution of (32.20a) is only possible under two
conditions:

µ−Σ(0) = 0 ,

1−2∆ = 6∆−1 ⇒ ∆ =
1
4
. (32.33)

Matching the divergence in the coefficient of G(z) as z→ 0, we also obtain the value
of C:

C =

(
π

U2 cos(2θ)

)1/4

. (32.34)

The value of the asymmetry angle θ remains undetermined by the solution (32.20a)
and (32.20b). As we see in Section 32.2.2, the value of θ is fixed by a generalized Lut-
tinger’s theorem, which relates it to the value of the fermion density Q. But without
further computation we can conclude that, at the particle–hole symmetric point with
Q= 1/2, we have E = θ = 0.

The main result of this section is therefore summarized in (32.28). The fermion
has the “dimension” ∆ = 1/4 and its two-point correlator decays as 1/

√
τ ; there is

an unknown particle–hole asymmetry determined by E . This should be contrasted
with the corresponding features of the random-matrix model with a Fermi liquid
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ground state: the two-point fermion correlator decays as 1/τ , and the leading decay
is particle–hole symmetric.

32.2.2 Luttinger Relation

Section 30.2.2 presented a discussion of the Luttinger relation for a disordered Fermi
liquid. We argued in Section 30.2.2 that a Luttinger relation can be obtained for any
quantum system with an unbroken U(1) symmetry that is compressible, that is, for
which the U(1) charge density can be varied continuously by varying parameters in
the Hamiltonian. The SYK model is another example of such a system, and we obtain
its Luttinger relation below; it turns out to be different from that for a disordered Fermi
liquid because of the absence of quasiparticles, and the resulting singular nature of the
low-frequency Green’s function.

The Luttinger relation for the SYK model [91] relates the angle θ characteriz-
ing the particle–hole asymmetry at long times in (32.23), to the fermion density Q,
which is an equal-time fermion correlator. As in the conventional Luttinger analysis
in Section 30.2, we start by manipulating the expression for Q into two terms

Q−1 =
∫ ∞

−∞

dω
2π

G(iω)e−iω0+ = I1 + I2,

I1 = i
∫ ∞

−∞

dω
2π

d
dω

ln [G(iω)]e−iω0+ ,

I2 =−i
∫ ∞

−∞

dω
2π

G(iω)
d

dω
Σ(iω)e−iω0+ . (32.35)

In all the cases considered so far in Section 30.2 and 31.2, I2 vanishes because of the
existence of the Luttinger–Ward functional [2], while I1 is easily evaluated because it is
a total derivative, and this yields the Luttinger relation. The situation is more compli-
cated for the SYK model because of the singular nature of G(ω) as |ω| → 0. Indeed,
both I1 and I2 are logarithmically divergent at small |ω|, although, naturally, their sum
is well defined. Nevertheless, the separation of Q into I1 and I2 is useful because it
allows us to use the special proprties of the Luttinger–Ward functional to account for
the unknown high-frequency behavior of the Green’s function. We define I1,2 by a reg-
ularization procedure, and it is then important that the same regularization be used
for both I1 and I2. We employ the symmetric principle value, with∫ ∞

−∞
dω ⇒ lim

η→0

[∫ −η

−∞
dω +

∫ ∞

η
dω
]
. (32.36)

Now we evaluate I1 using the usual procedure of Section 30.2.1: we distort the
contour of integration to the real frequency axis and obtain

I1 = i lim
η→0

∫ ∞

0

dω
2π

d
dω

ln
[

G(ω + iη)

G(ω− iη)

]
=− 1

π
lim
η→0

[argG(∞+ iη)−argG(iη)] . (32.37)
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In a Fermi liquid, I1 now evaluates to unity outside the Fermi surface, and vanishes
inside the Fermi surface. In the present case, using (32.23), we obtain

I1 =−
1
2
− θ

π
. (32.38)

In the evaluation of I2 we must substitute the expression (32.20b) for Σ into I2,
because then we ensure cancellations at high frequencies arising from the existence
of the Luttinger–Ward functional:

ΦLW [G] =−U2

4

∫
dτ G2(τ)G2(−τ) . (32.39)

Using Σ = δΦLW/δG, and ignoring the singularity at ω = 0, we obtain, as in Fermi
liquid theory, I2 = −i

∫ ∞
−∞ dω(d/dω)ΦLW = 0. So the entire contribution to I2 arises

from the regularization of singularity near ω = 0. We can therefore evaluate I2 by using
(32.20b) for Σ, the regularization in (32.36), and the low-frequency spectral density in
(32.31), and ignore the high-frequency contribution to I2. After a somewhat involved
evaluation of such an integral [91, 97], we obtain

I2 =−
sin(2θ)

4
. (32.40)

Combining (32.35,32.38,32.40), we obtain our generalized Luttinger theorem [62, 91,
97],

Q=
1
2
− θ

π
− sin(2θ)

4
. (32.41)

This expression evaluates to the limiting values Q = 1,0 for the limiting values of
θ = −π/4,π/4 in (32.24), and decreases monotonically in between; Q is also a
monotonically decreasing function between these limits of −∞ < E < ∞, via (32.29).

All our results have so far been obtained by an analytic analysis of the low-energy
behavior. A numerical analysis is needed to ensure that such low-energy solutions have
high-energy continuations that also obey (32.20a) and (32.20b). Such analyses show
that complete solutions exist only for a range of values aroundQ= 1/2 [16]; for values
of Q close to 0,1, there is phase separation into the trivial Q = 0,1 state, and densi-
ties closer to half filling. However, this conclusion is only for the specific microscopic
Hamiltonian in (32.19a); other Hamiltonians, with additional q-fermion terms, with
q > 4, could have solutions with the same low-energy behavior described so far for a
wider range of Q, because these higher q terms are irrelevant at low energy.

32.2.3 Non-zero Temperatures

It turns out to be possible to extend the solutions for T = 0 Green’s functions obtained
so far to non-zero T ≪U . This is donemost cleanly using a subtle argument employing
conformal invariance.However, here we take a pedestrian approach, look for a solution
directly from the defining equations (32.20a) and (32.20b), and show that we can guess
a solution that works.
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We limit the considerations of this section to the particle–hole symmetric case with
Q = 1/2 and θ = 0. We use the similarity to multichannel Kondo problems [197] to
generalize the τ dependence of the Green’s function in (32.27) to [196]

G(τ) =− B
U1/2 sgn(τ)

∣∣∣∣ πT
sin(πT τ)

∣∣∣∣1/2

, T, |τ|−1≪U , (32.42)

where B is a dimensionless constant whose value can be deduced from (32.27), to which
(32.42) reduces for 1/U ≪ |τ| ≪ 1/T .

Then, the self-energy is

Σ(τ) =−U1/2B3sgn(τ)
∣∣∣∣ πT
sin(πT τ)

∣∣∣∣3/2

, T, |τ|−1≪U .

Taking Fourier transforms, we have, as a function of the Matsubara frequency ωn,

G(iωn) =

[
−iB
U1/2

] T−1/2 Γ
(

1
4
+

ωn

2πT

)
Γ
(

3
4
+

ωn

2πT

) , (32.43a)

Σsing(iωn) =
[
−i4πU1/2B3

] T 1/2 Γ
(

3
4
+

ωn

2πT

)
Γ
(

1
4
+

ωn

2πT

) , (32.43b)

wherewe have dropped a less-singular term in Σ(iωn). Now, the singular part ofDyson’s
equation is

G(iωn)Σsing(iωn) =−1. (32.44)

Remarkably, the Γ functions in (32.43a) and (32.43b) appear with just the right
arguments, so that they can indeed obey (32.44) for all ωn.

A deeper understanding of the origin of (32.42), and its generalization to the
particle–hole asymmetric case, can be obtained by analyzing the low-energy limit of
the original saddle-point equations (32.20a) and (32.20b). These equations are char-
acterized by a remarkably large set of emergent symmetries, which are described in
Section 32.3.1. The final result for the Green’s function in imaginary time away from
the particle–hole symmetric point is

G(τ) =−C
e−2πET τ
√

1+ e−4πE

(
T

sin(πT τ)

)1/2

(32.45)

for 0 < τ < 1/T . This can be extended to all real τ using the antisymmetry of the
fermionGreen’s function. Performing a Fourier transform, and analytically continuing
to real frequencies leads to the Green’s function [196, 235]

G(ω + i0+) =
−iCe−iθ

(2πT )1/2

Γ
(

1
4
+ iE − iω

2πT

)
Γ
(

3
4
+ iE − iω

2πT

) . (32.46)
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tFigure 32.4 Plot of the electron spectral density in the SYK model, obtained from the imaginary part of (32.46). TheE = 0 curve
is the particle–hole symmetric case withQ= 1/2, whileE positive (negative) corresponds toQ< 1/2
(Q> 1/2).

We show a plot of the imaginary part of the Green’s function in Fig. 32.4.
For later comparison with other models, let us note that these results imply that the

singular part of the electron self-energy obeys the scaling form

Σ(ω,T ) =U1−α T α Φ
(

h̄ω
kBT

)
, (32.47)

with α = 1/2 and Φ is a universal scaling function with a known dependence on the
particle–hole asymmetry parameter E . The universal dependence of the self-energy on
the “Planckian ratio,” h̄ω/(kBT ), implies the absence of electronic quasiparticles; the
characteristic lifetime of the excitations ∼ h̄/(kBT ) is of the same order as their energy
∼ h̄ω , and so quasiparticles are not well defined. Contrast this with the behavior of the
random-matrix model in Section 32.1.2, where the self-energy was negligible at low T .

32.2.4 Computation of the T → 0 Entropy

We have now presented detailed information on the nature of the Green’s function of
the SYK model at low T . We will proceed next to use this information to compute
some key features of the low-T thermodynamics.

First, we establish some properties of the behavior of the chemical potential µ as
T → 0 at fixedQ. Recall that for the random matrix model, and more generally for any
Fermi liquid, there was a ∼ T 2 correction to the chemical potential, which depended
upon the derivative of the density of single-particle states. For the SYK model, the
leading correction is much stronger: the correction is ∼ T , which is universally related
to parameters in the Green’s function [91].

A simple way to determine the linear T dependence of µ is to examine the particle–
hole asymmetry of theGreen’s function at T > 0. From (32.28) and (32.45), this is given
by the ratio
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lim
T→0

G(τ)
G(1/T − τ)

= e2πE , (32.48)

where the limit is taken at a fixed τ ≫ 1/U . We now use a crude picture of the low-
energy theory and imagine that all the low-energy degrees of freedom are essentially at
zero energy, compared to U . So we compare (32.48) with the corresponding ratio for a
zero-energy fermion whose chemical potential has been shifted by δ µ

G0(0 < τ < 1/T ) =− eδ µτ

1+ eδ µ/T ,
G0(τ)

G0(1/T − τ)
= e−δ µ(1/T−2τ) . (32.49)

From this comparison, we conclude that there is a linear-in-T dependence of the
chemical potential that keeps the particle–hole asymmetry fixed as T → 0:

µ−µ0 = δ µ =−2πET + terms vanishing as T p with p > 1 , (32.50)

with µ0 a non-universal constant. Note that the density of the zero-energy fermion
= 1/(e−δ µ/T +1) remains fixed as T → 0, and so (32.50) applies at fixed Q.

Amore formal analysis [91, 197, 235], leading to the same result for the T dependence
of µ , relates the long-time conformal Green’s function (valid for τ≫ 1/U) to its short-
time behavior. In particular, at |ωn| ≫U , we have

G(iωn) =
1

iωn
− µ

(iωn)2 + · · · , (32.51)

which implies, for the spectral density of the Green’s function ρ(Ω),

µ =−
∫ ∞

−∞
dΩΩρ(Ω), (32.52)

and this makes it evident that µ depends only upon the particle–hole asymmetric part
of the spectral density. Next, using the spectral relations, we can relate the Ω integrals
to the derivative of the imaginary-time correlator:

µ =−∂τ G(τ = 0+)−∂τ G(τ = (1/T )−). (32.53)

We pull out an explicitly particle–hole asymmetric part of G(τ) by defining

G(τ)≡ e−2πET τ Gc(τ) , 0 < τ <
1
T
, (32.54)

where Gc is given by a particle–hole symmetric conformal form at low T and low ω .
Then we obtain

µ = 2πET
[
G(τ = 0+)+G(τ = (1/T )−)

]
+ terms dependent on Gc

=−2πET + terms dependent on Gc.

It can be shown that all the terms dependent upon Gc have a T dependence that is
weaker than linear in T provided Q is held fixed. Hence, we obtain (32.50).

Now we can deduce the T dependence of the entropy by the Maxwell relation(
∂ µ
∂T

)
Q
=− 1

N

(
∂S
∂Q

)
T

; (32.55)
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the 1/N is needed because we define S to be the total extensive entropy, and so we must
use the total number NQ in the Maxwell relation. Applying this to (32.50) we obtain

1
N

(
∂S
∂Q

)
T
= 2πE ̸= 0 as T → 0. (32.56)

In Section 32.2.2, we obtained an “extended” Luttinger relationship between the den-
sity Q and the particle–hole asymmetry parameter E . Assuming that S = 0 at Q = 0,
we can now integrate (32.56) to obtain for the entropy S [91]:

S(T → 0) = NS , S = 2π
∫ Q

0
dQE(Q), (32.57)

where the function E(Q) is determined by eliminating θ between (32.29) and (32.41).
The remarkable feature of this result is that the entropy S is extensive, that is,

proportional to N, as T → 0. Specifically, we have

lim
T→0

lim
N→∞

S
N
̸= 0 . (32.58)

The order of limits is crucial here; the above order of limits defines the zero temperature
entropy density, in which the thermodynamic limit is taken before the zero-temperature
limit. If we had taken the other order of limits, we would obtain the ground-state
entropy density, which does indeed vanish.

32.2.5 Corrections to Scaling

Our analysis of the large N = ∞ theory has so far focused on the leading scaling behav-
ior at T ≪U . Given the gapless nature of the theory, we expect that all corrections to
this leading behavior will scale with powers of T/U . In this subsection we determine
the possible powers of T of these subleading terms, and the ratios of the coefficients of
the first subleading term.

To understand the structure of the possible corrections, we postulate that the low-
energy corrections can be computed from an effective action of the following form:

I = I∗+∑
h

gh

∫ β

0
dτ Oh(τ), (32.59)

where Oh are a set of scaling operators with scaling dimension h. One of our tasks for
this subsection is to determine the possible values of h, and we will accomplish this
shortly. The term I∗ is the leading critical theory that leads to the results described
so far; in particular to the Green’s function in (32.23) and (32.46), and the entropy in
(32.57). We normalize the perturbing operators by the two-point correlator

⟨Oh(τ)Oh(0)⟩=
1
|τ|2h ; (32.60)

then, the coefficient gh is fully specified. In general, the gh are a set of non-universal
numbers of orderU1−h, whose precise values depend upon the details of the underlying
theory, for example, on possible higher-order fermion interaction terms we can add to
the SYK Hamiltonian.
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= +τ0

τ1

τ2

τ0

τ1

τ2

τ0

τ1

τ2

τ3

τ4tFigure 32.5 Large-N equation satisfied by the three-point correlator in (32.64). The filled circle represents the operatorOh.

Given (32.59), we can use the scaling dimension of Oh to estimate the form of the
corrections to the grand potential Ω(T ):

Ω(T ) = E0−NST +∑
h

ΩhT h, (32.61)

where E0 is the ground-state energy, S is the entropy in (32.24), and the set of
coefficients Ωh are determined by

⟨Oh⟩T∗ =
Ωh

gh
T h, (32.62)

where the expectation value is evaluated at a temperature T in I∗. Similarly, we can
write the corrections to the Green’s function in (32.27) from the Oh perturbations:

G(τ) = G∗(τ)

(
1+∑

h

αh

|τ|h−1

)
, G∗(τ) =−B

sgn(τ)√
U |τ|

, (32.63)

where we now use G∗ to denote the leading-order result in (32.42). Here, and below,
we limit ourselves to the particle–hole symmetric case with θ = 0, µ = 0, E = 0, and
refer to Ref. [279] for the general case. Like gh, the coefficients Ωh and αh are non-
universal numbers of order U1−h. However, we expect the ratio of the coefficients of
the corrections in the observables in (32.61) and (32.63), αh/Ωh, to be universal, and
we describe its determination below.

Our remaining tasks are to determine the allowed values of h, and then determine
the ratio αh/Ωh.

Our evaluation of h follows Refs. [96, 142, 143], and we only consider the “antisym-
metric” operators Oh, which are represented at short times by Ohn = c†

i ∂ 2n+1
τ ci with

n = 0,1,2, . . . . The needed information is contained in the three-point functions

νh(τ1,τ2,τ0) = ⟨c(τ1)c†(τ2)Oh(τ0)⟩ . (32.64)

In the large-N limit, this three-point function obeys the integral equation shown in
Fig. 32.5. In the long-time scaling limit, we can drop the bare first term on the right-
hand side, and then Fig. 32.5 reduces to the eigenvalue equation [96]
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k(h)ν(τ1,τ2,τ0) =
∫

dτ3dτ4K(τ1,τ2;τ3,τ4)νh(τ3,τ4,τ0) , (32.65)

where the kernel K is

K(τ1,τ2;τ3,τ4) =−3U2G∗(τ13)G∗(τ24)G∗(τ34)
2 , (32.66)

with τi j ≡ τi−τ j, and we have introduced an eigenvalue k(h) by hand, which must obey

k(h) = 1 . (32.67)

The solution of (32.65) is aided by an assumption of conformal symmetry, which
implies that the three-point functions obey the functional form [96]

ν(τ1,τ2,τ0) =
chBsgn(τ12)

U1/2|τ12|1/2−h|τ10|h|τ20|h
, (32.68)

where we have introduced a set of dimensionless “structure constants” ch, which are
described further below. Inserting (32.66) and (32.68) into (32.65), and evaluating the
integrals over τ3 and τ4, it can be verified that (32.68) is indeed a solution of (32.65). Our
interest is mainly to determine k(h), and then we don’t actually need the full form of ν
in (32.68). We can use the limit τ0→ ∞, where we can assume ν ∼ sgn(τ12)/|τ12|1/2−h;
then, evaluation of (32.65) yields the eigenvalue

k(h) =−3tan(πh/2−π/4)
2h−1

. (32.69)

The solution of (32.67) and (32.69) finally yields the needed values of h. There are an
infinite number of solutions, and the lowest values are h = 2, 3.77354, . . ., 5.567946, . . .,
7.63197, . . ., …. Only the lowest value h = 2 is an integer, and all higher values are
irrational numbers. We have a particular interest in the h = 2 operator in the remaining
discussion in this chapter.

To determine the prefactors of the correction to scaling, we need more information
on the values of the structure constants ch. The name alludes to its appearance in the
operator product expansion

1
N ∑

i
ci(τ1)c

†
i (τ2) =

Bsgn(τ12)√
U |τ12|

+∑
h

chBsgn(τ12)

U1/2|τ12|1/2−h Oh(τ2)+ · · · (32.70)

as τ12 → 0. It is easy to show that (32.70) is consistent with (32.68). The structure
constants were also computed using the conformal structure of the theory [96, 170],
and they are given by

c2
h =

1
3U1/2B

· (h−1/2)
π tan(πh/2)

Γ(h)2

Γ(2h)
· 1

k′(h)
. (32.71)

An important, and initially surprising, feature of (32.71) is that c2
h has a pole at the

lowest scaling dimension h = 2. We will see that this pole cancels out in the universal
ratio of the N = ∞ theory, α2/Ω2 that we are trying to compute. However, the presence
of this pole is an indication that the 1/N corrections from the h = 2 operator are singu-
lar, and need to be resummed – we refer the reader to the review by Chowdhury et al.
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[46] for further discussion. There is no pole in (32.71) for the higher scaling dimensions
h, and their fluctuation corrections are not as important.

We can now relate both αh and Ωh to ch and gh for h = 2, and hence obtain the
needed universal ratio. To compute αh, we directly compute G(τ) by expanding to first
order in gh in (32.59) and then, using (32.68), we obtain from the correction to scaling
of the Green’s function

−G∗(τ12)
αh

|τ12|h−1 =
ghchB
U1/2

∫ +∞

−∞
dτ3

sgn(τ12)

|τ12|1/2−h|τ13|h|τ23|h
. (32.72)

Evaluating the integral by analytically continuing from the values 1/2< h< 1 for which
it converges, we obtain

αh =−ghch
π tan(πh/2)sec(πh)Γ(1−h)

Γ(2−2h)Γ(h)
. (32.73)

To obtain Ωh, we need ⟨Oh⟩T∗, which we can constrain by taking the expectation value
of the operator product expansion in (32.70) using (32.62)

G(τ) =−B
sgn(τ)√

U |τ|

[
1+∑

h
ch

Ωh

gh
|T τ|h + · · ·

]
. (32.74)

On the other hand, we know from (32.42) that

G(τ) =−B
sgn(τ)√

U |τ|

[
1+

π2

12
|T τ|2 + · · ·

]
. (32.75)

Combining (32.74) and (32.75), we obtain, for h = 2,

Ω2 =
g2

c2

π2

12
. (32.76)

Finally, from (32.73) and (32.76) we have the required amplitude ratio

Ω2

α2
=

π2

4
Bk′(2). (32.77)

Note that the pole at h = 2 in (32.71) has cancelled against the zero in (32.73). This
implies that Ωh and αh observables characterizing the corrections to scaling at N = ∞
remain finite as h→ 2, while the strength of the normalized O2 operator diverges as
gh ∼ |h−2|−1/2.

To conclude this section, we reiterate the important implication of these results for
the low-temperature entropy and the fermionGreen’s function. Taking the T derivative
of (32.61), we obtain a sharper version of (32.57)

S(T → 0) = N(S+ γT ) . (32.78)

So entropy vanishes linearly with temperature, as does the corresponding contribution
to the specific heat. The linear-in-T coefficient of the specific heat γ (compare to (2.12)
in a Fermi liquid, and (32.14) in the random-matrix model) is now given by (32.77):

γ =−π2

2
Bk′(2)α2 , (32.79)
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where k′(2) =−(2/3+π) from (32.69). The value of γ depends upon the coefficient of
the leading correction to the Green’s function in (32.63):

G(τ) =−Bsgn(τ)√
|τ|

(
1+

α2

|τ|
+ · · ·

)
. (32.80)

But the value of Bα2 itself is not universal, and depends upon the precise microscopic
model under consideration.

32.3 G–Σ Effective Action

In this section, we obtain the large-N theory described so far as the saddle point of an
effective action. This is an essential step towards understanding finite-N corrections to
the above results. It turns out that there are interesting emergent symmetries at low
energy in the effective action, and this enables an exact resummation of the most sin-
gular fluctuation corrections. We describe the emergent symmetries here, but refer the
reader to the review by Chowdhury et al. [46] for further details of the fluctuation
corrections.

We begin with a path-integral representation of the underlyling SYK Hamiltonian
(32.19a). To treat the random couplings, we need to perform a quenched average using
the replica method. Further discussion of the replica approach is deferred to Chap-
ter 33. The SYK model is strongly self-averaging, and so we can work directly with the
averaged theory, ignoring replicas for simplicity. So, after averaging over the Ui jkℓ, the
path integral becomes

Z =

∫
Dci(τ)exp

−∑
i

∫ β

0
dτ c†

i

(
∂

∂τ
−µ

)
ci +

U2

4N3

∫ β

0
dτdτ ′

∣∣∣∣∣∑i
c†

i (τ)ci(τ ′)

∣∣∣∣∣
4
 ,

(32.81)

where β = 1/T . We now introduce the following “trivial” identity in the path integral,

1 =

∫
DG(τ1,τ2)DΣ(τ1,τ2)

× exp

[
−N

∫ β

0
dτ1dτ2Σ(τ1,τ2)

(
G(τ2,τ1)+

1
N ∑

i
ci(τ2)c

†
i (τ1)

)]
(32.82)

and interchange the orders of integration. Then, the partition function can be written
as a “G–Σ” theory, a path integral with an action I[G,Σ] for the Green’s function and
the self-energy analogous to a Luttinger–Ward functional [91, 137, 170]:

Z =

∫
DG(τ1,τ2)DΣ(τ1,τ2)exp(−NI[G,Σ]),

I[G,Σ] =− lndet [(∂τ1 −µ)δ (τ1− τ2)+Σ(τ1,τ2)]
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−Tr(Σ ·G)−U2

4
Tr
(
G2 ·G2) . (32.83)

We have integrated over the fermions to obtain the lndet term. This is an exact repre-
sentation of the averaged partition function. Notice that it involves G and Σ as bilocal
fields that depend upon two times, and we have introduced a compact notation for
such fields:

Tr( f ·g)≡
∫

dτ1dτ2 f (τ2,τ1)g(τ1,τ2) . (32.84)

Evaluating the variational derivatives of I[G,Σ] with respect to G and Σ, we can now
verify that we obtain the large-N saddle-point equations in (32.20a) and (32.20b).

32.3.1 Emergent Time-Reparameterization and Gauge
Symmetries

It is possible to make progress in evaluating the path integral in (32.83) by exploiting
its remarkable emergent symmetries at low energies, which are described here. These
emergent symmetries also clarify the origin of the T > 0 solution of the saddle-point
equations in (32.42) and (32.45).

We can describe the emergent symmetries by directly analyzing the action (32.83),
but it is a bit simpler to discuss them in terms of the saddle-point equations. So we
return to the original equations (32.20a) and (32.20b), and simplify them in the low-
energy limit. As we saw above (32.33), at frequencies≪U , the iω +µ can be dropped,
because µ −Σ(0) = 0 and the iωn term is smaller than the singular frequency depen-
dence in Σ(iωn). After Fourier transforming to the time domain, we can rewrite the
original saddle-point equations as∫ β

0
dτ2 Σsing(τ1,τ2)G(τ2,τ3) =−δ (τ1− τ3), (32.85a)

Σsing(τ1,τ2) =−U2G2(τ1,τ2)G(τ2,τ1) , (32.85b)

where Σsing is the singular part of Σ. Also the saddle-point Green’s functions and self-
energies are functions only of time differences, such as τ1− τ2. Nevertheless, we have
written them as a function of two independent times, because that is the form they
appear in the action (32.83). Such a bilocal in time formulation turns out to be essential
for an understanding of the emergent symmetries.

It is now not difficult to verify that (32.85a) and (32.85b) are invariant under the
following transformation:

τ = f (σ), (32.86a)

G(τ1,τ2) =
[

f ′(σ1) f ′(σ2)
]−1/4 g(σ1)

g(σ2)
G̃(σ1,σ2), (32.86b)

Σ(τ1,τ2) =
[

f ′(σ1) f ′(σ2)
]−3/4 g(σ1)

g(σ2)
Σ̃(σ1,σ2), (32.86c)
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where f (σ) and g(σ) are arbitrary functions. Here, f (σ) is a time reparametrization,
and g(σ) is a U(1) gauge transformation in imaginary time. These are emergent sym-
metries because the form of the equations obeyed by G̃(σ1,σ2) and Σ̃(σ1,σ2) is the
same as (32.85a) and (32.85b) obeyed by G(τ1,τ2) and Σ(τ1,τ2).

We obtain the non-zero temperature solution by choosing the time reparametriza-
tion in (32.86a) as the conformal map

τ =
1

πT
tan(πT σ), (32.87)

where σ is the periodic imaginary-time coordinate with period 1/T . Applying this map
to (32.27), we obtain

G(±σ) =∓Cg(±σ)sin(π/4+θ)
(

T
sin(πT σ)

)1/2

, (32.88)

for 0 < ±σ < 1/T . The function g(σ) is so far undetermined apart from a normal-
ization choice g(0) = 1. We can now determine g(σ) by imposing the Kubo–Martin–
Schwinger condition

G(σ +1/T ) =−G(σ), (32.89)

which implies

g(σ) = tan(π/4+θ)g(σ +1/T ). (32.90)

The solution is clearly

g(σ) = e−2πET σ , (32.91)

where the new parameter E and the angle θ are related as in (32.29). This yields the
final expression for G(σ) in (32.45).

32.3.2 Symmetries of the Saddle Point

We have shown that (32.85a) and (32.85b) have a very large set of symmetries when
expressed in terms of bilocal correlators of two times. However, the actual solution
in (32.45) of the saddle-point equations is a function only of time differences. Now
we ask a somewhat different question: what subgroup of the symmetries apply to the
thermal solution in (32.45). In other words, how are the emergent low-energy time-
reparametrization and gauge symmetries broken by the low-T thermal state?

First, let us consider the simplest case with particle–hole symmetry at T = 0, when
we can schematically represent the large-N solutions in Section 32.2.1 as

Gc(τ1− τ2)∼ (τ1− τ2)
−1/2,

Σc(τ1− τ2)∼ (τ1− τ2)
−3/2.

The saddle point will be invariant under a reparameterization f (τ) when choosing
G(τ1,τ2) = Gc(τ1− τ2) leads to a transformed G̃(σ1,σ2) = Gc(σ1−σ2) (and similarly
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for Σ). It turns out this is true only for the SL(2,R) transformations under which

f (τ) =
aτ +b
cτ +d

, ad−bc = 1. (32.92)

So the (approximate) reparametrization symmetry is spontaneously broken down to
SL(2,R) by the saddle point.

Now let us consider themost general case with T > 0 and no particle–hole symmetry.
We write (32.86b) as

G(τ1,τ2) = [ f ′(τ1) f ′(τ2)]
1/4

×Gc( f (τ1)− f (τ2))eiϕ(τ1)−iϕ(τ2) , (32.93)

where Gc(τ) is the conformal saddle-point solution given in (32.45). Here, we have
parameterized g(τ) = e−iϕ(τ) in terms of a phase field ϕ .

It can now be shown that the G(τ1,τ2) obtained from (32.93) equals Gc(τ1−τ2) only
if the transformations f (τ) and ϕ(τ) satisfy

tan(πT f (τ))
πT

=
a

tan(πT τ)
πT

+b

c
tan(πT τ)

πT
+d

, ad−bc = 1,

−iϕ(τ) =−iϕ0 +2πET (τ− f (τ)). (32.94)

The transformation of f (τ) looks rather mysterious, but we can simplify it as follows:
we define

z = e2πiT τ , z f = e2πiT f (τ) (32.95)

and then the transformation in (32.94) is between unimodular complex numbers
representing the thermal circle

z f =
w1 z+w2

w∗2 z+w∗1
, |w1|2−|w2|2 = 1, (32.96)

where w1,2 are complex numbers. In this form, we have a SU(1,1) transformation, a
group that is isomorphic to SL(2,R).

Finally, we note that the symmetries in (32.96) are also the isometries of two-
dimensional anti-de Sitter space AdS2, and this is an important ingredient of the con-
nection between the SYK model and two-dimensional quantum gravity, as reviewed
by Chatterjee et al. [46]. The metric of AdS2 is

ds2 =
dτ2 +dζ 2

ζ 2 (32.97)

in terms of coordinates τ and ζ . This metric is invariant under isometries that are
SL(2,R) transformations, as in (32.92). It is easy to verify that the coordinate change

τ ′+ iζ ′ =
a(τ + iζ )+b
c(τ + iζ )+d

, ad−bc = 1 , (32.98)

with a, b, c, d real, leaves the metric (32.97) invariant.
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32.3.3 Finite-N Corrections

The emergent symmetries of the action (32.83) described in Sections 32.3.1 and 32.3.2
have led to remarkable progress in evaluating the corrections to the large-N SYK the-
ory described so far. An important consequence of the time-reparameterization and
gauge symmetries in (32.86c) is that the singular terms in the path integral in (32.83)
are identical to the singular terms in the path integral of Einstein–Maxwell gravity
and electromagnetism about a Reissner–Nördstrom black hole (the consequences of
this correspondence are summarized below in Fig. 32.6). At low T , the most singu-
lar contribution of this path integral is dominated by the “dangerously irrelevant”
contributions of the h = 2 operator of (32.69), which is just a linearized generator
of time-reparameterization symmetry. I refer the reader to Chowdhury et al. [46] for
further details and original references, and just present the main results here.

The leading finite-N correction to the free energy F at fixed Q is

− F
T

= lnZ =−E0

T
+NS+ NγT

2
− 3

2
ln
(

U
T

)
, (32.99)

where E0 is the non-universal ground-state energy which is order N in the large-N
limit. We thus have a non-trivial finite-N correction to the entropy in (32.78) of the
SYK model: the −(3/2) ln(1/T ) correction to the logarithm of the partition func-
tion. It is also useful to compare (32.99) to our earlier large-N result for −T lnZ in
the random-matrix model in (32.12). That had a leading NγT/2 term, but there was
no T -independent term proportional to N, as the random-matrix model does not have
an extensive entropy in the zero-temperature limit. Comparing the last two terms in
(32.99), we see that the 1/N expansion breaks down when T ∼U exp(−NγT/3). This
is an exponentially small T of order the many-body-level spacing (as we see below),
which we do not expect a thermodynamic description to apply.

The−(3/2) ln(1/T ) correction to (32.99) has important consequences for the many-
body density of states at fixed Q, NQ(E). We define this by

Z(T ) =
∫ ∞

E0

dENQ(E)e−E/T , (32.100)

where NQ(E) = 0 for E < E0. It turns out to be possible to determine NQ(E) by per-
forming the inverse Laplace transform exactly using the value in (32.99). This yields
[137, 275]

NQ(E) ∝ eNS sinh
(√

2Nγ(E−E0)
)
. (32.101)

It is easier to insert the result (32.101) into (32.100), perform the E integral, and verify
that we obtain (32.99).

The result (32.101) is accurate for E ≪ NU , and even down to E ∼U/N. Near the
lower bound it predicts a many-body density of states ∼ eNS , in sharp contrast to the
random-matrix model of Section 32.1, which did not have an exponentially large den-
sity of states at such low energies. We show numerical plots of the many-body density
of states [54, 89, 93] for a closely related Majorana fermion model in Fig. 32.2. Notice
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430 32 Sachdev–Ye–Kitaev Models

the much larger density of states, and much smaller-level spacing near the bottom of
the band, in comparison to the free-fermion random-matrix model in Fig. 32.1 of the
same size. This is also evident from a comparision of the Schwarzian result in (32.101),
with the free-fermion result in (32.16): the most important difference is the presence
of the prefactor of eNS in (32.101).

We now recall our discussion at the end of Section 32.1.2 where we argued that the
low-lying many-body eigenstates at excitation energies of order 1/N could be inter-
preted as the sums of quasiparticle energies. In the SYK model we have order ∼ eNS

energy levels even within energy∼ 1/N above themany-body ground states. It is impos-
sible to construct so many many-body eigenstates from order∼ N quasiparticle states.
This is therefore strong evidence that there is no quasiparticle decomposition of the
many-body eigenstates of the SYK model. Note that the presence of an extensive
entropy as T → 0 (the non-zero value of S) is a sufficient, but not a necessary, con-
dition for the absence of quasiparticles; the models we study in Chapter 34 do not have
quasiparticles, but do not have an extensive entropy as T → 0.

32.3.4 From the SYKModel to Charged Black Holes

Figure 32.6 relates the properties of the SYK model described in the present chapter
to those of a charged black hole in (3+1)-dimensional Minkowski space, a connection
first pointed out in Ref. [233]. Details are reviewed elsewhere [46].

The top line of row A displays the Bekenstein–Hawking entropy of such a black
hole at low T , expressed in terms of A0, the area of its horizon at T = 0; also, c is
the velocity of light, and G is Newton’s gravitational constant. The second line of
row A displays the common leading logarithmic correction to this large-N result at
low T , obtained from the path integral over the time-reparameterization mode. The
same effective action is obtained for the time-reparameterization mode, starting either
from the SYK path integral in (32.83), or from the path integral over the spacetime
metric and electromagnetic field with the Einstein–Maxwell action [236]. Row A also

tFigure 32.6 Correspondence between the SYK model and a charged black hole in asymptotically (3+1)-dimensional Minkowski
space described by the Einstein–Maxwell action of gravity and electromagnetism.
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contains logarithmic corrections which are independent of T : these differ between the
SYK model and black holes - those for the SYK model were computed in Ref. [97],
and those for black holes were computed in Ref. [116].

Row B of Fig. 32.6 shows that the Green’s function of a probe fermion in a charged
black hole background [74] is exactly the same as that of a fermion in the SYK model
[233, 235]. In the black hole case, the spectral asymmetry parameter has the additional
interpretation as a dimensionlessmeasure of the electric field on the black hole horizon.

In row C of Fig. 32.6, the entropy S of the black hole is defined to be the T = 0 term
in the Bekenstein–Hawking entropy in the first line of row A, and the total charge of
the black hole isQ. With these definitions, the black hole relation in row C is obtained
from the Einstein–Maxwell action, to be compared with the relation (32.56) obtained
from the structure of the large-N SYK saddle point [235].

Given the common behavior of the entropies of the SYK model and the charged
black hole in row A of Fig. 32.6, the common behavior of the many-body density of
states in row D follows from the definition in (32.100). The black hole result in row D
[236] is a rare formula that combines Planck’s constant h̄ with Newton’s gravitational
constant G: the exponential term was obtained by Hawking, and the sinh and the pref-
actor follows from developments ensuing from the solution of the SYK model. All
terms depend only upon the T = 0 area of the black hole horizon A0 and fundamental
constants of nature.

Problem

32.1 Compute the imaginary part of the self-energy of the model (32.21) to second
order in U . This involves evaluating the graph in Fig. 32.3 using the zeroth-order
Green’s function in (32.6).
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The classical, infinite-range Ising spin glass is described, and extended to the quan-
tum rotor spin glass. The quantum model exhibits a gapped quantum paramagnet
ground state, along with a spin-glass state similar to that of the classical model. The
model with quantum spins with a Berry phase also has a similar spin-glass phase, but
the paramagnet is a gapless spin liquid, which realizes a Sachdev–Ye–Kitaev state of
spinons.

The Sachdev–Ye–Kitaev (SYK) model discussed in Chapter 32 provides a valuable
example of a compressible metallic state without quasiparticle excitations. However,
its Hamiltonian misses an important characteristic of correlated materials that display
such phases: there is no strong local repulsion between the fermions, as there is in the
electron Hubbard model of Chapter 9. Consequently, there is no analog of the Mott
insulator.

The original model proposed by Sachdev and Ye [242] does focus on such local cor-
relations. They considered a random version of the Heisenberg spin model, which was
the focus of our attention in Parts II and IV. We recall the Hamiltonian in (9.14) and
(15.1) in the form

HJ =
1√
N ∑

1≤i< j≤N
Ji jSi ·S j, (33.1)

describing S= 1/2 SU(2) spins on sites i withHeisenberg exchange couplings Ji j. In this
chapter, we turn our attention to (33.1) for the case where Ji j are independent random
numbers with zero mean and variance J, and act between any pair of sites i, j.

Unlike the SYK model, the Hamiltonian (33.1) is not solvable in the limit N → ∞.
However, as pointed out in Ref. [242], it is solvable when we generalize it to SU(M)

spins, and take the M → ∞ limit after the N → ∞ limit. Then, as described in Sec-
tion 33.3, we obtain a solution that is formally identical to that of the SYK model in
Chapter 32. As we note in Section 21.2, the SYK non-Fermi liquid is now a metallic
state of partons, which are fermionic spinons, without quasiparticle excitations. Thus,
the SU(M→ ∞) model realizes compressible state of spins (sometimes called a “Bose
metal”), and the spin density is continuously variable by an applied Zeeman field; this
justifies the study of (33.1) in Part V on correlated metals.

An important question for the application to realistic materials is the extent
to which the SU(M → ∞) solution applies to the SU(2) case. As discussed in

432
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433 33.1 Classical Ising Spin Glass

Section 33.3, the SYK non-Fermi liquid applies down to an energy or temperature
scale

T ∼ J exp(−
√

πM) (33.2)

below which the SU(M) generalization of (33.1) is unstable to the appearance of spin
glass order. Note that this energy scale is exponentially small for large M, in which case
the non-Fermi liquid behavior of spinons is visible over a wide intermediate energy
scale. As we see in Section 33.3.4, there is clear numerical evidence for the non-Fermi
liquid behavior of spinons even for the M = 2 case, when the exponential factor in (33.2)
is ≈ 0.08, which is reasonably small.

With the appearance of spin-glass order in (33.1), it is useful to begin our discussion
by first reviewing spin-glass theory in simpler classical and quantum models that do
not include the Berry phase terms in (18.23) and (A.38): this we do in Sections 33.1
and 33.2.

Finally, we note that it is possible to extend the analysis of the random Heisenberg
exchange model in (33.1) to the doped case of a random t–J model [48, 280]: I refer the
reader to the review by Chowdhury et al. [46] for further discussion of this.

33.1 Classical Ising Spin Glass

We begin our discussion of spin glasses by considering the celebrated Sherrington–
Kirkpatrick model of Ising spins with all-to-all and random couplings. This is defined
by

HSK =
1

2
√

N

N

∑
i, j=1

Ji jσi σ j,

Z(Ji j) = ∑
σi=±1

e−HSK/T ,

Ji j = 0, J2
i j = J2, different Ji j uncorrelated. (33.3)

We have emphasized here that the partition functionZ depends upon the values of the
specific Ji j couplings.

At high T , the Ising spins σi are in a random thermal state, with the thermal expec-
tation value ⟨σi⟩ = 0 for each Ji j realization. As we lower the temperature, as in a
non-random Ising model, we expect a phase transition below a critical T = Tsg to mag-
netic order in the σi, and now we will have ⟨σi⟩ ̸= 0. However, the values of ⟨σi⟩ for
different i depend sensitively on the particular Ji j chosen. In particular, if we average
over the Ji j, the random order will average to zero, and so

⟨σi⟩ ≡
∫
DJi jP(Ji j)⟨σi⟩= 0 , (33.4)

where P(Ji j) is the probability distribution of the Ji j.
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The Edwards–Anderson order parameter evades this problem by averaging the
square of the magnetic order

qEA ≡ ⟨σi⟩2 ≡
∫
DJi jP(Ji j)⟨σi⟩2 , (33.5)

and we have qEA ̸= 0 for T < Tsg, the spin-glass transition temperature. More explicitly,
let us write out the expression for qEA as

qEA =
∫
DJi jP(Ji j)

1
[Z(Ji j)]2

(
∑

σi=±1
σie−HSK/T

)2

. (33.6)

The difficulty in evaluating (33.6) lies in taking the average over the dependence of Ji j in
the denominator [Z(Ji j)]

2. The replica method gets around this difficulty by formally
moving the denominator to the numerator by writing

qEA = lim
n→0

∫
DJi jP(Ji j)[Z(Ji j)]

n−2

(
∑

σi=±1
σie−HSK/T

)2

. (33.7)

Now, it is relatively easier to evaluate the expression in (33.7) for integer n ≥ 2. The
replica method evaluates (33.7) for all integer n ≥ 2, and then analytically continues
the result to n = 0. We can clean up the notation in (33.7) by introducing replicas of the
Ising spins, σa

i , with a = 1, . . . ,n and i = 1, . . . ,N and defining the replicated partition
function and its correlator

Zn =
∫
DJi jP(Ji j) ∑

σa
i =±1

exp

(
− 1

2T
√

N

n

∑
a=1

N

∑
i, j=1

Ji jσa
i σa

j

)
,

qbc =
∫
DJi jP(Ji j) ∑

σa
i =±1

σb
i σ c

i exp

(
− 1

2T
√

N

n

∑
a=1

N

∑
i, j=1

Ji jσa
i σa

j

)
, (33.8)

where b and c are any pair of replicas chosen from a= 1, . . . ,n. Then, (33.7) is equivalent
to

qEA = lim
n→0

1
n(n−1) ∑

a̸=b
qab . (33.9)

The advantage of expressions like (33.8) is that the average over the Ji j can be readily
evaluated. We have

Zn = ∑
σa

i =±1
exp

 J2

4T 2N

n

∑
a,b=1

[
N

∑
i=1

σa
i σb

i

]2
 . (33.10)

And now with the aid of a Hubbard–Stratonovich transformation, we can reduce the
partition function to that of a single n× n matrix qab, with the number of sites N
appearing only as a parameter

Zn =
∫
Dqab exp

(
−NJ2

2T 2 q2
ab

)
[Zs(qab)]

N . (33.11)
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435 33.2 Quantum Rotor Spin Glass

Here, Zs(qab) is a single-site partition function of n Ising spins σa coupled to qab:

Zs(qab) = ∑
σa=±1

exp
(

J2

T 2 qabσaσb
)
. (33.12)

We can also see that the expectation value ⟨qbc⟩ under the partition function in
(33.11) co-incides with that in (33.8), validating our choice of the qab as the Hubbard–
Stratonovich field.

The large-N limit of (33.11) is now easily taken, and we obtain a free energy per site
for n replicas as a function of qab:

F(qab) =−T lnZn =
J2

2T
q2

ab−T ln [Zs(qab)] . (33.13)

Our remaining task is to solve the saddle-point equations

∂F
∂qab

= 0 ⇒ qab =
〈

σaσb
〉
Zs

(33.14)

for the optimal self-consistent value of the n×n matrix qab, and analytically continue
the result to n = 0.

The task defined by (33.13) and (33.14) was solved by Parisi, and requires the intro-
duction of replica symmetry breaking to obtain a solution in the spin-glass phase
T < Tsg. We do not need to enter into the technical complexity of replica symmetry
breaking here because the quantum replica symmetry breaking is very similar to that
in the classical problem, and only indirectly influences the quantum excitation spec-
trum we are interested in. We refer the reader to the book by Fischer and Hertz [81] for
further details on the solution of (33.13) and (33.14). Section 33.2 describes a closely
related quantum spin-glass model, which we solve also in the classical limit; this pro-
vides a simpler realization of spin-glass saddle-point equations similar to (33.13) and
(33.14), with the solution in (33.41), and this is sufficient for our purposes.

33.2 Quantum Rotor Spin Glass

The simplest way to extend the Sherrington–Kirkpatrick Ising model in (33.3) to a
quantum model is to add a transverse field on each Ising spin:

H =
1

2
√

N

N

∑
i, j=1

Ji jσ z
i σ z

j −g∑
i

σ x
i . (33.15)

Here, we have replaced the Ising spin σi = ±1 with the Pauli matrix σ z
i , and added

a field g acting along the x direction in spin space. The two terms in (33.15) do not
commute with each other, and so we obtain a model of a quantum spin glass.

By considering the behavior at large and small g, we are led to propose the phase
diagram in Fig. 33.1. At g = 0, (33.15) reduces to the classical Ising spin glass studied
in Section 33.1, and so we have a high-temperature paramagnetic phase, and a low-
temperature spin-glass phase. As we see below, the spin-glass order is stable to a small
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436 33 Random Quantum Spin Liquids and Spin Glasses

tFigure 33.1 Phase diagram of the quantum Ising spin-glass Hamiltonian (33.15) or the quantum rotor model (33.18) as a function
of temperatureT and transverse field g.

non-zero g. At T = 0 and large g, we can also see that (33.15) has a non-degenerate
ground state

|⇒⟩= ∏
i
|→⟩i , (33.16)

where |→⟩i is the eigenstate of σ x
i with eigenvalue +1. It is also not difficult to see that

there is a gap to all excitations for sufficiently large g. This trivial “quantum paramag-
net” is similar to that in Section 16.4.1. So, there is a T = 0 quantum phase transition
at a critical value g = gc between the spin glass and the paramagnet, which is described
below.

We could now proceed with a replica analysis of the Ising model in (33.15), but will
turn our attention to a closely related model that has the same basic structure of the
phases, and the phase diagram of Fig. 33.1 continues to apply. This is the quantum
spin glass of M-component rotors, nµ(i) on N sites i, µ = 1, . . . ,M. We take rotors to
obey the fixed length constraint

M

∑
µ=1

[nµ(i)]2 = M (33.17)

on each site i. The Lagrangian of these rotors is

L=
1
2g ∑

i

(
∂nµ(i)

∂τ

)2

+
1√
N ∑

i< j
Ji jnµ(i)nµ( j), (33.18)

where the Ji j are random couplings with a zero mean and a root-mean-square value
J. We can now verify that the large-g ground state of this model is also trivial, and
is a product of zero angular momentum states of each rotor. At small g and low T ,
we expect a spin glass state where the O(M) rotational symmetry is broken in a fixed
realization of Ji j. The resulting phase diagram is essentially identical to Fig. 33.1, and
we will shortly show this in a full solution in the large M limit.

As we see below, the theory of the quantum rotor model is expressed in terms of
the quantum generalization of the spin-glass order parameter in (33.14), in which the
components of the replica matrix are also functions of imaginary time τ,τ ′

Qab,µν(τ,τ ′) =
〈
naµ(τ)nbν(τ ′)

〉
. (33.19)
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437 33.2 Quantum Rotor Spin Glass

Here, naµ is the replicated version of the quantum rotor coordinate nµ , and Q also
has O(M) indices. Time-translation invariance of the quantum problem imposes some
important constraints on the structure of Q. The quantum analog of the replica identity
in (33.5) and (33.9) is now〈

nµ(τ)
〉
⟨nν(τ ′)⟩= lim

n→0

1
n(n−1) ∑

a̸=b
Qab,µν(τ,τ ′) . (33.20)

The left-hand side of (33.20) is independent of τ and τ ′ because the one-point expec-
tation values are independent of time for each realization of the Ji j; so Qab,µν is
independent of τ and τ ′ for a ̸= b, and we can identify these time-independent val-
ues with the spin-glass order parameter. We also expect the spin-glass state to have a
statistical O(M) symmetry, and so we identify

Qab,µν(τ,τ ′) = qabδµν , a ̸= b , (33.21)

where qab plays exactly the same role as in the classical Ising model in Section 33.1.
Unlike the classical spin glass, the diagonal components of Q also play an important
role, as they contain information on the excitation spectrum of the model. The analog
of (33.20) for the diagonal components is〈

nµ(τ)nν(τ ′)
〉
= lim

n→0

1
n ∑

a
Qaa,µν(τ,τ ′) . (33.22)

Now, the quantum dynamics in any fixed realization of Ji j implies that the left-hand
side of (33.22) is a function only of τ− τ ′, and so we generalize (33.21) to

Qab,µν(τ,τ ′) = δµν Q(τ− τ ′) , a = b . (33.23)

We see from (33.22) that Q(τ) is an autocorrelation function of the rotor coordinate.
The task of the theory is to determine the values of qab and Q(τ) as a function of

g and T for the Lagrangian in (33.18). At T = 0, there is an important consistency
requirement on these values, which are satisfied by our results below. Given the rotor
autocorrelation, we can also identify the Edwards–Anderson order parameter by its
long-time limit, as that is another way to characterize the broken symmetry. So we
have from (33.5) and (33.23)

qEA = lim
|τ|→∞

Q(τ) , T = 0 . (33.24)

Thus, there are twoways to obtain the Edwards–Anderson order parameter for a quan-
tum spin glass at T = 0, from (33.9) and from (33.24), and these must equal each
other.

33.2.1 Effective Action

Let us now proceed with a replica analysis of the Lagrangian in (33.18), and obtain
a combined effective action for qab and Q(τ). We introduce replicas a = 1, . . . ,n, and
average over Ji j to obtain the replicated partition function
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Zn =

∫
Dnaµ(i,τ)Dλa(i,τ)exp [−Sn−SJ ] ,

Sn =
1
2g ∑

i

∫
dτ

[(
∂naµ(i)

∂τ

)2

+ iλa(i)
(
[naµ(i)]2−M

)]
,

SJ =−
J2

4N

∫
dτdτ ′

[
∑

i
naµ(i,τ)nbν(i,τ ′)

]2

. (33.25)

The constraint (33.17) has been imposed by a Lagrange multiplier λ . We can now
decouple SJ with a Hubbard–Stratonovich field Qab,µν(τ,τ ′), just as in (33.10), and
take the large-N limit. Then, the problem reduces to finding saddle points of the action

S[Q]

N
=

J2

4

∫
dτdτ ′[Qab,µν(τ,τ ′)]2− lnZn[Q], (33.26)

where Zn[Q] is the single-site partition function:

Zn[Q] =

∫
Dnaµ(τ)Dλa(τ)exp [−Sn] ,

Sn =
1

2g

∫
dτ

[(
∂naµ

∂τ

)2

+ iλa
(
n2

aµ −M
)]

− J2

2

∫
dτdτ ′Qab,µν(τ,τ ′)naµ(τ)nbν(τ ′). (33.27)

There is a close similarity to the structure of the classical Ising model in (33.10), and
now we have to consider a single-site quantum problem that generalizes the classical
problem in (33.12). There is no remaining path integral over Q because we have taken
the large-N limit, and we simply have to find the saddle points of S[Q] in (33.26). Let
us assume that the saddle point does not break spin rotation symmetry; this is true in
both the spin-glass, and spin-liquid phases. So we employ the ansatz

Qab,µν(τ,τ ′) = δµν Qab(τ− τ ′), (33.28)

where Qab(τ) is a real function. The saddle-point equation for Q is

Qab(τ− τ ′) =
1
M ∑

µ

〈
naµ(τ)nbµ(τ ′)

〉
Zn[Q]

. (33.29)

The different µ components are now decoupled, and we can also perform the path
integral over naµ in (33.27) and obtain a compact expression for Zn[Q]:

Zn[Q] =
∫
Dλa(τ)exp [−Sλ [Q]] ,

Sλ [Q] =
M
2

lndet
[
−δ ′′(τ− τ ′)δab + iλa(τ)δ (τ− τ ′)δab−gJ2Qab(τ,τ ′)

]
− iM

2g

∫
dτλa(τ) . (33.30)

From (33.26), the large-N saddle-point equations determining Qab(τ) are

J2Qab(τ) =
δ lnZn[Q]

δQab(τ)
. (33.31)

It now remains to perform the path integral over λa(τ) in (33.30) and solve (33.31).
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So far, our analysis has been valid for all M. However, the rest of Section 33.2 works
in the large-M limit in order to simplify solutions of (33.30) and (33.31). In this limit,
the path integral over λa(τ) can be evaluated also via a saddle point, and we can set
iλa = λ . Then, after a Fourier transform to Matsubara frequences, the equations for
Qab(iωn) and λ reduce to the following algebraic equations:

Qab(iωn) = g
[
(ω2

n +λ )δab−gJ2Qab(iωn)
]−1

, (33.32)

T ∑
ωn

Qaa(iωn) = 1. (33.33)

We solve (33.32) and (33.33) in the paramagnetic and spin-glass regions of Fig. 33.1 in
the following subsections.

33.2.2 Paramagnetic Phase

In the paramagnetic phase, we can assume that Qab is a replica diagonal matrix. Then,
we can solve (33.32) in closed form

Qab(iωn) =
2gδab

ω2
n +λ +

[(
ω2

n +λ
)2
−4g2J2

]1/2 . (33.34)

After analytic continuation to real ω , this implies a non-zero spectral weight for λ −
2Jg < ω2 < λ +2Jg. We require λ > 2Jg for a consistent paramagnetic solution.

The value λ is determined by solving (33.33). This has to be done numerically, in
general, and leads to a restricted region of the g, T plane where we have a solution
with λ > 2Jg. This defines the region of stability of the paramagnetic phase, which is
schematically sketched in Fig. 33.1. At T = 0, the paramagnetic phase is present for
g > gc, and we can determine gc by setting λ = 2Jgc in (33.33) at T = 0. This yields

gc =
9π2J

16
. (33.35)

It is also useful to compute the imaginary part of the dynamic spin susceptibility in
the paramagnetic phase

χ ′′(ω) = ImQaa(ω + i0+) . (33.36)

A plot of χ ′′(ω) in the T = 0 paramagnetic phase and at the critical point g = gc in
Fig. 33.2. Note that there is a excitation energy gap= (λ−2gJ)1/2 that vanishes contin-
uously as g approaches gc from above. At the critical point, we have a linear frequency
dependence

χ ′′(ω) =
4

3πJ2 ω + · · · , g = gc,T = 0 (33.37)

at small ω .
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tFigure 33.2 Dynamic spin susceptibility of the quantum rotor model atT = 0 in the paramagnetic phase (g > gc) and at the
critical point (g = gc).

33.2.3 Spin-Glass Phase

To obtain a sensible solution of (33.32) and (33.33) in the spin-glass phase, we have to
include the replica off-diagonal components of Qab. Fortunately, it turns out that the
stable solution is replica, which means that all the off-diagonal components of Qab are
equal to each other. This is a special feature of the large-M limit: we do have to allow for
replica symmetry breaking in the solution of (33.30) and (33.31) at finite values of M,
as has been discussed at length in Ref. [220]. There have also been studies of quantum
rotor models with multi-spin interactions, which display replica symmetry breaking
already in the large-M limit [12, 55].

Assuming replica symmetry, we can nowmake a suitable ansatz for Qab(iωn) to solve
(33.32) and (33.33). We set

Qab(iωn) = βqEAδωn,0 , a ̸= b, (33.38)

where β = 1/T and qEA is the Edwards–Anderson order parameter. For the replica
diagonal components, it is convenient to define

Qaa(iωn) = βqEAδωn,0 +Qr(iωn). (33.39)

At the moment, there is no prescribed frequency dependence for Qr, and so this ansatz,
which includes the βqEA offset at zero frequency, can be made without loss of gener-
ality. However, as we see below, this ansatz is convenient because it leads to solutions
in which Qr is a smooth function of frequency, consistent with the discussion around
(33.24).
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Now we insert the ansatz (33.38) and (33.39) into (33.32) and (33.33). We invert the
matrix in (33.32) for general integers n, and obtain the equations

λ̃ ≡ λ −gJ2Qr(0),

βqEA +Qr(0) = g
−gJ2(n−1)βqEA + λ̃
−gJ2nλ̃βqEA + λ̃ 2

,

βqEA = g
gJ2βqEA

−gJ2nλ̃βqEA + λ̃ 2
,

Qr(iωn) =
g

ω2
n +λ −gJ2Qr(iωn)

, ωn ̸= 0,

qEA +T ∑
ωn

Qr(iωn) = 1. (33.40)

These equations are complicated for general n, but we can analytically continue to
n→ 0 by setting n = 0 in (33.40). Then the equations simplify considerably, and have
a remarkably simple solution for all g and T

λ = 2Jg , λ̃ = Jg,

Qr(iωn) =
2g

ω2
n +2Jg+ |ωn|

√
ω2

n +4gJ
,

qEA = 1−T ∑
ωn

Qr(iωn). (33.41)

We require qEA > 0, and the solution of the equation qEA = 0 determines the boundary
of the spin-glass phase in Fig. 33.1.

The |ωn| in Qr(iωn) indicates a gapless spectrum in the spin-glass phase. Indeed,
evaluating the dynamic spin susceptibility, we obtain

χ ′′r (ω) =
1

J
√

gJ
ω + · · · , g < gc,T = 0 (33.42)

at small ω in the spin-glass phase, similar to the linear ω behavior in (33.37) at the
critical point. The full dynamic spin susceptibility χ ′′(ω) of the spin glass also contains
a delta function at zero frequency associated with the first term in (33.39). For the
dynamic structure factor, this term implies

S(ω) = 2πqEAδ (ω)+ · · · , (33.43)

and then using the fluctuation–dissipation theorem in (11.12) we have

χ ′′(ω) = πβωqEAδ (ω)+χ ′′r (ω) . (33.44)

33.3 RandomHeisenberg Magnet

We are now finally ready to study the Heisenberg spin model in (33.1). Initially, the
analysis closely parallels that for the quantum rotor model in Section 33.2. The main
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difference is that the different components of Si do not commute with each other, and
so we have to use the coherent-state path integral for spins discussed in Appendix A.2
instead of the configuration path integral in (33.27). In other words, the Berry phase
terms in (18.23) and (A.38) are absent in the rotor model. Closely related to this dif-
ference is that fact that each site with an S = 1/2 spin Si has a doubly degenerate state,
whereas the rotor model has a non-degenerate state with angular momentum ℓ = 0
as its ground state. Consequently, for the rotor model, we could take the large-g limit
with a trivial ground state, and then reduce the value of g to obtain the spin glass. On
the other hand, for the Heisenberg spin model (33.1) there is no regime with a trivial
ground state, and we will see that the structure of the paramagnet state is much richer
and more subtle, and closely connected to the SYK model.

Proceeding with replica analysis of the averaged partition function following the
same steps as in Section 33.2.1, the large-N physics of (33.1) reduces evaluating the
following path integral for n quantum S = 1/2 spins Sa, which is the analog of (33.27)

ZJ [Q] =
∫
DSa(τ)δ (S2

a−1)e−SB−SJ ,

SB =
i
2

∫ 1

0
du
∫

dτ Sa ·
(

∂Sa

∂τ
× ∂Sa

∂u

)
,

SJ =−
J2

2

∫
dτdτ ′Qab(τ− τ ′)Sa(τ) ·Sb(τ ′) . (33.45)

This is a coherent-state path integral, and SB is the geometric Berry phase of (A.38)
and (18.23), closely connected to the spin commutation relations: this Berry phase was
absent in the quantum rotor model of Section 33.2, and is responsible here for the key
feature of the absence of a trivial ground state noted in the previous paragraph. The
spin has a temporal self-interaction with itself, represented by the function Qab(τ). The
value of Qab(τ) is to be determined self-consistently by computing the correlator,

Qab(τ− τ ′)≡ 1
3
〈
Sa(τ) ·Sb(τ ′)

〉
ZJ

, (33.46)

which is the analog of (33.29).
The Berry phase term in (33.45) makes the direct evaluation of the spin path integral

prohibitively difficult. Sowe resort to the samemethod succesfully employed in Parts II
and IV for non-random spin systems: we represent the spin in terms of fermionic par-
tons f α

a (i) as in Chapter 22 and elsewhere, with the fermionic partons having acquired
an additional replica label.

33.3.1 G−Σ−Q theory

We will study the SU(M) generalization of the SU(2) model (33.1), following Ref. [47],

H =
1√
NM

N

∑
i< j=1

M

∑
α,β=1

Ji jSα
β (i)S

β
α ( j) . (33.47)
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Here, Sα
β (i) = [Sβ

α (i)]† are generators of SU(M) on each site i, with α,β = 1, . . . , M.
Each site contains states corresponding to the antisymmetric product of M/2 (integer)
fundamentals, and these are realized by fermionic spinons with

Sα
β (i) = f †

β (i) f α(i)− 1
2

δ α
β , ∑

α
f †
α(i) f α(i) =

M
2
, (33.48)

with fermions f α(i) on each site i. The Hamiltonian in (33.47) reduces to the S = 1/2
case of the SU(2) Hamiltonian in (33.1) for M = 2 (apart from an overall factor of
1/
√

2).
We introduce replicas a = 1, . . . ,n, and average over Ji j to obtain the averaged,

replicated partition function as in (33.25)

Zn =

∫
D f α

a (i,τ)Dλa(i,τ)exp [−SB−SJ ] ,

SB = ∑
i

∫
dτ
[

f †
aα(i)∂τ f α

a (i)+ iλa(i)
(

f †
aα(i) f α

a (i)− M
2

)]
, (33.49)

SJ =−
J2

4NM

∫
dτdτ ′

[
∑

i
Sα

aβ (i,τ)S
γ
bδ (i,τ

′)

][
∑

j
Sβ

aα( j,τ)Sδ
bγ( j,τ ′)

]
.

We can now decouple SJ with a Hubbard–Stratonovich field Qαγ
ab,βδ (τ,τ

′) and take
the large-N limit. Then the problem reduces to finding saddle points of the single-site
action analogous to (33.26):

S[Q]

N
=

J2

4M

∫
dτdτ ′|Qαγ

ab,βδ (τ,τ
′)|2− lnZ f [Q], (33.50)

where Z f [Q] is the single-site partition function analogous to (33.27):

Z f [Q] =
∫
D f α

a (τ)Dλa(τ)exp
[
−SB−S f

]
,

SB =
∫

dτ
[

f †
aα ∂τ f α

a + iλa

(
f †
aα f α

a −
M
2

)]
, (33.51)

S f =−
J2

2M

∫
dτdτ ′Qαγ

ab,βδ (τ,τ
′)

[
f †
aα(τ) f β

a (τ)−
δ β

α
2

][
f †
bγ(τ

′) f δ
b (τ

′)−
δ δ

γ

2

]
.

Note that now there is no remaining path integral over Q. We simply have to find the
saddle points of the action S[Q] in (33.50).

Let us assume that the saddle point does not break spin-rotation symmetry; this is
true in both the spin-glass, and quantum spin-liquid phases. So we make the ansatz
analogous to (33.28) [242]:

Qαγ
ab,βδ (τ,τ

′) = δ α
δ δ γ

β Qab(τ− τ ′). (33.52)

where Qab(τ) is a real function. Then (33.50) is replaced by

S[Q]

N
=

J2M
4

∫
dτdτ ′[Qab(τ− τ ′)]2− lnZ f [Q], (33.53)
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while S f in (33.51) is replaced by

S f =−
J2

2M

∫
dτdτ ′Qab(τ− τ ′)

[
f †
aα(τ) f β

a (τ) f †
bβ (τ

′) f α
b (τ ′)− M

4

]
. (33.54)

At this point, the analysis diverges from that for the quantum rotor model. While
the path integral over the matter field naµ in Zn[Q] in (33.27) is Gaussian and can be
formally performed, that over the matter field f α

a inZ f [Q] in (33.51) is not. Instead, we
proceed in close analogywith themethod employed for the SYKmodel in Section 32.3,
and express Z f [Q] as a G–Σ theory. We define the spinon Green’s function

Gab(τ,τ ′) =−
1
M ∑

α
f α
a (τ) f †

bα(τ
′) . (33.55)

Then, we can write

Z f [Q] = exp

(
−k2J2

2

∫
dτdτ ′∑

a,b
Qab(τ− τ ′)

)
×
∫
DGab(τ,τ ′)DΣab(τ,τ ′)Dλa(τ) exp [−MI[Q]] , (33.56)

where the action I[Q] is

I[Q] =− lndet
[
−δ ′(τ− τ ′)δab− iλa(τ)δ (τ− τ ′)δab−Σab(τ,τ ′)

]
− ik

∫
dτλa(τ)

+
∫

dτdτ ′
[
−Σab(τ,τ ′)Gba(τ ′,τ)+

J2

2
Qab(τ− τ ′)Gab(τ,τ ′)Gba(τ ′,τ)

]
. (33.57)

We note that (33.56) and (33.57) constitute an exact formulation of the theory for
all M. The action in (33.57) is the advertized G–Σ–Q action of the random Heisenberg
magnet, similar to the G–Σ action for the SYK model in (32.83). In Section 33.3.2 we
discuss the large-M limit of (33.57), whence it will become identical to the SYK action.

Our remaining task is to evaluate the path integral over Gab(τ,τ ′), Σab(τ,τ ′), and
λa(τ) in (33.56), and then determine the saddle-point solutions for Qab(τ) in (33.53).
The saddle-point equations for Q from (33.53), (33.54), and (33.57) are

Qab(τ− τ ′) =
1

M2

〈
f †
aα(τ) f β

a (τ) f †
bβ (τ

′) f α
b (τ ′)

〉
Z f [Q]

− 1
4M

=−
〈

Gab(τ,τ ′)Gba(τ ′,τ)
〉
Z f [Q]

− 1
4M

, (33.58)

but we will find it more convenient to obtain them directly from the functional form
of S[Q] in (33.53).

33.3.2 SYK Spin Liquid

We now discuss the evaluation of the path integral in (33.56) order by order in 1/M. In
such an evaluation we will find a gapless paramagnetic state, which can be viewed as a
SYK state of fermionic spinons; we noted this connection between the SYKmodel and
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the random Heisenberg magnet in Fig. 21.2. This gapless, fractionalized, spin-liquid
state is in stark contrast with the trivial, gapped, paramagnet of the rotor model in Sec-
tion 33.2.2. The random Heisenberg magnet also has a spin-glass state, but obtaining
this state requires considerations that are non-perturbative in M, and are deferred to
Section 33.3.3.

Assuming first a general Qab(τ), the large-M limit of the path integral in (33.56)
leads to the following saddle-point equations for the fermion Green’s function and
self-energy

Σab(τ) = J2Qab(τ)Gab(τ),
Gab(iω) = [iωδab−Σab(iω)]−1 , (33.59)

where λa = 0 at the saddle point because of particle–hole symmetry. However, using
the analog of (33.20), we can conclude that there cannot be any off-diagonal compo-
nents of the fermion Green’s function at the saddle point, because it is not possible
for fermions to condense (but off-diagonal fermion Green’s functions do need to be
included in the theory of fluctuations [47]). So we write

Gab(τ,τ ′) = GQ(τ− τ ′)δab , M = ∞ , (33.60)

and similarly for Σab. From the large-N saddle-point equation for Qab in (33.58), we see
that Qab must also be replica diagonal,

Qab(τ) = Q(τ)δab , M = ∞ , (33.61)

and so there is no spin-glass order at M = ∞ [242]. The large-M saddle-point equations
(33.59) therefore reduce to

ΣQ(τ) = J2Q(τ)GQ(τ),
GQ(iω) = [iω−ΣQ(iω)]−1 . (33.62)

These equations hold for general Q(τ), and we have emphasized this by the subscript
Q on G and Σ. Upon including the large-N saddle-point equation for Q in (33.58), we
obtain

Q(τ) =−GQ(τ)GQ(−τ) , M = ∞ . (33.63)

The combination of (33.62) and (33.63) yields precisely the large-N equations of the
fermion of the complex SYK model [242] in (32.20a) and (32.20b) at µ = 0.

For completeness, we also present the large-M expressions for the path integral in
(33.57):

−
lnZ f [Q]

Mn
=

I[Q]

n
+

J2

8Mn

∫
dτdτ ′∑

a,b
Qab(τ− τ ′),

I[Q]

n
=− lndet

[
−δ ′(τ− τ ′)−ΣQ(τ− τ ′)

]
(33.64)

+
∫

dτdτ ′
[
−ΣQ(τ− τ ′)GQ(τ ′− τ)+

J2

2
Q(τ− τ ′)GQ(τ− τ ′)GQ(τ ′− τ)

]
.
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tFigure 33.3 Numerical results for the dynamic spin susceptibility of the SYK spin liquid from Ref. [279]. The solution of (33.62) and
(33.63) is compared with an expansion that extends (33.66). Compare to the dynamic spin susceptibility of the
quantum rotor model in Fig. 33.2. Reprinted with permission from APS.

Employing (33.63) we see that (33.64) is identical to the G–Σ action for the SYK model
in (32.83) at µ = 0.

Given the identity of (33.62) and (33.63) to the SYK equations, we can now read off
results from Chapter 32 to solve them. From (32.80), we obtain the long-time behavior
of the spin autocorrelation in this spin liquid

Q(τ) =
B2

|τ|

(
1+

2α2

|τ|
+ · · ·

)
, T = 0 . (33.65)

After a Fourier transform, we obtain the dynamic spin susceptibility

χ ′′(ω) = πB2sgn(ω)(1−2α2|ω|+ · · ·) , T = 0 . (33.66)

We compare results from the full numerical solution of (33.62) and (33.63) with an
analytic expression that extends (33.66) to higher orders [279] in Fig. 33.3. Note the
large density of states at low energy, with a discontinuity at ω = 0; this is to be compared
with the gapped density of states in the paramagnet for the rotor model in Fig. 33.2.

We can also extend (33.66) to T > 0, using methods developed for the SYK model,
and find “Planckian” dissipation, with damping on the scale∼ kBT/h̄, and independent
of J [279]:

χ ′′(ω) = πB2 tanh
(

h̄ω
2kBT

)[
1−2α2 ω tanh

(
h̄ω

2kBT

)
+ · · ·

]
. (33.67)

Our results for the spin liquid have so far been obtained at M = ∞. However, it is
possible to extend some of them to all orders in 1/M by using connections to the Bose
Kondo model studied in Section 29.5, and to the analysis of fluctuations of the SYK
model. Specifically, we now argue that both exponents associated with powers of |τ| in
(33.65) acquire no corrections in the expansion in 1/M.

To see that there are no corrections to the leading 1/|τ| power in (33.65), it is useful
to refer back to the formulation of the problem in (33.45), and note its close connec-
tion to the analysis of the Bose Kondo problem of Section 29.5. Observe that if we
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integrate out the ϕa field in (29.48), we get exactly the action in (33.45) with Q(τ) hav-
ing the power-law form in (29.52) (we are assuming that the theory is replica diagonal).
Then, the self-consistency condition in (33.46) can only be satisfied if the power law in
(29.53) equals the power law in (29.52). Using the all-orders result in (29.54), we obtain
2−ε =ε , or ε = α = 1 for all M. This is indeed the power of the leading term in (33.65).
There has been recent evidence that an SU(2) Bose Kondo fixed point is not present
for larger values of ε [23, 57, 189, 300], and this is consistent with the appearance of
spin-glass order in the SU(2) model at the energy scale in (33.2).

For the subleading term in (33.65), we refer back to its connection to the h = 2 oper-
ator in (32.63). This h = 2 operator is closely related to the time-reparameterization
symmetry noted in Section 32.3, and reviewed byChowdhury et al. [46] – its connection
to this symmetry implies that the value h = 2 is protected.

33.3.3 Spin Glass

We have so far analyzed the theory (33.57) for the random Heisenberg spin glass in a
1/M expansion about the M = ∞ saddle point and found a gapless paramagnetic phase
that can be interpreted as a SYK quantum liquid of fermionic spinons. Here we show,
following Ref. [91], that there is a non-perturbative instability to spin-glass order at a
low-energy scale of order (33.2). This instability will quench the entropy of the SYK
spin liquid, so that the entropy is not extensive as T → 0. However, it has been argued
[47] that the entropy is replaced by an extensive “complexity” of the spin-glass state.

First, let us place a bound on the magnitude of the spin-glass order in the SU(M)

Hamiltonian defined by (33.47) and (33.48). The state with maximum order has the
spins frozen in a state in which the fermions occupy the states with, say, α = 1, . . . , M/2,
while the other values of α are empty. Evaluating (33.58) on such a state, and using the
definition (33.24), we obtain

qEA ≤
1

4M
. (33.68)

Note that (33.68) vanishes as M→ ∞, and qEA is at most O(1/M) in the large-M limit.
As a first step to understanding the instability to spin-glass order, let use expand the

action in (33.53) to quadratic order in the off-diagonal components of Qab(τ) = qab

with a ̸= b. A direct computation from (33.53) shows that

S[Q]

NM
=

β 2J2

4

(
∑
a̸=b

q2
ab

)[
1− J2

M
χ2

loc

]
+ · · · , (33.69)

where χloc is the local spin susceptibility. In the SYK spin-liquid state, we obtain from
the results in (33.65) and Section 32.2.1

χloc =
∫ β

0
Q(τ)dτ =

1
J
√

π
ln(βJ) , (33.70)

which diverges logarithmically as T → 0, and so the term in square brackets in (33.69)
turns negative. This indicates an instability to spin-glass order at the scale in (33.2).
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Determination of the value of qab requires consideration of the higher-order terms in
the expansion in (33.69), and this has been discussed in Ref. [47]. Here, we assume that
such considerations have determined the appropriate values of qab and qEA, and ask
for the feedback of the spin-glass order on the fermion and spin excitation spectrum.
The leading singular effect at low frequency arises from the long-time limit of Q(τ) in
(33.24), and so we argue that we can replace the equation (33.63) of the spin liquid-
phase by

Q(τ) =−GQ(τ)GQ(−τ)+qEA , (33.71)

with no change to the equations in (33.62).
The equations (33.62) and (33.71) are precisely those that appeared in (32.22) in the

context of the SYK model with additional random hopping terms in (32.21), after
setting U = J and t = J

√
qEA. We now present a numerical solution of these equations

[47] showing that they exhibit a crossover from SYK non-Fermi liquid behavior to
Fermi liquid behavior at a coherence energy scale [196, 269]

ω∗ =
t2

J
= JqEA . (33.72)

This crossover determines the structure of the low-frequency spectrum in the spin-glass
phase when qEA≪ 1. For the spinon spectral density, the crossover is described by the
crossover function Φρ with

ρ(ω) =− 1
π
ImGQ(ω) =

1
π
√

Jω∗
Φρ(ω/ω∗) , (33.73)

where ω∗ is given by (33.72). The result for ρ(ω) is presented in Fig. 33.4, comparing
with the low-frequency scaling scaling in (33.73). In the context of themodel in (32.21),
the scaling function Φρ crosses over from the Fermi liquid behavior of Section 32.1 at
low frequencies with Φρ(0) = 1, to the non-Fermi liquid behavior of the SYK model
at higher frequencies with Φρ(ω ≫ 1)∼ 1/

√
ω . In the present context of the random

Heisenbergmagnet, the crossover is from the excitations characteristic of the spin-glass
state for ω < ω∗, to the fractionalized excitations of the spin liquid for ω > ω∗.

Similarly, for the spin spectral density we have

χ ′′(ω) = ImQ(ω) = πβωqEA δ (ω)+
1
J

Φχ(ω/ω∗) , (33.74)

and the scaling function Φχ is shown in Fig. 33.5. Note that the spin-glass condensate
contributes the zero-frequency delta-function contribution in (33.74), as in (33.44) for
the quantum rotor model. At ω > ω∗, the spin spectral density is given by the frac-
tionalized spin liquid behavior shown earlier in Fig. 33.3. At lower ω < ω∗ we have
behavior characteristic of the spin-glass phase with

χ ′′(ω) =
ω

ω∗πJ
+ · · · , 0 < |ω|< ω∗ , T = 0 . (33.75)

Note that this behavior is identical to that appearing in (33.42) for the spin-glass regime
of the quantum rotor model, suggesting a universality of a linear in ω spectrum in
infinite-range quantum spin glasses. In the present situation, this linear-in-ω spectrum
arises from the “Fermi liquid” regime of the spinon spectral density in Fig. 33.4.
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tFigure 33.4 Numerical results for the spinon spectral density [47] obtained by the solution of (33.62) and (33.71). The results scale
as in (33.73) for small qEA. The solutions were obtained with n frequency points. Adapted by Maine Christos, and
with permission from APS.

tFigure 33.5 Numerical results for the spin spectral density [47] obtained by the solution of (33.62) and (33.71). The results scale as
in (33.74) for small qEA. Adapted by Maine Christos, and with permission from APS.
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450 33 Random Quantum Spin Liquids and Spin Glasses

tFigure 33.6 Spin spectral density obtained from exact diagonalization [263] of the random Heisenberg magnet in (33.1).
Reprinted with permission from APS.

33.3.4 Numerical Results

We now compare the above analyses of the spin-liquid and spin-glass states with
exact diagonalization results on the Hamiltonian in (33.1). Figure 33.6 shows results
obtained by Shackleton et al. [263] for the spin spectral density. These were obtained
by averages over samples with up to N = 18 S = 1/2 spins.

The results show a peak at low frequency, which increases in height and sharpens in
frequency as N becomes larger; this is interpreted as a signal of spin-glass order, and
estimates of the spin-glass order parameter are shown in the inset.

At larger ω , the results show a spectrum that compares well with a rescaled plot
(while preserving total spectral density) of the large-M spin-liquid numerical result in
Fig. 33.3. Recall the characteristic behavior of the large-M theory in (33.66), and our
arguments that the exponents of both terms in (33.66) will not be renormalized by
higher orders in 1/M. There is clear evidence of the behavior of (33.66) in Fig. 33.6,
implying the presence of a fractionalized SYK spin liquid at intermediate frequencies,
above spin-glass order at low frequency.
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34 Fermi Surfaces without Quasiparticles

The general theory of a two-dimensional Fermi surface of quasiparticles coupled
to a gapless scalar is presented. A systematic large-N expansion is possible when
the fermion–scalar Yukawa coupling is random in flavor space. Such a theory is
shown to exhibit a Fermi surface that is sharp in momentum space, but broad in fre-
quency because of the absence of coherent quasiparticle excitations. A model with
the an additional spatial randomness in the Yukawa coupling has linear-temperature
resistivity at the lowest temperatures.

The Sachdev–Ye–Kitaev (SYK) model of Chapter 32 has provided significant insights
into the structure of metallic phases without quasiparticle excitations. However, such
a theory has no spatial structure, and so no Fermi-surface-like feature similar to that
observed in the strange-metal phase of the cuprates. This chapter draws upon the
insights gained in Chapter 32, and describes more realistic models of metals without
quasiparticle excitations with spatial structure. In the presence of full translational
symmetry, such models do have sharp Fermi surfaces in momentum space at T = 0.
The absence of quasiparticles only makes them diffuse in energy space, but the location
of the Fermi surface is well defined in momentum space, it is still given by (2.39). We
also consider the influence of spatial disorder on the sharp Fermi surface: this makes
the Fermi surface diffuse also in momentum space, and is essential for a theory of the
transport properties.

One of our main results is the form of the Green’s function in (34.23) for the
Fermi surface without quasiparticles in two spatial dimensions in the absence of
spatial disorder. We note that this Green’s function is very different from that in
(12.55) for the one-dimensional Tomonaga–Luttinger liquid. This is evidence that it
is not valid to think of the higher-dimensional Fermi surface as a collection of inde-
pendent one-dimensional quantum systems along each direction orthogonal to the
Fermi surface. A more appropriate description is in terms of overlapping patches
at points on the Fermi surface, as shown in Section 34.1.2. The structure of the
Green’s function in (34.23) is much closer to that of the SYK model, with a purely
frequency-dependent local self-energy in the large-N limit of Section 34.1.1; we only
have to add a smooth momentum-dependent bare energy to a purely local SYK-like
self-energy.

I present the discussion in the context of a simple model for the onset of Ising ferro-
magnetism in a two-dimensional metal which is introduced Section 34.1. However, the
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452 34 Fermi Surfaces without Quasiparticles

results are far more general, and apply to a wide class of models in which the Fermi
surface is coupled to a gapless bosonic mode in two spatial dimensions. This includes:
(i) the onset of Ising-nematic order in a Fermi liquid, (ii) the U(1) spin liquid with a
spinon Fermi surface that we briefly noted below (22.7), in which the Fermi surface
excitations are coupled to a U(1) gauge field, and (iii) the Halperin–Lee–Read state of
a half-filled Landau level, which was noted in Sections 24.4 and 27.4. The extension to
these cases is discussed in Section 34.3.

Our main tool for analyzing these problems is a recently introduced large-N
approach, which is directly inspired by the SYK model. This method is described in
Section 34.1.1, and leads to the analog of a G–Σ theory with a large-N saddle point.
Section 34.1.2 then describes how an exact low-energy solution of the saddle-point
equations can be obtained for the case without spatial disorder; this solution involves
a sharp Fermi surface without quasiparticle excitations.

The other sections detail further properties of metals without quasiparticles. Sec-
tion 34.2 shows that the volume enclosed by the Fermi surface obeys the usual
Luttinger relation, despite the absence of quasiparticles. Section 34.4 considers pairing
instabilities of the sharp Fermi surface, using methods closely related to those pre-
sented in Section 32.2.5 for the SYK model. Section 34.5 contains a brief discussion of
electrical transport, where the Fermi surface cannot be treatedwithin the patch approx-
imation: it presents the argument of Ref. [200] that spatial randomness is required to
obtain the linear temperature resistivity.

34.1 Onset of Ising Ferromagnetism

As our simplest example of a Fermi surface without quasiparticles, we consider the
onset of ferromagnetic order in a two-dimensional metal. We assume that spin–orbit
couplings render the spin correlations anisotropic in spin space, so that we can focus
on only the z (say) component of the ferromagnetic order. Let us use the framework of
the paramagnon theory employed in Section 9.4 to describe the onset of spin density
wave order at a wavevector K = (π,π), as in (9.61). In its original formulation [27, 63],
the paramagnon theory was introduced as a theory of ferromagnetic spin fluctuations
in liquid 3He, and in such a theory we should take K = (0,0). This requires that the
underlying band structure and density of the electrons is such that the Lindhard sus-
ceptibility in (9.49) has a maximum at zero wavevector. We account for the anisotropy
in spin space by including only the field ϕ ≡Φz in our low-energy theory. Recent quan-
tum Monte Carlo studies [318, 319] have examined an Ising model in a transverse field
coupled to Fermi surfaces of electrons, and observed the onset of Ising magnetic order
at a continuous quantum phase transition; the theory presented here is expected to
describe such a transition.

The field theory for such a transition is obtained by the same route as that followed
in Section 9.4. We combine the free-fermion theory in (2.2) with the scalar field theory
for ϕ in (10.2) to obtain the Lagrangian
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453 34.1 Onset of Ising Ferromagnetism

L= ∑
kα

c†
kα

[
∂

∂τ
+ ε(k)

]
ckα +

∫
d2r
{

1
2
[
(∇∇∇ϕ)2 +(∂τ ϕ)2 + sϕ 2]+ u

4!
ϕ 4
}

−
∫

d2r gϕ c†
α σ z

αβ cβ . (34.1)

We have allowed for an arbitrary dispersion of the electrons ckα in momentum space,
with a Fermi surface at εk = 0. However, we only include long-wavelength fluctuations
in ϕ and so have performed a gradient expansion in its Lagrangian. The electrons are
coupled to ϕ via the Yukawa coupling g, with σ z the Pauli matrix. A crucial property of
thisYukawa coupling is that it acts at zeromomentum, unlike the non-zero-momentum
shift in (9.61). Other cases with a zero-momentum order parameter lead to essentially
the same results, as described below.

There has been a great deal of work [155] on theory (34.1), based essentially on a
renormalized expansion in powers of g, supplemented by a large number of fermion
flavors. This work has led to numerous insights on the properties of (34.1), but not
to a formulation in terms of a saddle-point theory that can be used to systematically
classify the nature of higher-order corrections.

34.1.1 Large-N Theory

Following the example of the SYK model, it was argued [5, 71, 72] that problems of
fermions coupled to a critical boson could also be addressed by examining ensembles
of theories with different Yukawa couplings. It is also possible to choose the ensemble
so that the couplings are spatially independent, and this maintains full translational
symmetry in each member of the ensemble. If most members of the ensemble flow to
the same universal low-energy theory, then we can access the low-energy behavior by
studying the average over the ensemble. We also obtain the added benefit of a G–Σ
action with a large-N prefactor, which allows for a systematic treatment of the theory.

Let us consider the following generalization of the theory (34.1):

L=
N

∑
α=1

∑
k

c†
k,α

[
∂

∂τ
+ ε(k)

]
ck,α +

∫
d2r

M

∑
γ=1

{
1
2
[
(∇∇∇ϕγ)

2 +(∂τ ϕγ)
2 + sϕ 2

γ
]}

−
∫

d2r
M

∑
γ=1

N

∑
α,β=1

gαβγ

N
ϕγ c†

α cβ . (34.2)

Here, the fermion has N components, the boson has M components, and we take the
large-N limit with

λ =
M
N

(34.3)

fixed. The Yukawa coupling is taken to be a random function of the flavor indices with

gαβγ = 0 , g∗αβγ = gβαγ , |gαβγ |2 = g2 . (34.4)

We have dropped the quartic self-coupling u of the the scalar field for simplicity; it
is unimportant for the leading critical behavior, but is needed for certain subleading
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454 34 Fermi Surfaces without Quasiparticles

tFigure 34.1 Saddle-point equations for the fermion self-energyΣ and boson self-energyΠ, expressed in terms of the
renormalized fermion Green’s functionG and boson Green’s functionD. The filled circle is the Yukawa couplinggαβγ .

effects at non-zero temperature [71]. The original theory in (34.1) has a ϕ →−ϕ sym-
metry, which is only statistically present in (34.2); we can maintain this symmetry in
each member of the ensemble by dividing the indices into groups of two, but we avoid
this complexity because it does not modify the large-N results. We consider an ensem-
ble of complex couplings because it simplifies the analysis, but real couplings lead to
essentially the same results.

We can nowproceedwith the large-N analysis following the script of the SYKmodel.
As in Section 32.2, the large-N saddle-point equations are most easily obtained by a
diagrammatic perturbation theory in g, in which we average each graph order by order.
In the large-N limit, only the graphs shown in Fig. 34.1 survive, and yield the following
saddle-point equations

Σ(r,τ) = g2λD(r,τ)G(r,τ),
Π(r,τ) =−g2G(−r,−τ)G(r,τ),

G(k, iωn) =
1

iωn− ε(k)−Σ(k, iωn)
,

D(q, iΩm) =
1

Ω2
m +q2 + s−Π(q, iΩm)

. (34.5)

Here, G is the Green’s function for the fermion c, and Σ its self-energy; and D is the
Green’s function for the boson f , and Π is its self-energy.

The equations (34.5) are the analog of the SYK equations in (32.20a)–(32.20c), but
the Green’s functions now involve both spatial and temporal arguments. Remarkably,
as we see in Section 34.1.2, an exact solution of the low-energy scaling behavior is
possible for (34.5), just as it was for the SYK model.

For completeness, we also write down the path integral of the averaged theory using
bilocal Green’s functions, the analog of (32.83) for the SYK model. We introduce the
spacetime coordinate X ≡ (τ,x,y), and all Green’s functions and self-energies in the
path integral are functions of two spacetime coordinates X1 and X2. Then we have

Z =
∫
DG(X1,X2)DΣ(X1,X2)DD(X1,X2)

×DΠ(X1,X2)exp [−NI(G,Σ,D,Π)] . (34.6)
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455 34.1 Onset of Ising Ferromagnetism

The G–Σ–D–Π action is now

I(G,Σ,D,Π) =
g2λ

2
Tr(G · [GD])−Tr(G ·Σ)+ λ

2
Tr(D ·Π) (34.7)

− lndet [(∂τ1 + ε(−i∇∇∇1))δ (X1−X2)+Σ(X1,X2)]

+
λ
2

lndet
[(
−∂ 2

τ1
−∇∇∇2

1 + s
)

δ (X1−X2)−Π(X1,X2)
]
,

where we have introduced notation analogous to (32.84):

Tr( f ·g)≡
∫

dX1dX2 f (X2,X1)g(X1,X2) . (34.8)

Note the crucial prefactor of N before I in the path integral. It can be verified that the
saddle-point equations of (34.7) reduce to (34.5).

34.1.2 Patch Solution

This subsection presents an exact solution of the saddle-point equations (34.5) in the
low–energy scaling limit. We can obtain this solution for an arbitrary ε(k), and for
a general shape of the Fermi surface. The key to the solution is the observation that
the singular behavior at any point on the Fermi surface is determined only by a small
momentum-space patch around it, as well as that of the anti-podal point. We do need
to include the curvature of the Fermi surface though, and it is not sufficient to think
of the Fermi surface as a set of one-dimensional chiral fermions at each point on the
Fermi surface. Although this patch approach correctly captures the behavior of the
Green’s functions, it runs into difficulties in computations of transport properties [98],
as noted in Section 34.5.

We begin by evaluating Π in (34.5) using the bare-fermion Green’s function. This
yields the Lindhard susceptibility in (9.49) and (9.50)

Π(q, iΩm) =−g2T ∑
ωn

∫ d2k
4π2

1
(i(ωn +Ωm)− ε(k+q))(iωn− ε(k))

= g2
∫ d2k

4π2
f (ε(k+q))− f (ε(k))
iΩm + ε(k)− ε(k+q)

, (34.9)

where f (ε) is the Fermi function. We are interested in the behavior of Π for small q and
Ωm at low T . On the real frequency axis, the real part of Π is not universal , and depends
in a complicated manner on the entire fermion dispersion. However, the behavior of
the imaginary part of Π is much simpler and universal. We have

ImΠ(q,Ω) =−πg2
∫ d2k

4π2 [ f (ε(k+q))− f (ε(k))]δ (Ω+ ε(k)− ε(k+q))

= πg2Ω
∫ d2k

4π2 δ (ε(k))δ (Ω+ ε(k)− ε(k+q)) as T → 0. (34.10)

The last expression contains an integral over two-dimensional momentum space of
k, along with two delta functions containing arguments that are functions of k.
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456 34 Fermi Surfaces without Quasiparticles

tFigure 34.2 Points±k0 on the Fermi surface that satisfy (34.11). The momentum of the boson is q, and the low-energy fermion
contributions arise frommomenta in the vicinity of±k.

Generically, both delta functions are satisfied only at isolated points in momentum
space. For |q|, |Ω| → 0, the isolated points are solutions of

ε(k) = 0 and q ·∇∇∇kε(k) = 0 . (34.11)

The solution of (34.11) is illustrated in Fig. 34.2; for a simply connected, convex Fermi
surface, each direction of q is identified with the two anti-podal points ±k0 on the
Fermi surface, where q is parallel to the tangent to the Fermi surface. Note that the
value of k0 is fully determined by q, but we leave this dependence implicit.

As illustrated in Fig. 34.2, we choose our momentum-space axes so that q= (0,qy).
In the vicinity of k0 we write the fermion dispersion near the Fermi surface patch at k0

as

k= k0 +(kx,ky), ε(k) = νF kx +
κ
2

k2
y , (34.12)

whereas near −k0 we have

k=−k0 +(kx,ky), ε(k) =−νF kx +
κ
2

k2
y . (34.13)

Here, νF is the Fermi velocity, and κ is the curvature of the Fermi surface. The values
of νF and κ depend upon k0, which in turn depends upon q, and they will vary as k0

moves around the Fermi surface, but we have not explicitly indicated that; our results
remain valid even in the presence of such variation. We can now insert (34.12) into
(34.10) and obtain the Landau damping result

ImΠ(q,Ω) = 2πg2Ω
∫ d2k

4π2 δ
(
νF kx +κk2

y/2
)

δ
(
κkyqy +q2

y/2−Ω
)

=
g2Ω

2πνF κ|qy|
, (34.14)

where the leading factor of two is from the sum over the anti-podal points. Note that
the curvature κ appears in the denominator, and so it is not valid to take the κ → 0
limit, and no description in terms of purely linearly dispersing excitations around the
Fermi surface is possible.

Let us now turn to an evaluation of Π in (34.5) using the fully renormalized Green’s
function. Remarkably, as we now show, the result in (34.14) remains largely unchanged.
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457 34.1 Onset of Ising Ferromagnetism

We anticipate that a full solution of (34.5) leads to a fermion Green’s function of the
following form:

Σ(k, iωn) = Σ0(k)+Σ(iωn). (34.15)

Themomentumdependence of Σ0(k) is non-singular, andwe assume it can be absorbed
by redefinition of the values of νF and κ ; it is therefore not included in the computations
below. The frequency-dependent part Σ(iωn) can be singular (as we see below) but it
has no dependence on kx and ky; however, it will depend upon the choice of k0, via the
implicit k0 dependence of νF and κ . We now insert Σ(iωn) into the first expression in
(34.9) and use the dispersion (34.12) to obtain

Π(q, iΩm) =−2g2T ∑
ωn

∫ d2k
4π2

1
(iωn−νF kx−κq2

y/2−Σ(iωn))

× 1
(i(ωn +Ωm)−νF kx−κ(ky +qy)2/2−Σ(iωn + iΩm))

. (34.16)

At this point in (34.9) we evaluated the summation over the frequency ωn, but we are
unable to do that here because of the unknown frequency dependence in Σ(iωn). So I
have instead decided to focus only on the contribution of the patches near ±k0, and
linearized the fermion dispersion accordingly. In this situation the dependence of the
integrand on kx and ky is simple. Performing the integral over kx in (34.16), we obtain

Π(q, iΩm) =
−ig2T

νF
∑
ωn

∫ dky

(2π)
[sgn(ωn +Ωm)− sgn(ωn)]

× 1
iΩm−κq2

y/2−κqyky +Σ(iωn)−Σ(iωn + iΩm)
. (34.17)

We have assumed here that sgn(ωn−Σ(iωn)/i) = sgn(ωn), and this always turns out
to be the case from the positivity requirements of the fermion spectral weight. The
next step is the evaluation of the qy integral in (34.17). The real part of this integral is
logarithmically divergent at large qy, but then we are no longer in a regime where it is
valid to keep the linearized dispersion. We assume that the divergent pieces only yield
a non-singular contribution, and keep the singular imaginary part of the integral. In
this manner, we obtain from (34.17)

Π(q, iΩm) =
g2T

2κνF |qy|∑ωn

sgn(Ωm) [sgn(ωn +Ωm)− sgn(ωn)]

=− g2|Ωm|
2πκνF |qy|

. (34.18)

This agrees precisely with (34.14), and all dependence on Σ has dropped out, as we
claimed.

The final step in the exact solution of (34.5) is the evaluation of Σ(iωn) at the point
k0 on the Fermi surface. As we noted earlier, the parameters νF and κ are smooth
functions of the value of k0, and this is the only momentum dependence in the singular
part of the fermion self-energy. A careful evaluation first proceeds by the real frequency
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method used for Π in (34.10), and we can follow that method for the imaginary part of
the Σ(ω) on the real frequency axis. Such an evaluation shows that the result is domi-
nated by the fermions in the vicinity of k0, and with boson momentum qy≫ qx, which
is nearly tangent to the Fermi surface. However, we proceed directly to the second
method used for Π below (34.16), in which we integrate over momenta before inte-
grating over frequency; this has the advantage of allowing us to include Σ(iωn) in the
fermion propagator. From the first equation in (34.5), using the linearized dispersion
and result above, we have

Σ(k, iωn) = g2λ
∫ d2q

(2π)2 T ∑
Ωm

1

q2
y + s+

g2|Ωm|
2πνF κ|qy|

× 1
i(Ωm + iωn)−νF(kx +qx)−κ(ky +qy)2/2−Σ(iΩm + iωn)

, (34.19)

where we have dropped qx in the boson propagator. We can now perform the integral
over qx, and observe that the expression is indeed independent of k, and the Σ(iΩm +

iωn) in the denominator. So we have our closed-form expression for the fermion self-
energy:

Σ(iωn) =−i
g2λ
2νF

∫ dqy

2π
T ∑

Ωm

sgn(ωn +Ωm)

q2
y + s+

g2|Ωm|
2πνF κ|qy|

. (34.20)

We are interested in the singular behavior of this fermion self-energy at the critical
point s = 0. At T > 0, we have to account for thermal effects arising from the boson
self-interaction u in (34.1), which make the renormalized s temperature dependent. We
do not discuss these subtle issues [5, 59, 71, 298] here, and limit ourselves below to
T = 0.

For s > 0 and T = 0, evaluation of the integrals over qy and Ω in (34.20) shows that
ImΣ(iω) ∼ −(ω/s)2 ln(1/|ω|), which is the expected behavior for a two-dimensional
Fermi liquid (see QPT book). At the critical point s = 0, and at T = 0, we perform the
qy integral, and then the frequency integral to obtain

Σ(iω) =−i
g2λ

3νF
√

3

(
2πνF κ

g2

)1/3 ∫ dΩ
2π

sgn(ω +Ω)

|Ω|1/3

=−iBsgn(ω)|ω|2/3 s = 0,T = 0 , (34.21)

with

B =
g2λ

2πνF
√

3

(
2πνF κ

g2

)1/3

. (34.22)

It is instructive to examine the frequency and momentum dependence of the T = 0
fermion Green’s function across the Fermi surface. In the scaling limit, we can write
the real frequency axis Green’s function near the Fermi surface as
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459 34.1 Onset of Ising Ferromagnetism

tFigure 34.3 Plot of fermion spectral density from (34.23) at wavevectors k = k0 +(kx,0) across the Fermi surface without
quasiparticles. Here, ν̄F = νF/B.

G(k,ω) =
1

−νF kx−κk2
y/2+ iBe−iπsgn(ω)/3|ω|2/3 . (34.23)

As in the SYK model, we can drop the bare ω term in G−1 because it is subleading
with respect to the frequency-dependent self-energy. Note also the distinction in the
singularity structure from (12.55) for the one-dimensional Tomonaga–Luttinger liquid
– the singularity here is entirely in the frequency dependence of the self-energy, as in
the SYK model. A plot of −ImG is shown in Fig. 34.3. On the Fermi surface kx = 0,
ky = 0 we have ImG∼−1/|ω|2/3, which is similar to the ImG∼−1/|ω|1/2 behavior of
the SYK model. Unlike the Fermi liquid, there is no delta function in ω on the Fermi
surface, indicating the absence of quasiparticles. Away from the Fermi surface, ImG
actually vanishes on the Fermi surface (see Fig. 34.3), and there is a broad spectral
feature that disperses as ω = [(2νF/(

√
3B))kx]

2/3. Note that the position of the Fermi
surface is still given by the vanishing of the inverse Green’s function at zero frequency,
as in (2.39).

We can compute the momentum distribution function of the electrons from (34.23),
and it leads to a result similar in form to that of a Tomonaga–Luttinger liquid in
(12.57):

n(k)∼−sgn(νF kx +κk2
y/2)|νF kx +κk2

y/2|1/2 , (34.24)

with a power-law singularity on the Fermi surface. But recall that the frequency-
dependent form of (34.23) is quite different from (12.55) for the one-dimensional
electron gas.

At non-zero T , the SYK model displays simple ω/T scaling in its spectral func-
tion. There are “quantum” contributions that do indeed scale as ω/T for the critical
Fermi surface, but there are also additional corrections that arise from classical ther-
mal fluctuations of ϕ , which are important. So the T > 0 situation is rather complex
[5, 59, 71, 298], as was noted above.
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460 34 Fermi Surfaces without Quasiparticles

34.1.3 Patch Field Theory

Having obtained the analytic solution of the large-N saddle-point equations in (34.5) by
the asymptotic low-energy analysis above, it is natural to ask if the asymptotic analysis
can be performed directly on the theory (34.2) so that we can understand the solution
in terms of amore conventional scaling analysis of a quantumfield theory. The analysis
of the saddle-point equations makes it clear that all the singular effects arise from the
vicinity of the points±k0 on the Fermi surface for the case of a boson fluctuation in the
direction q, as shown in Fig. 34.2. So we introduce fermion fields ψα± in the vicinity of
these points, and expand their dispersion in gradients according to (34.12) and (34.13).
This yields the action [71, 154, 177]

S =
∫

dxdydτL,

L=
N

∑
α=1

{
ψ†

α+

[
∂τ − i∂x− (κ/2)∂ 2

y
]

ψα++ψ†
α−
[
∂τ + i∂x− (κ/2)∂ 2

y
]

ψα−
}

+
1
2

M

∑
γ=1

(
∂yϕγ

)2
+

M

∑
γ=1

N

∑
α,β=1

gαβγ

N
ϕγ

[
ψ†

α+ψβ++ψ†
α−ψβ−

]
. (34.25)

We have dropped the x and τ gradient terms of ϕ in (34.2), anticipating that they are
irrelevant in the scaling analysis we now present.

We analyze the behavior of (34.25) under the rescaling transformation

x→ x/b , y→ y/b1/2 , τ → τ/bz , (34.26)

where the rescaling of x and y leaves the fermion dispersion invariant, but we leave the
dynamic critical exponent undetermined for now. Then the (∂yϕγ)

2 term is invariant if
we choose

ϕ → ϕ b(1+2z)/4 . (34.27)

Similarly, the spatial gradient terms of ψ are invariant if we choose

ψ → ψ b(1+2z)/4 . (34.28)

At this point, it is conventional to fix z by demanding the invariance of temporal gradi-
ent terms. However, we saw in our analysis that the bare ω term in G−1 was irrelevant,
and we dropped it in (34.23), and so this is not the appropriate way to proceed. Instead,
we examine the scaling of the Yukawa coupling in (34.25), which is

g→ gb(3−2z)/4 . (34.29)

At a critical fixed point, we expect g to be invariant, and this yields the value

z =
3
2
. (34.30)

This is precisely the value we would have obtained by comparing the kx and ω terms
in (34.23).
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461 34.2 Luttinger Relation

The lesson is that we have to study the theory (34.25) at fixed g, and it is not permis-
sible to expand in powers of g. We can regard this fixed-g requirement as the analog of
a non-linear sigma model constraint in more conventional quantum field theories.

The quantum field theory (34.25) can be used to compute corrections beyond the
large-N saddle-point theory presented in Section 34.1.2 (although not for the con-
ductivity [98], as noted earlier). This has not yet been computed within the large-N
method of Section 34.1.1, but in an uncontrolled method that examines certain three-
loop graphs [177]; this leads to a small fermion anomalous dimension, and hence a
breakdown of the purely local form of the singular electron self-energy. It is interesting
to note that finite-N corrections discussed in Section 32.3.3 also lead to a breakdown
of the local scaling of the SYK model, although from a different mechanism involving
the time-reparameterization mode (there is no time-reparameterization soft model for
the Fermi surface being discussed here [71]).

Related scaling analyses can also be used in higher dimensions, and in particular
for d = 3. A key feature in d = 2 is that both the fermion Green’s function in (34.23),
and the Landau-damped boson Green’s function implied by (34.18) are characterized
by the same dynamic critical exponent z = 3/2. A perturbative computation of the
corresponding Green’s functions in general d shows that the boson Green’s function
still has zb = 3/2, while the fermion Green’s function has z f = 3/d (see QPT book). For
d > 2 we have z f < zb, and so at any given small wavevector, fermionic excitations are
higher in energy than bosonic excitations; this implies that the fermions can be safely
integrated out, and a perturbative analysis of the effective bosonic theory is valid.

34.2 Luttinger Relation

The strong damping and breakdown of quasiparticles implied by (34.21) and (34.22)
nevertheless does not remove the sharp Fermi surface. There is no singular momen-
tum dependence in these expressions, and the frequency dependence still obeys (2.38).
Consequently, there is still a Fermi surface specified by (2.39).

We now show that this Fermi surface obeys the same Luttinger relation as that of
a Fermi liquid. The argument proceeds just as in Section 30.2.1. The evaluation of
(30.31) proceeds as before, as the self-energy has all the needed properties.We only need
to examine more carefully the fate of the Luttinger–Ward term in (30.27): in the SYK
model, the corresponding term I2 in (34.35) did not vanish.Here, theGreen’s function is
momentum dependent, and the expression for I2 has an additional momentum integral

I2 =−i
∫ ∞

−∞

∫ d2k
4π2

dω
2π

G(k, iω)
d

dω
Σ(iω)e−iω0+ . (34.31)

As the self-energies of the SYK model and the critical Fermi surface both obey (32.47)
with α < 1, it is possible that there is an anomalous contribution at ω = 0 that leads
to a non-vanishing I2. However, that is not the case here because the singularity of the
Green’s function is much weaker as a result of its momentum dependence; now the
low-energy Green’s function is
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462 34 Fermi Surfaces without Quasiparticles

G−1(k, iω) =−νF kx−
κ
2

k2
y −Σ(iω) , (34.32)

and this diverges at ω = 0 only on the Fermi surface νF kx +κk2
y/2 = 0. Indeed, with

this form, the local density of states is a constant at the Fermi level. Consequently,
there is no anomaly at T = 0, and I2 = 0 from the Luttinger–Ward functional analysis.
Incidentally, we note that the Luttinger–Ward functional in the large-N limit is just the
first term in the action I in (34.7), similar to the SYK model.

To complete this discussion, I add a few remarks on the structure of the Luttinger–
Ward functional, and its connection to global U(1) symmetries [53, 209]. Consider
the general case where there are multiple Green’s functions (of bosons or fermions)
Gα(kα ,ωα). Let the α-th particle have a charge qα under a globalU(1) symmetry. Then,
for each such U(1) symmetry, the Luttinger–Ward functional will obey the identity

ΦLW [Gα(kα ,ωα)] = ΦLW [Gα(kα ,ωα +qα Ω)] . (34.33)

Here, we are regarding ΦLW as a functional of two distinct sets of functions f1,2α(ωα),
with f1α(ωα)≡Gα(kα ,ωα +qα Ω) and f2α(ω)≡Gα(kα ,ωα), and ΦLW evaluates to the
same value for these two sets of functions. Expanding (34.33) to first order in Ω, and
integrating by parts, we establish the corresponding I2 = 0.

34.3 Fermi Surface Coupled to a Gauge Field

As was noted in the beginning of this chapter, the problem of a Fermi surface coupled
to a gauge field in 2+1 dimensions leads to properties very similar to those of the Ising
ferromagnet described by (34.1). This becomes clear when we reduce the field theory
to a two-patch theory along the lines of Section 34.1.2, as I now describe. These results
are applicable to the U(1) spin liquid with a spinon Fermi surface noted below (22.7),
and the Halperin–Lee–Read state in the half-filled Landau level, noted in Sections 24.4
and 27.4.

Following the procedure in Section 22.2, we can describe the problem of a U(1)
gauge field coupled to a Fermi surface by the following general Lagrangian (replacing
(34.1)):

L= ∑
k,α

c†
k,α

[
∂

∂τ
+ ε(k−ga)

]
ck,α +

∫
d2r
{

Kτ
2

(∂τa)
2 +

K
2
(∇∇∇×a)2

}
. (34.34)

We focus only on the spatial components of the gauge field, as the temporal compo-
nents are screened by the background charge density. We also work in the Landau
gauge:

∇∇∇ ·a= 0 . (34.35)

We can now perform an analysis of the gauge field polarization from the fermion
loop diagram using an analysis closely related to that in Section 34.1.2. As in Fig. 34.2,
we find that a gauge field fluctuation at wavevector q is damped only by fermion
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463 34.4 Pairing Correlations

excitations at the anti-podal points ±k0. Using the condition (34.35) at this point, we
can write the gauge field in terms of its single transverse component

a= (ϕ ,0) . (34.36)

Now we take the long-wavelength limit, following the mapping from (34.2) to (34.25).
The theory (34.34) yields the Lagrangian density

L= ∑
α

{
ψ†

α+

[
∂τ − i∂x− (κ/2)∂ 2

y
]

ψα++ψ†
α−
[
∂τ + i∂x− (κ/2)∂ 2

y
]

ψα−
}

+
K
2
(∂yϕ)2 +g∑

α
ϕ
[
ψ†

α+ψα+−ψ†
α−ψα−

]
. (34.37)

The key difference between (34.37) and (34.25) is in the relative sign of the two terms in
the Yukawa coupling. This sign makes no difference to the analyses in Section 34.1.1,
and so all previous results apply also to (34.34). However, we see that this sign does
make a crucial difference in the considerations of fermion pairing in Section 34.4.

34.4 Pairing Correlations

We now study possible pairing instabilities of the non-Fermi liquid states, analogous
to the Bardeen–Cooper–Schrieffer pairing instability of Fermi liquids in Chapter 4. As
we are dealing with critical states without quasiparticle excitations, we now consider
the pairing correlations by a method analogous to that used to study composite oper-
ators of the SYK model in Section 32.2.5. We examine a large-N equation analogous
to Fig. 32.5, and compute the scaling dimension of the Cooper-pairing operator. If
the value of the scaling dimension is real, this gives us information on the correlation
functions of the pairing operator in the non-Fermi liquid state. However, we find that
under suitable conditions the scaling dimension is complex. Following Refs. [130, 141],
we interpret the complex scaling dimension as in indication of an instability to a paired
state.

To begin with, we can ignore the absence of quasiparticles, and consider pairing
by exchange of ϕ between ψ+ and ψ−, along the lines of the paramagnon exchange
in Section 9.4.3. Such considerations show that the interaction is attractive (repul-
sive) between parallel (anti-parallel) spin particles for the Ising ferromagnetic case,
and repulsive for arbitrary spin particles for the gauge field case.

To go beyond such leading-order results, and self-consistently include the absence
of quasiparticles, it is important to work with a systematic large-N limit. So, we gen-
eralize the patch theories in (34.25) and (34.37) to a theory with N flavors of fermions,
M1 flavors of bosons that mediate an attractive interaction (in the pairing channel)
between anti-podal points on the Fermi surface, and M2 flavors of bosons that medi-
ate a repulsive interaction. By rescaling the bosons, we normalize the mean-square
Yukawa coupling for both classes of bosons with the same value of g; the value of g
will drop out in the scaling equations considered in this section. Having obtained the
same Yukawa coupling, we do have to consider the coefficient of the (∂yϕ)2 term in
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464 34 Fermi Surfaces without Quasiparticles

(34.25) more carefully. We take this coefficient to equal K1 and K2 for the two bosons,
and we see below that the ratio K1/K2 influences the critical exponents. For the gauge
field case, the values of K1,2 are equal to the corresponding diamagnetic susceptibility
of the system [324], and this depends upon the lattice scale properties. So we have the
theory

L= ∑
s=±1

N

∑
α=1

ψ†
αs
[
∂τ − is∂x−∂ 2

y
]

ψαs + ∑
a=1,2

Ka

2

Ma

∑
γ=1

(
∂yϕγa

)2

+ ∑
s=±1

2

∑
a=1

s3−a
Ma

∑
γ=1

N

∑
α,β=1

ga
αβγ

N
ψ†

αsψβ sϕγa . (34.38)

Here, s = ±1 is the index of the two anti-podal patches (see Fig. 34.2), and a = 1,2
represents the attractive and repulsive bosons, respectively. Also, it will be necessary to
take the random couplings ga

αβγ to now be real independent variables.
Let us now recompute the boson and fermion self-energies of Section 34.1.2 for

the theory (34.38). The self-energy of the boson ϕγa is still equal to (34.18), while the
self-energy of the fermion in (34.21) becomes

Σ(iω) =−i
g2

2π
√

3

(
M1K−2/3

1 +M2K−2/3
2

N

)(
2πνF κ

g2

)1/3

sgn(ω)|ω|2/3 . (34.39)

We now consider the scaling dimension of the composite operator ψ†
α+ψ†

α− along the
lines of Section 32.2.5. The large-N limit leads to an integral equation for the pairing
vertex, analogous to that in Fig. 32.5 and (32.65), shown in Fig. 34.4. We first consider
the internal loop, and evaluate the integral overmomenta along the lines of the analysis
in Section 34.1.2, while assumingmomentum independence of the vertex –we see below
that this assumption is consistent:∫ dkxdky

4π2
1

(iω−νF(kx + px)−κ(ky + py)2/2−Σ(iω))
(34.40)

× 1
(−iω−νF(kx + px)−κ(ky + py)2/2−Σ(−iω))(Kak2

y +Π(ky, iω− iΩ))
.

tFigure 34.4 Large-N equation for the scaling dimension of the composite operatorψ†
α+ψ†

α−, leading to (34.42) after
integration over the momentum in the loop of the diagram on the right. The filled triangle is the pairing vertex∆.
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Notice that the kx term appears with the same sign in the two fermion propagators,
while the frequencies have opposite signs, corresponding to the pairing between anti-
podal patches. This structure is crucial to the non-vanishing result of the kx integral in
(34.40), which yields∫ dky

4πνF

1
|ω + iΣ(iω)|(Kak2

y +Π(ky, iω− iΩ))
. (34.41)

This result is independent of the external momentum p – this implies we can consis-
tently take the pairing vertex to be independent of momentum. The pairing vertex
depends only upon frequency, just like the fermion self-energy, and the situation is
now essentially identical to that for the SYK model in Section 32.2.5, with the com-
posite operator also having only local correlations. We can perform the ky integral in
(34.41), and then Fig. 34.4 yields the following integral equation for the pairing vertex
in frequency space alone

E∆(iΩ) =−∑
a

Maζag2

3N
√

3

∫ dω
2π

∆(iω)

|ω + iΣ(iω)|
(4π)1/3

(gKa)2/3|ω−Ω|1/3 . (34.42)

Here, a = 1,2 sums over the attractive and repulsive bosons and ζa = 2a−3 =−1 (+1)
for the attractive (repulsive) interactions. Solutions of this equation with eigenvalue
E = 1 will determine the scaling of ∆(iΩ), as in (32.67). At low energies and T = 0,
where we drop the bare ω term in the right-hand side of (34.42), because it is irrelevant
in the infrared, we obtain a universal equation independent of the coupling g:

E∆(iΩ) =
K
3

∫ dω
2π

2π∆(iω)

|ω|2/3|ω−Ω|1/3 , (34.43)

where the dimensionless constant

K ≡
M1K2/3

2 −M2K2/3
1

M1K2/3
2 +M2K2/3

1

(34.44)

determines the balance between the attractive and repulsive interactions. The Ising
ferromagnet case has M1 = 1, M2 = 0, K = 1, while the gauge field case has M1 = 0,
M2 = 1, K = −1. The equation (34.43) has the same form as that for the γ = 1/3 case
of the γ model of quantum-critical pairing studied by Chubukov and collaborators
[1, 49, 184, 315].

As in Section 32.2.5, we assume the eigenvector has the form

∆(iΩ) =
1
|Ω|α

. (34.45)

We assume 0 < Re [α] < 1/3 to ensure a convergent integral in (34.43), and then we
have

E(α) =K
π2
(
3cot

(πα
2

)
+
√

3
)

sec
(
π
(
α + 1

6

))
9Γ
( 1

3

)
Γ(1−α)Γ

(
α + 2

3

) , (34.46)

a result analogous to (32.69). The solution of E(α) = 1 is shown in Fig. 34.5. ForK= 1,
setting E(α)= 1 indicates a complex scaling dimension α = 1/6± i×0.53734 . . . , which
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466 34 Fermi Surfaces without Quasiparticles

tFigure 34.5 Plot [71] ofRe[α] and Im[α], for the solutions which haveRe[α]≤ 1/6 and Im[α]> 0, as a function ofK.
The critical Fermi surface is unstable to pairing forK∗ <K < 1, whereRe[α] = 1/6 and Im[α] ̸= 0. For
0 <K <K∗, the pairing operator has a non-trivial scaling dimension determined byRe[α]. Reprinted with
permission from APS.

implies that a pairing instability exists and the ground state is superconducting. As the
value of K is reduced, the magnitude of the imaginary part of α also reduces, going
to zero at K = K∗ = 0.12038 . . ., at which point α = 1/6 exactly. For 0 < K < K∗ ,
E = 1 has two solutions with purely real α : α1, with 0 < α1 < 1/6 and α2 = 1/3−
α1, indicating the absence of a superconducting instability arising purely out of the
relevant operators in the low-energy critical theory, when the repulsive interaction is
strong enough. Arguments have been made [71] that α1 is the correct choice for the
scaling dimension. For K < 0, there is no solution for E = 1; therefore, there is no
superconducting instability, and the scaling dimension of the pairing vertex equals its
bare value.

To summarize, the above results imply a pairing instability for the Ising ferromagnet
with purely attractive interactions (K = 1), but no pairing instability for the gauge
field case with purely repulsive interactions (K = −1). If we have a combination of
repulsive and attractive interactions, K interpolates between 1 and −1, and there is
no pairing instability for K < K∗ = 0.12038. The critical Fermi surface state is stable
for all K < K∗, and has a non-trivial dimension for pairing fluctuations in the regime
0 <K <K∗ shown in Fig. 34.5.

I conclude by noting that it is possible to also consider the scaling of other composite
operators from the product of two fermion fields, as in Section 32.2.5 for the SYK
model. It turns out there is no non-trivial scaling of operators made by the product of
ψ†
+ and ψ+ because the analog of the kx integral in (34.40) vanishes. However, there is

interesting behavior in ψ†
+ψ−, which is an operator with wavevector 2kF : this has been

studied in Ref. [71].

34.5 Transport

One of the primary motivations for the intense study of critical Fermi surfaces has
been the hope that it can lead to a theory of the iconic linear-T resistivity of strange
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metals (see Section 1.5). However, the theory presented so far cannot describe such
observations. The key point is that the important singular processes in such a theory
can all be expressed in terms of a continuum field theory, such as that in (34.25), which
conserves total momentum. In the absence of particle–hole symmetry, any state with a
non-zero momentum has a non-zero current and vice versa; consequently if we set up
a state with a non-zero current, the non-zero total momentum of such a state prevents
the current from decaying to zero. In other words, the resistivity will vanish [66, 102,
103, 104, 174].

This effect can be viewed as one analogous to phonon drag [202, 203]. However,
because of the weak electron–phonon coupling, phonon drag is significant only in the
cleanest samples [110]. On the other hand, the coupling in the critical Fermi surface is
so strong that the individual fermions and bosons lose their identity and there are no
quasiparticle excitations. Thus, we cannot separately consider the momentum carried
by the fermions and bosons.

A computation of the conductivity in the large-N limit described above requires a
summation of ladder diagrams, which is described in Ref. [98]. Such an analysis leads
only to a delta function in the conductivity at T = 0:

Reσ(ω) = D1δ (ω) , (34.47)

and the anomalous self-energy of the electron in (34.21) does not show up. A sub-
tle but important point is that this analysis of the conductivity cannot be carried out
in the patch field theory of Section 34.1.3, and it is necessary to account for scatter-
ing between adjacent patches of the Fermi surface [98]. To remove the delta function
in (34.47), we need a mechanism to relax the momentum. Studies have examined the
influence of Umklapp scattering [152, 297], but here we focus on the promising results
[98, 200] obtained by including spatial disorder.

The most important source of spatial disorder in the theory of disordered Fermi
liquids is potential scattering, and so it is natural to include that here in the present
theory. A form amenable to the large-N limit described here is the random potential
action

Sν =
1√
N

N

∑
α,β=1

∫
d2rdτ ναβ (r)ψ†

α(r,τ)ψβ (r,τ),

ναβ (r) = 0 , ν∗αβ (r)νγδ (r′) = ν2 δ (r− r′)δαγ δβδ . (34.48)

The solution of the corresponding large-N saddle-point equations shows [200] that the
boson polarizibility in (34.18) is replaced by

Π(q, iΩn)∼−
g2

ν2 |Ωn|, (34.49)

which leads to z = 2 behavior in the boson propagator, with [D(q, iΩn)]
−1 ∼ q2+γ|Ωn|.

The corresponding fermion self-energy is modified from (34.21): there is a familiar
elastic impurity scattering contribution Σν also present in a disordered Fermi liquid,
along with an inelastic term Σg [98] with the “marginal Fermi liquid” form [285]:
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Σν(iωn)∼−iν2sgn(ωn), Σg(iωn)∼−
g2

ν2 ωn ln(1/|ωn|) . (34.50)

Despite the promising singularity in Σg, (34.50) does not translate [98] into interesting
behavior in the transport; the scattering is mostly forward, and the resistivity is Fermi-
liquid-like, with ρ(T ) = ρ(0)+AT 2.

Much more interesting and appealing behavior results when we add spatial ran-
domness in the Yukawa coupling. Such randomness is generated by the potential
randomness ναβ (x) considered above, but it has to be included at the outset in the
large-N limit.More explicitly, we recall that theYukawa coupling invariably arises from
a Hubbard–Stratonovich decoupling of a four-fermion interaction; we can decouple
such an interaction via a ϕ 2 term that is spatially uniform, and then all the spatial
disorder is transferred to the Yukawa term.

So we add to the spatially independent Yukawa couplings gαβγ in (34.2) a second
coupling g′αβγ(r), which has both spatial and flavor randomness with action

Sg′ =
1
N

∫
d2rdτ g′αβγ(r)ψ

†
α(r,τ)ψβ (r,τ)ϕγ(r,τ), (34.51)

g′αβγ(r) = 0 , g′∗αβγ(r)g
′
δρσ (r

′) = g′2 δ (r− r′)δαδ δβρ δγσ .

Then we obtain additional contributions to the boson and fermion self-energies [200]:

Πg′(q, iΩn)∼−g′2|Ωn| , Σg′(iωn)∼−ig′2ωn ln(1/|ωn|) . (34.52)

Now the marginal Fermi liquid self-energy does contribute significantly to transport
[200], with a linear-T resistivity ∼ g′2T , while the residual resistivity is determined pri-
marily by ν . It is notable that it is the disorder in the interactions, ν , which determines
the slope of the linear-T resistivity, while it is the potential scattering disorder that
determines the residual resistivity. Other attractive features of this theory are that it
has an anomalous optical conductivity σ(ω) with Re[1/σ(ω)] ∼ ω and a T ln(1/T )
specific heat [200].
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Appendix A Coherent-State Path Integral

To avoid inessential indices, I present the derivation of the coherent-state path inte-
gral by focusing on a single site, and drop the site index. We will first derive the result
in a general notation, to allow subsequent application to quantum spin systems. So
we consider a general Hamiltonian H(Ŝ), dependent upon operators Ŝ that need not
commute with each other. So, for the boson Hubbard model, Ŝ is a two-dimensional
vector of operators b̂ and b̂†, which obey (8.1). When we apply the results to quantum
spin systems, Ŝ represents the usual spin operators Ŝx,y,z.

The first step is to introduce the coherent states. These are an infinite set of states
|N⟩, labeled by the a continuous vectorN (in two or three dimensions for the two cases
above). They are normalized to unity,

⟨N |N⟩= 1, (A.1)

but are not orthogonal ⟨N |N ′⟩ ̸= 0 for N ̸=N ′. They do, however, satisfy a complete-
ness relation

CN

∫
dN |N⟩⟨N |= 1, (A.2)

where CN is a normalization constant. Because of their non-orthogonality, these
states are called “over-complete.” Finally, they are chosen with a useful property: the
diagonal expectation values of the operators Ŝ are very simple:

⟨N |Ŝ|N⟩=N . (A.3)

This property implies that the vector N is a classical approximation to the operators
Ŝ. The relations (A.1), (A.2), and (A.3) define the coherent states, and are all we need
here to set up the coherent-state path integral.

We also need the diagonal matrix elements of the Hamiltonian in the coherent-state
basis. Usually, it is possible to arrange the operators such that

⟨N |H(Ŝ)|N⟩= H(N); (A.4)

that means, H(N) has the same functional dependence upon N as the original Hamil-
tonian has on S. For the boson Hubbard model, this corresponds, as we see, to
normal-ordering the creation and annihilation operators. In any case, the right-hand
side could have a distinct functional dependence onN , but we just refer to the diagonal
matrix element as above.

469
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We proceed to the derivation of the coherent-state path integral for the partition
function

Z = Trexp(−H(Ŝ)/T ). (A.5)

We break up the exponential into a large number of exponentials of infinitesimal time
evolution operators

Z = lim
M→∞

M

∏
i=1

exp(−∆τiH(Ŝ)), (A.6)

where ∆τi = 1/MT , and a set of coherent states are inserted between each exponential
by using the identity (A.2); we label the state inserted at a “time” τ by |N(τ)⟩. We can
then evaluate the expectation value of each exponential by use of the identity (A.3)

⟨N(τ)|exp(−∆τH(Ŝ))|N(τ−∆τ)⟩
≈ ⟨N(τ)|(1−∆τH(Ŝ))|N(τ−∆τ)⟩

≈ 1−∆τ⟨N(τ)| d
dτ
|N(τ)⟩−∆τH(N)

≈ exp
(
−∆τ⟨N(τ)| d

dτ
|N(τ)⟩−∆τH(N)

)
. (A.7)

In each step we have retained expressions correct to order ∆τ . Because the coherent
states at time τ and τ +∆τ can in principle have completely different orientations, a
priori, it is not clear that expanding these states in derivatives of time is a valid pro-
cedure. This is a subtlety that afflicts all coherent-state path integrals and has been
discussed more carefully by Negele and Orland [190]. The conclusion of their analysis
is that except for the single “tadpole” diagram where a point-splitting of time becomes
necessary, this expansion in derivatives of time always leads to correct results. In any
case, the resulting coherent-state path integral is a formal expression that cannot be
directly evaluated, and in case of any doubt one should always return to the original
discrete-time product in (A.6).

Keeping in mind the above caution, we insert (A.7) into (A.6), take the limit of small
∆τ , and obtain the following functional integral for Z:

Z =
∫
N(0)=N(1/T )

DN(τ)exp
{
−SB−

∫ 1/T

0
dτH(N(τ))

}
, (A.8)

where

SB =
∫ 1/T

0
dτ⟨N(τ)| d

dτ
|N(τ)⟩ (A.9)

and H(SN) is obtained by replacing every occurrence of Ŝ in the Hamiltonian by SN .
The promised Berry phase term is SB, and it represents the overlap between the coher-
ent states at two infinitesimally separated times. It can be shown straightforwardly from
the normalization condition, ⟨N |N⟩= 1, that SB is purely imaginary.
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471 A.2 Spin Coherent States

A.1 Boson Coherent States

We now apply the general formalism above to the boson Hubbard model. As before,
we drop the site index i.

For the state label, we replace the two-dimensional vector N by a complex number
ψ , and so the coherent states are |ψ⟩, with one state for every complex number. A state
with the properties (A.1), (A.2), and (A.3) turns out to be

|ψ⟩= e−|ψ|
2/2 exp

(
ψ b̂†) |0⟩, (A.10)

where |0⟩ is the boson vacuum state (one of the states in (8.3)). This state is normalized
as required by (A.1), and we can now obtain its diagonal matrix element

⟨ψ|b̂|ψ⟩= e−|ψ|
2 ∂

∂ψ∗
⟨0|eψ∗b̂ eψ b̂† |0⟩

= e−|ψ|
2 ∂

∂ψ∗
e|ψ|

2
= ψ, (A.11)

which satisfies the requirement (A.3). For the complete relation, we evaluate∫
dψdψ∗|ψ⟩⟨ψ|=

∞

∑
n=0

|n⟩⟨n|
n!

∫
dψdψ∗|ψ|2ne−|ψ|

2

= π
∞

∑
n=0
|n⟩⟨n|, (A.12)

where |n⟩ are the number states in (8.3), dψdψ∗ ≡ dRe(ψ)dIm(ψ), and we have picked
only the diagonal terms in the double sum over number states because the off-diagonal
terms vanish after the angular ψ integration. This result identifies CN = 1/π. Sowe have
satisfied the properties (A.1), (A.2), and (A.3) required of all coherent states.

For the path integral, we need the Berry phase term in (A.9). This is a path integral
over trajectories in the complex plane, ψ(τ), and we have

⟨ψ(τ)| d
dτ
|ψ(τ)⟩= e−|ψ(τ)|2⟨0|eψ∗(τ)b̂| d

dτ
|eψ(τ)b̂† |0⟩= ψ∗

dψ
dτ

. (A.13)

We are now ready to combine (A.13) and (A.8) to obtain the coherent-state path
integral of the boson Hubbard model in (8.18).

A.2 Spin Coherent States

We deal in this section with a single spin and will therefore drop the site index. Now Ŝ
is the vector of spin operators of representation S. We construct the states |N⟩ explicitly
below, where we choose N to be a unit vector with N2 = 1. Thus, the coherent states
are labeled by points on the unit sphere. With this definition, (A.4) is modified here to

⟨N |Ŝ|N⟩= SN . (A.14)
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The completeness relation (A.2) takes the form∫ dN
2π
|N⟩⟨N |= 1 =

S

∑
m=−S

|S,m⟩⟨S,m|, (A.15)

where the integral of N is over the unit sphere. The state |N⟩ is almost like a classical
spin of length S pointing in the N direction; indeed, the spin coherent states are the
minimum uncertainty states localized as much in the N direction as the principles of
quantum mechanics will allow, and, in the large-S limit, |N⟩ reduces to a classical spin
in the N direction.

Let us now explicitly construct the spin coherent states. For N = (0,0,1), the state
|N⟩ is easy to determine; we have

|N = (0,0,1)⟩= |S,m = S⟩ ≡ |Ψ0⟩. (A.16)

We have labeled this particular coherent state as a reference state |Ψ0⟩ as it will be
needed frequently in the following. It should be clear that for other values ofN we can
obtain |N⟩ simply by acting on |Ψ0⟩ by an operator that performs an SU(2) rotation
from the direction (0,0,1) to the direction N . In this manner we obtain the following
explicit representation for the coherent state |N⟩:

|N⟩= exp(zŜ+− z∗Ŝ−)|Ψ0⟩, (A.17)

where the complex number z is related to the vector N . This relationship is simplest in
spherical coordinates; if we parameterize N as

N = (sinθ cosϕ ,sinθ sinϕ ,cosθ), (A.18)

then

z =−θ
2

exp(−iϕ). (A.19)

I leave it as an exercise for the reader to verify that (A.17) satisfies (A.1), (A.2),
and (A.3); this verification is aided by the knowledge that the value of the expres-
sion exp(−ia · Ŝ)Ŝ exp(ia · Ŝ), where a is some vector, is determined solely by the spin
commutation relations

[Ŝα , Ŝβ ] = iεαβγ Sγ , (A.20)

and can therefore be worked out by temporarily assuming that the Ŝ are 1/2 times the
Pauli matrices; the result, when expressed in terms of Ŝ, is valid for arbitrary S.

It is useful for our subsequent formulation to rewrite the above results in a some-
what different manner, making the SU(2) symmetry more manifest. The 2× 2 matrix
of operators Ŝ is defined by

Ŝ =

(
Ŝz Ŝx− iŜy

Ŝx + iŜy −Ŝz

)
. (A.21)

Then (A.16) can be rewritten as

⟨N | Ŝαβ |N⟩= SWαβ , (A.22)
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where the matrix W is

W =

(
Nz Nx− iNy

Nx + iNy −Nz

)
≡N · σ⃗ , (A.23)

and σ⃗ are the Pauli matrices. So instead of labeling the coherent states with the unit
vector N , we could equally well use the traceless Hermitean matrix W . Furthermore,
there is a simple relationship between W and the complex number z. In particular, if
we use the spin-1/2 version of the operator in (A.17):

U = exp
[(

0 z
−z∗ 0

)]
(A.24)

(U is thus a 2×2 matrix), we find

W =UσzU†. (A.25)

Now let us apply these results to the path-integral representation in (A.8) and (A.9).
Clearly, the τ dependence of N(τ) implies a τ-dependent z(τ) through (A.19). From
(A.17) we have therefore

d
dτ
|N(τ)⟩= d

dτ
exp(z(τ), Ŝ+− z∗(τ)Ŝ−)|Ψ0⟩. (A.26)

Taking this derivative is, however, not so simple. Notice that if an operator Ô does not
commute with its derivative dÔ/dτ then

d
dτ

exp(Ô) ̸= dÔ
dτ

exp(Ô). (A.27)

The correct form of this result is in fact

d
dτ

exp(Ô) =
∫ 1

0
duexp(Ô(1−u))

dÔ
dτ

exp(Ôu), (A.28)

where u is just a dummy integration variable. This result can be checked by expand-
ing both sides in powers of Ô and verifying that they agree, term by term. More
constructively, a “hand-waving” derivation can be given as follows:

d
dτ

exp(Ô) =
d

dτ
exp
(

Ô
∫ 1

0
du
)

= lim
M→∞

d
dτ

exp

(
M

∑
i=1

Ô∆ui

)
with ∆ui = 1/M

≈ lim
M→∞

d
dτ

M

∏
i=1

exp(Ô∆ui)

≈ lim
M→∞

M

∑
j=1

j

∏
i=1

exp(Ô∆ui)
dÔ
dτ

∆u j

M

∏
i= j+1

exp(Ô∆ui). (A.29)
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tFigure A.1 Strings (dashed lines) connecting the spin orientation N(τ) at u = 1 to the north pole.

Finally, taking the limit M→∞, we obtain the required result (A.28). Now, using (A.26)
and (A.28), we find

SB =
∫ 1/T

0
dτ⟨N(τ)| d

dτ
|N(τ)⟩

=
∫ 1/T

0
dτ
∫ 1

0
du⟨N(τ,u)|

(
∂ z
∂τ

Ŝ+−
∂ z∗

∂τ
Ŝ−

)
|N(τ,u)⟩, (A.30)

where N(τ,u) is defined by

|N(τ,u)⟩= exp(u(z(τ)Ŝ+− z∗(τ)Ŝ−))|Ψ0⟩. (A.31)

From this definition, three important properties of N(τ,u) should be apparent:

N(τ,u = 1)≡N(τ),

N(τ,u = 0) = (0,0,1),

andN(τ,u) moves with u along the great circle

between N(τ,u = 0) and N(τ,u = 1). (A.32)

We can visualize the dependence on u by imagining a string connecting the physical
value ofN(τ)=N(τ,u= 1) to the north pole, alongwhich u decreases to 0; see Fig. A.1.
Associated with each N(τ,u) we can also define a u-dependent W (τ,u) as in (A.23);
the analog of (A.32) is W (τ,u = 1) ≡W (τ) and W (τ,u = 1) = σz. A simple explicit
expression for W (τ,u) is also possible: We simply generalize (A.24) to

U(τ,u) = exp
[

u
(

0 z
−z∗ 0

)]
; (A.33)

then, the relationship (A.25) gives us W (τ,u). Now we can use the expression (A.22)
to rewrite (A.30) as

SB = S
∫ 1/T

0
dτ
∫ 1

0
du
[

∂ z
∂τ

W21(τ,u)−
∂ z∗

∂τ
W12(τ,u)

]
. (A.34)
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475 A.2 Spin Coherent States

As everything is a periodic function of τ , we may freely integrate this expression by
parts and obtain

SB =−S
∫ 1/T

0
dτ
∫ 1

0
duTr

[(
0 z(τ)

−z∗(τ) 0

)
∂τW (τ,u)

]
, (A.35)

where the trace is over the 2×2 matrix indices. The definitions (A.25) and (A.33) can
be used to easily establish the identity(

0 z(τ)
−z∗(τ) 0

)
=−1

2
W (τ,u)

∂W (τ,u)
∂u

, (A.36)

which when inserted into (A.35) yields the expression for SB in one of its final forms:

SB =
∫ 1/T

0
dτ
∫ 1

0
du
[

S
2
Tr
(

W (τ,u)
∂W (τ,u)

∂u
∂W (τ,u)

∂τ

)]
. (A.37)

An expression for SB solely in terms of N(τ,u) can be obtained by substituting in
(A.23); this yields the final expression for SB, which when inserted in (A.8) gives us
the coherent-state path integral for a spin:

SB = iS
∫ 1/T

0
dτ
∫ 1

0
du N ·

(
∂N
∂u
× ∂N

∂τ

)
. (A.38)

This expression has a simple geometric interpretation. The functionN(τ,u) is a map
from the rectangle 0 ≤ τ ≤ 1/T , 0 ≤ u ≤ 1 to the unit sphere. As N moves from N(τ)
to N(τ +∆τ) it drags along the string connecting it to the north pole represented by
the u dependence of N(τ,u) (recall (A.32)). It is easy to see that the contribution to
SB of this evolution is simply iS times the oriented area swept out by the string (see
Fig. A.1). The value of this area clearly depends upon the fact that the u = 0 end of the
string was pinned at the north pole. This was a “gauge” choice and, by choosing the
phases of the coherent states differently, we could have pinned the point u= 0 anywhere
on the sphere. However, when we consider the complete integral over τ in (A.38), the
boundary condition N(1/T ) = N(0) (required by the trace in (A.5)) shows that N(τ)
sweeps out a closed loop on the unit sphere. Then, the total τ integral in (A.38) is the
area contained within this loop and is independent of the choice of the location of the
u = 0 point. Actually, this last statement is not completely correct: The “inside” of a
closed loop is not well defined and the location of the u = 0 point makes the oriented
area uncertain modulo 4π (which is the total area of the unit sphere). Thus, the net
contribution of eSB is uncertain up to a factor of ei4πS. For consistency, we can now
demand that this arbitrary factor always equal unity, which, of course, leads to the
familiar requirement that 2S is an integer.
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Appendix B Grassman Path Integral

by Rhine Samajdar

This appendix describes the construction of coherent states for fermions. The operators
ai annihilate fermions with label i, and

aia
†
j +a†

jai = δi j , aia j +a jai = 0 . (B.1)

We proceed as for bosons in Appendix A.1, and introduce, introduce states |η⟩ so that

ai|η⟩= ηi|η⟩. (B.2)

However, the anti-commutation relations in (B.1) imply that we must have

ηiη j =−η jηi. (B.3)

Hence, the objects ηi cannot be ordinary numbers as was the case for bosons; this leads
us to generalize the concept of numbers (or fields) to Grassmann variables.

The mathematical structure underlying the definition (B.3) is an algebra, which is
simply a vector space endowedwith amultiplication ruleA×A→A.We can construct
an algebra by beginning with a set of elements ηi ∈ A, i = 1, . . . ,N – which are the
generators of the algebra – and imposing two properties:

(i) First, the vector spaceA is closed under addition and scalar multiplication i.e., the
elements ηi can be added and multiplied by complex numbers and the result of any
such operation also belongs to the algebra:

α0 +αiηi +α jη j ∈ A ∀ α0,αi,α j ∈ C. (B.4)

(ii) The product map A×A → A defined as (ηi,η j)→ ηiη j is associative and, as a
consequence of (B.3), anti-commutative. Note that products of an odd number of
generators anti-commute while all other combinations commute.

Then, the set A of all linear combinations

α0 +
∞

∑
n=1

N

∑
i1,i2,...,in=1

αi1,i2,··· ,inηi1 ηi2 . . .ηin , α0,αi1,i2,...,in ∈ C (B.5)

spans a finite-dimensional associative algebra of dimension 2N , which is called the
Grassmann algebra. The generators {ηi} and their products are members of the
algebra and are called Grassmann numbers.
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Grassmann Calculus
While (B.5) provides a formal definition of Grassmann numbers, before proceeding
further, we need to introduce the functional operations, or calculus, of these variables.
As we outline below, it turns out that Grassmann calculus is actually much simpler
than the calculus of ordinary numbers.

• Functions of Grassmann numbers are defined via their Taylor expansions:

f (η1,η2, . . . ,ηk) =
∞

∑
n=0

k

∑
i1,i2,...,in=1

1
n!

∂ n f
∂η1 ∂η2 · · · ∂ηk

∣∣∣∣
η=0

ηin · · ·ηi2 ηi1 , (B.6)

where {η1,η2, . . . ,ηk} is some subset of the Grassmann generators (k≤N). A par-
ticularly convenient feature of this expansion is that the series necessarily terminates
after a finite number of terms. For instance, when N = 1, f (η) = f (0)+ f ′(0)η since
η2 = 0.

• Differentiation is defined as ∂ηiη j = δi j. By virtue of (B.3), the differential operator
itself has to be anti-commutative, that is, ∂ηiη jηi =−η j for i ̸= j.

• Integration is defined by the rules∫
dηi = 0,

∫
dηi ηi = 1. (B.7)

As an example, consider the integral∫
dη f (η) =

∫
dη
[

f (0)+ f ′(0)η
]
= f ′(0) = ∂η f (η). (B.8)

In other words, the actions of Grassmann differentiation and integration are one
and the same.

Construction of Coherent States
In order to construct fermionic coherent states, we need one final ingredient, namely,
the enlargement of the algebra to allow for the (commutative) multiplication of
Grassmann numbers and fermion operators such that [ηi,a j] = 0. Then, we define

|η⟩= exp

[
−∑

i
ηi a†

i

]
|0⟩, (B.9)

which is easily shown to be a coherent state. The corresponding ket is defined as

⟨η |= ⟨0|exp

[
−∑

i
ai η̄i

]
= ⟨0|exp

[
∑

i
η̄i ai

]
. (B.10)

However, ηi and η̄i are independent numbers unlike in the bosonic case, for which ψi
and ψ̄i were related by complex conjugation.

The various properties of both the bosonic and fermionic coherent states are
summarized in Table B.1.
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Table B.1 Coherent states for bosons (z= 1,ψi ∈C) and
fermions (z=−1,ψi ∈A).

Definition |ψ⟩= exp
[
z∑i ψia

†
i

]
|0⟩.

Action of ai ai|ψ⟩= ψi|ψ⟩, ⟨ψ|ai = ∂ψ̄i
⟨ψ|

Action of a†
i a†

i |ψ⟩= z∂ψi
|ψ⟩, ⟨ψ|a†

i = ⟨ψ|ψ̄i
Overlap ⟨ψ ′|ψ⟩= exp

[
∑i ψ̄ ′i ψi

]
Completeness

∫
∏

i

dψ̄i dψi

π(1+z)/2
e−∑i ψ̄iψi |ψ⟩⟨ψ|= 1

Grassmann Gaussian Integrals
Gaussian integrals play a recurring role in field theory. With regard to Grassmann
numbers, the fundamental Gaussian integral is∫

dη̄ dη e−η̄ α η = α ∀ α ∈ C, (B.11)

which can be regarded as the extension of the famous identity∫ ∞

−∞
dxe−ax2/2 =

2π
a

; Rea > 0,

to Grassmann variables. The generalization of (B.11) to multidimensional integrals
is also straightforward. Suppose ψ and ψ̄ are N-dimensional vectors of Grassmann
variables. Then,∫

d(ψ̄,ψ)e−ψ̄TAψ = detA,
∫

d(ψ̄,ψ)e−ψ̄TAψ+λ̄ T·ψ+ψ̄T·λ = detAeλ̄ TA−1λ , (B.12)

where d(ψ̄,ψ)≡∏i dψ̄i dψi. These equations are useful for deriving several important
identities. For instance, defining ⟨· · · ⟩ ≡ (detA)−1 d(ψ̄,ψ)e−ψ̄TAψ(· · ·), one can obtain
the correlators

⟨ψ jψ̄i⟩= A−1
ji and ⟨ψ j1 ψ j2 · · ·ψ jn ψ̄in · · · ψ̄i2 ψ̄i1⟩= ∑

P
(sgnP)A−1

j1iP1
· · ·A−1

jniPn
, (B.13)

where the sign of the permutation P keeps track of the sign changes resulting from the
anti-commuting interchange of Grassmann variables.

B.1 Application: Partition Function

Having established the powerfulmachinery of coherent states andGrassmann calculus,
we turn to a demonstration of its utility. To this end, we now derive the field integral
for the partition function. The quantum partition function is given by

Z = Tre−β (Ĥ−µN̂ ) = ∑
n
⟨n|e−β (Ĥ−µN̂ )|n⟩, (B.14)
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where β = 1/T is the inverse temperature, and the sum runs over a complete set of
Fock-space states |n⟩. Next, we insert the resolution of the identity (from the last line
of Table B.1) as

Z =
∫

d(ψ̄,ψ)e−∑i ψ̄iψi ∑
n
⟨n|ψ⟩⟨ψ|e−β (Ĥ−µN̂ )|n⟩. (B.15)

As with the usual path-integral construction, we now want to use the property that
∑n|n⟩⟨n|= 1 to eliminate the summation over n. So far, our construction has been com-
pletely general and applies equally well to bosons and fermions. However, recall that,
for fermionic coherent states, ⟨n|ψ⟩⟨ψ|n⟩= ⟨−ψ|n⟩⟨n|ψ⟩. So,

Z =
∫

d(ψ̄,ψ)e−∑i ψ̄iψi ∑
n
⟨zψ|e−β (Ĥ−µN̂ )|n⟩⟨n|ψ⟩

=
∫

d(ψ̄,ψ)e−∑i ψ̄iψi⟨zψ|e−β (Ĥ−µN̂ )|ψ⟩, (B.16)

with the statistics encoded, as in Table B.1 previously, by taking z= 1 (z=−1) for
bosons (fermions).

Let us now consider a generic Hamiltonian

Ĥ(a,a†) = ∑
i, j

hi ja
†
i a j + ∑

i, j,k,l
Vi jkl a†

i a†
jakal , (B.17)

where we have written the interaction term in its normal-ordered form. Now, the stan-
dard path-integral construction proceeds by dividing the “time” interval β into M
steps of width δ = β/M and inserting the resolution of the identity between each step.
Adopting the shorthand ψn = {ψn

i }, we find

Z =
∫

ψ̄0=zψ̄M

ψ0=zψM

M

∏
n=0

d(ψ̄n,ψn)

× exp

(
−δ

M−1

∑
n=0

[
δ−1(ψ̄n− ψ̄n+1) ·ψn +H

(
ψ̄n+1,ψn)−µN

(
ψ̄n+1,ψn)]) ,

with (B.18)

H
(
ψ̄,ψ ′

)
≡ ⟨ψ|Ĥ(a,a

†)|ψ ′⟩
⟨ψ|ψ ′⟩

= ∑
i, j

hi jψ̄iψ ′j + ∑
i, j,k,l

Vi jkl ψ̄iψ̄ jψ ′kψ ′l , (B.19)

and similarly for N (ψ̄,ψ ′). Finally, taking the limit M→∞, we obtain the continuum
version of the path integral:

Z =
∫
D (ψ̄,ψ)e−S[ψ̄,ψ]; S [ψ̄,ψ] =

∫ β

0
dτ [ψ̄ ∂τ ψ +H (ψ̄,ψ)−µN (ψ̄,ψ)] , (B.20)

whereD (ψ̄,ψ) = limM→∞ ∏M
n=1 d(ψ̄n,ψn) and the fields satisfy the periodic or antiperi-

odic boundary conditions ψ̄0 = z ψ̄M, ψ0 = zψM. Therefore, on expanding out the
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terms in (B.20), we see that the action associated with the most general pair Hamil-
tonian is

S =
∫ β

0
dτ

[
∑
i, j

ψ̄i(τ)
[
(∂τ −µ)δi j +hi j

]
ψ j(τ)+ ∑

i, j,k,l
Vi jkl ψ̄i(τ)ψ̄ j(τ)ψk(τ)ψl(τ)

]
(B.21)

or equivalently, after Fourier transforming to Matsubara frequencies, by

S = ∑
i, j,n

ψ̄in
[
(−iωn−µ)δi j +hi j

]
ψ jn +

1
β ∑

i, j,k,l
Vi jkl ψ̄in1

ψ̄ jn2
ψkn3

ψln4
δn1+n2,n3+n4 .

(B.22)
This path integral provides an alternate approach to the analysis in Section 6.1, and
was directly employed in Section 9.4.
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Appendix C From Spin Berry Phases to
Background Gauge Charges

This appendix derives the Berry phase term in (26.3), (26.4), and (26.37) for the U(1)
gauge theory of square-lattice antiferromagnets, starting from the spin Berry phase in
(18.23) or (A.38).

C.1 Single Spin

We begin by examining a single spin in a magnetic field h with the Hamiltonian−h ·S.
From (18.23) and Section A.2, the partition function at a temperature T is

Trexp(h ·S/T ) =

∫
DN(τ)exp

(
i2SA[N(τ)]+S

∫ 1/T

0
dτh ·N(τ)

)
. (C.1)

Here, S is the angular momentum of the spin S and N(τ) is a unit 3-vector with
N(0) = N(1/T ). So the above path integral is over all closed curves on the surface
of a sphere. The first term in the action of the path integral is the Berry phase:A[N(τ)]
is half the oriented area enclosed by the curve N(τ) (the reason for choosing the half
normalization here will become clear momentarily). Note that this area is only defined
modulo 4π, the surface area of a unit sphere.

The half-area A[N(τ)] is a global object defined by the whole curve N(τ), and we
would like to break it up into local contributions. We proceed as illustrated in Fig A.1:
discretize imaginary time, choose a fixed arbitrary point on the sphere (say the north
pole), and thus write the area as the sum of a large number of spherical triangles. Now
each triangle is associated with a local portion of the curve N(τ).

We now need an expression forA(N1,N2,N3), defined as half the area of the spher-
ical triangle with vertices N1, N2, N3. Complicated expressions for this appear in
treatises on spherical trigonometry, but a far simpler expression is obtained after
transforming to spinor variables [25]. Let us write

N j ≡ z∗jα σσσαβ z jβ , (C.2)

where α,β =↑,↓, σσσαβ are the Pauli matrices, and z j↑, z j↓ are complex numbers obeying
|z j↑|2 + |z j↓|2 = 1. Note that knowledge of N j only defines z jα up to a U(1) gauge
transformation under which

z jα → z jα eiϕ j . (C.3)
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Then, associated with each pair of vertices N i,N j we define

Ai j ≡ arg [z∗iα z jα ] . (C.4)

Under the gauge transformation (C.3) we have

Ai j→Ai j−ϕi +ϕ j, (C.5)

that is, Ai j behaves like a U(1) gauge field. Note also that Ai j is only defined modulo
2π, and that A ji = −Ai j. We also mention the following identity, which follows from
(C.2) and (C.4):

z∗iα z jα =

(
1+N i ·N j

2

)1/2

eiAi j . (C.6)

The classical result for the half-area of the spherical triangle can bewritten in the simple
form in terms of the present U(1) gauge variables:

A(N1,N2,N3) =A12 +A23 +A31. (C.7)

We chose A as a half-area earlier mainly because then the expressions (C.4) and (C.7)
come out without numerical factors. It is satisfying to observe that this total area is
invariant under (C.5), and that the half-area is ambiguous modulo 2π.

Using (C.7), we can now write down the needed expression forA[N(τ)]. We assume
that imaginary time is discretized into times τ j separated by intervals ∆τ . Also, we
denote by j+τ the site at time τ j +∆τ , and defineA j, j+τ ≡A jτ . Then, the Berry phase
is proportional to the sum of the areas of all the spherical triangles in Fig. A.1, and so

A[N(τ)] = ∑
j
A jτ . (C.8)

Note that this expression is a gauge-invariant function of theU(1) gauge fieldA jτ , and
is analogous to the quantity sometimes called the Polyakov loop.

C.2 Square-Lattice Antiferromagnet

We apply the single-spin formulation to a lattice antiferromagnet with the following
steps:

(i) Discretize spacetime into a cubic lattice of points j.
(ii) On each spacetime point j, we represent the quantum spin operator S j by

S j = η jSN j, (C.9)

where N j is a unit vector and η j =±1 is the sublattice staggering factor. We have
chosen to include η j because of the expected local antiferromagnetic correlations
of the spins. So in a quantum-fluctuating Néel state, we can reasonably expect N j

to be a slowly varying function of j.
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483 C.2 Square-Lattice Antiferromagnet

(iii) Associated with each N j, define a spinor z jα by (C.2).
(iv) With each link of the cubic lattice, we use (C.4) to associate with it A jµ ≡A j, j+µ .

Here µ = x,y,τ extends over the three spacetime directions.

With these preliminaries in hand, we can motivate the following effective action for
fluctuations of the square-lattice antiferromagnet:

Z̃ = ∏
jα

∫
dz jα ∏

j
δ
(∣∣z jα

∣∣2−1
)

exp

(
1
g̃ ∑
⟨i j⟩
N i ·N j + i2S∑

j
η jA jτ

)
. (C.10)

Here, the summation over ⟨i j⟩ extends over nearest neighbors on the cubic lattice. The
integrals are over the z jα , and theN j andA jτ are dependent variables defined via (C.2)
and (C.4). Note that both terms in the action are invariant under the gauge transfor-
mation (C.3); consequently, we could equally well have rewritten Z̃ as an integral over
the N j, but it turns out to be more convenient to use the z jα and to integrate over the
redundant gauge degree of freedom. The first term in the action contains the energy
of the Hamiltonian Hs, and acts to prefer nearest neighbors N j that are parallel to
each other – this “ferromagnetic” coupling between the N j in spacetime ensures, via
(C.9), that the local quantum spin configurations are as in the Néel state. The second
term in the action is simply the Berry phase required in the coherent-state path inte-
gral, as obtained from (C.1) and (C.8); the additional factor of η j compensates for
that in (C.9). The dimensionless coupling g̃ controls the strength of the local antifer-
romagnetic correlations: it is like a “temperature” for the ferromagnet in spacetime.
So for small g̃ we expect Z̃ to be in the Néel phase, while for large g̃ we can expect a
“quantum-disordered” state, as in Fig. 15.1.

While it is possible to proceed with Z̃, it is convenient to work with a very
closely related alternative model. The proposed theory for the quantum-fluctuating
antiferromagnet in its final form is [227, 237]

Z = ∏
jµ

∫ 2π

0

da jµ

2π ∏
jα

∫
dz jα ∏

j
δ
(∣∣z jα

∣∣2−1
)

exp

(
1
g ∑

jµ

(
z∗jα e−ia jµ z j+µ,a + c.c.

)
+ i2S∑

j
η ja jτ

)
. (C.11)

Just as in the analysis for the XY model in (14.21), we have introduced a new field
a jµ , on each link of the cubic lattice, which is integrated over. Like Aiµ , this is also a
U(1) gauge field because all terms in the action above are invariant under the analog
of (C.5):

a jµ → a jµ −ϕ j +ϕ j+µ . (C.12)

The very close relationship betweenZ and Z̃ may be seen [237] by explicitly integrat-
ing over the a jµ in (C.11), similar to (14.22). This integral can be done exactly because
the integrand factorizes into terms on each link that depend only on a single a jµ . After
inserting (C.6) into (C.11), the integral over the jµ link is
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∫ 2π

0

da jµ

2π
exp

(
(2(1+N j ·N j+µ))

1/2

g
cos(A jµ −a jµ)+ i2Sη jδµτ a jµ

)

= I2Sδµτ

[
(2(1+N j ·N j+µ))

1/2

g

]
exp
(
i2Sη jδµτA jµ

)
, (C.13)

where the result involves either the modified Bessel function I0 (for µ = x,y) or I2S (for
µ = τ). We can use the identity (C.13) to perform the integral over a jµ on each link
of (C.11), and so obtain a partition function, denoted Z ′, as an integral over the z jα
only. This partition function Z ′ has essentially the same structure as Z̃ in (C.10). The
Berry phase term inZ ′ is identical to that in Z̃. The integrand ofZ ′ also contains a real
action expressed solely as a sum over functions of N i ·N j on nearest-neighbor links:
in Z̃ this function is simply N i ·N j/g̃, but the corresponding function obtained from
(C.11) is more complicated (it involves the logarithm of a Bessel function), and has
distinct forms on spatial and temporal links. We do not expect this detailed form of the
real action function to be of particular importance for universal properties; the initial
simple nearest-neighbor ferromagnetic coupling between the N j in (C.10) was chosen
arbitrarily anyway. So we may safely work with the theory Z in (C.11) henceforth.

One of the important advantages of (C.11) is that we no longer have to keep track
of the complicated non-linear constraints associated with (C.2) and (C.4); this was
one of the undesirable features of (C.10). In Z, we simply have free integration over
the independent variables z jα and a jµ . The theory Z in (C.11) has some resemblance
to the so-called CPN−1 model from the particle physics literature [25, 57, 309]: our
indices α,β take only two possible values, but the general model is obtained when
α,β = 1, . . . ,N. The case of general N describes SU(N) and USp(N) antiferromagnets
on the square lattice [215, 216]. Note also that it is essential for our purposes that
the theory is invariant under a jµ → a jµ +2π, and so the U(1) gauge theory is compact.
Finally, our model contains a Berry phase term that is not present in any of the particle
physics analyses.

The properties of Z are quite evident in the limit of small g. Here, the partition
function is strongly dominated by configurations in which the real part of the action is
a minimum. In a suitable gauge, these are the configurations in which z jα = constant,
and, by (C.2), we also have N j a constant. This obviously corresponds to the Néel
phase. A Gaussian fluctuation analysis about such a constant saddle point is easily
performed, and we obtain the expected spectrum of a doublet of gapless spin waves
obtained in Section 9.2.2.

For large g, we expect a quantum-disordered phase with ⟨S j⟩= ⟨N j⟩= 0. Here, we
can integrate out the zα from (C.11) in a 1/g expansion, and so obtain (26.4).
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Appendix D EmergentZ2 Gauge Theories

This appendix summarizes the various Z2 gauge theories employed to describe spin-S
antiferromangets in two spatial dimensions.

In Chapter 14, we considered XY models in which the XY order parameter represents
the antiferromagnetic order of an easy-plane antiferromagnet. We fractionalized the
XY order parameter in (14.14)

Ψi ≡ Hie2iφi , (D.1)

and condensed the U(1) gauge charge Higgs field H. This reduced the gauge symmetry
to Z2, and allowed us to replace the U(1) gauge field aiµ by a Z2 gauge field in (14.31):

aiµ = 0,π , eiaiµ ≡ Zi,i+µ =±1 . (D.2)

Then we obtained a Z2 gauge theory for the parton field eiφi , which carries a Z2 gauge
charge in (14.32); we write this in quantum form on the sites of the square lattice using
(16.7)

H=Hϕ +HZ2 , (D.3)

Hϕ =U ∑
i

L2
i − J2 ∑

⟨i j⟩
Zi j cos(φi−φ j), (D.4)

HZ2 =−K ∑
□

∏
ℓ∈□

Zℓ−g∑
ℓ

Xℓ . (D.5)

We have introduced here an integer-valued “angular-momentum” variable Li conjugate
to φi with the commutation relation

[Li,φ j] =−iδi j . (D.6)

The globalU(1) charge of the underlying XY model isQ= (1/2)∑i Li. The theory (D.3)
also has a conserved Z2 gauge charge on each site, which generalizes (16.9) to

Gi = (−1)Li ∏
ℓ∈+

Xℓ , (D.7)

and it was argued that an easy-plane spin-S antiferromagnet, or interacting bosons of
density S, are described by the theory with

Gi = (−1)2S. (D.8)

Thematter in (D.4) is at zero density, hence this theory falls into the category of (16.13).
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In Chapter 15, we fractionalized the spin operator of an antiferromagnet into
bosonic partons in (15.6)

Si =
1
2

s†
iα σσσα

β sβ
i . (D.9)

Then we condensed the boson-pair field Qi j in (15.22)

Q̄i j = ⟨εαβ sα
i sβ

j ⟩ , (D.10)

and this broke theU(1) gauge symmetry toZ2, allowing us to replaceQi j by aZ2 gauge
field in (16.2):

Qi j⇒ Zi j . (D.11)

We then obtained the Hamiltonian of the Z2 gauge theory coupled to spinons in (16.8)

Hvs
Z2

=HZ2 +Hs (D.12)

Hs = ∑
⟨i j⟩

(
−J̃i jZi jεαβ sα

i sβ
j +H.c.

)
+∑

i
λ̄i(s

†
iα sα

i −ns) , (D.13)

whereHZ2 is as in (D.5). The conserved Z2 gauge charges that commute withHvs
Z2

are
in (16.11):

Gvs
i = exp

(
iπs†

iα sα
i

)
∏
ℓ∈+

Xℓ . (D.14)

In the full theory Hvs
Z2

with the active sα
i degrees of freedom we have to impose the

constraint Gvs
i = 1 in (16.12). However, if we work in an effective pure Z2 gauge the-

ory HZ2 in which we integrate out the gapped spinon degrees of freedom, the boson
constraint (15.4) implies the Z2 gauge constraint in (16.13)

Gi ≡ ∏
ℓ∈+

Xℓ = (−1)2S . (D.15)

Alternatively, for antiferromagnets with global SO(3) spin-rotation symmetry, we
can keep the spinons in the “relativistic” form in (15.49) “withoutmatter Berry phases,”
which is the O(4) global symmetry generalization of the O(2) global symmetry in (D.4).
To write (15.49) in Hamiltonian form, it is convenient to decompose zα in terms of a
real field ma (a = 1, . . . ,4):

z↑ = m1 + im2 , z↓ = m3 + im4 ,
4

∑
a=1

m2
a = 1 . (D.16)

Then, the Hamiltonian isH=Hm +HZ2 , withHm generalizingHϕ in (D.4) to

Hm =U ∑
i

∑
a̸=b

L2
i,ab− J2 ∑

⟨i j⟩
∑
a

Zi jmiam ja , (D.17)

where

Lab = ma
∂

∂mb
−mb

∂
∂ma

. (D.18)
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487 Appendix D EmergentZ2 Gauge Theories

The conserved Z2 gauge charge generalizing (D.7) is

Gi = (−1)ℓi ∏
ℓ∈+

Xℓ , (D.19)

where ℓi is the hyperspherical harmonic angular-momentum quantum number [305] of
the state on site i. The gauge constraint remains as in (D.8). Ultimately, the constraints
in (D.8) and (D.15) are the consequences of the spin Berry phases in Section 18.2 on
the Z2 liquid and its vicinity, as discussed in Section 26.2.
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